/* ** License Applicability. Except to the extent portions of this file are ** made subject to an alternative license as permitted in the SGI Free ** Software License B, Version 2.0 (the "License"), the contents of this ** file are subject only to the provisions of the License. You may not use ** this file except in compliance with the License. You may obtain a copy ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at: ** ** http://oss.sgi.com/projects/FreeB ** ** Note that, as provided in the License, the Software is distributed on an ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT. ** ** NOTE: The Original Code (as defined below) has been licensed to Sun ** Microsystems, Inc. ("Sun") under the SGI Free Software License B ** (Version 1.1), shown above ("SGI License"). Pursuant to Section ** 3.2(3) of the SGI License, Sun is distributing the Covered Code to ** you under an alternative license ("Alternative License"). This ** Alternative License includes all of the provisions of the SGI License ** except that Section 2.2 and 11 are omitted. Any differences between ** the Alternative License and the SGI License are offered solely by Sun ** and not by SGI. ** ** Original Code. The Original Code is: OpenGL Sample Implementation, ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. ** Copyright in any portions created by third parties is as indicated ** elsewhere herein. All Rights Reserved. ** ** Additional Notice Provisions: The application programming interfaces ** established by SGI in conjunction with the Original Code are The ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X ** Window System(R) (Version 1.3), released October 19, 1998. This software ** was created using the OpenGL(R) version 1.2.1 Sample Implementation ** published by SGI, but has not been independently verified as being ** compliant with the OpenGL(R) version 1.2.1 Specification. ** ** $Date: 2009-03-13 22:20:29 -0700 (Fri, 13 Mar 2009) $ $Revision: 1867 $ ** $Header$ */ /* * Copyright (c) 2002-2004 LWJGL Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of 'LWJGL' nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 2003 Sun Microsystems, Inc. All Rights Reserved. * Copyright (c) 2011 JogAmp Community. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * - Redistribution of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistribution in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Sun Microsystems, Inc. or the names of * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * This software is provided "AS IS," without a warranty of any kind. ALL * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN * MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE FOR * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR * ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR * DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE * DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, * ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF * SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. * * You acknowledge that this software is not designed or intended for use * in the design, construction, operation or maintenance of any nuclear * facility. */ package jogamp.opengl; import java.nio.Buffer; import java.nio.FloatBuffer; import java.nio.IntBuffer; import javax.media.opengl.fixedfunc.GLMatrixFunc; import com.jogamp.common.nio.Buffers; import com.jogamp.opengl.math.FloatUtil; import com.jogamp.opengl.math.VectorUtil; /** * ProjectFloat.java * <p> * Created 11-jan-2004 * </p> * * @author Erik Duijs * @author Kenneth Russell * @author Sven Gothel */ public class ProjectFloat { public static final int getRequiredFloatBufferSize() { return 1*16; } // Note that we have cloned parts of the implementation in order to // support incoming Buffers. The reason for this is to avoid loading // non-direct buffer subclasses unnecessarily, because doing so can // cause performance decreases on direct buffer operations, at least // on the current HotSpot JVM. It would be nicer (and make the code // simpler) to simply have the array-based entry points delegate to // the versions taking Buffers by wrapping the arrays. // Array-based implementation private final float[] matrix = new float[16]; private final float[][] tempInvertMatrix = new float[4][4]; private final float[] in = new float[4]; private final float[] out = new float[4]; // Buffer-based implementation private FloatBuffer matrixBuf; // 4x4 private final float[] forward = new float[3]; // 3 private final float[] side = new float[3]; // 3 private final float[] up = new float[3]; // 3 public ProjectFloat() { this(true); } public ProjectFloat(boolean useBackingArray) { this(useBackingArray ? null : Buffers.newDirectByteBuffer(getRequiredFloatBufferSize() * Buffers.SIZEOF_FLOAT), useBackingArray ? new float[getRequiredFloatBufferSize()] : null, 0); } /** * @param floatBuffer source buffer, may be ByteBuffer (recommended) or FloatBuffer or <code>null</code>. * If used, shall be ≥ {@link #getRequiredFloatBufferSize()} + floatOffset. * Buffer's position is ignored and floatPos is being used. * @param floatArray source float array or <code>null</code>. * If used, size shall be ≥ {@link #getRequiredFloatBufferSize()} + floatOffset. * @param floatOffset Offset for either of the given sources (buffer or array) */ public ProjectFloat(Buffer floatBuffer, float[] floatArray, int floatOffset) { matrixBuf = Buffers.slice2Float(floatBuffer, floatArray, floatOffset, 16); } public void destroy() { matrixBuf = null; } /** * @param src * @param srcOffset * @param inverse * @param inverseOffset * @return */ public boolean gluInvertMatrixf(float[] src, int srcOffset, float[] inverse, int inverseOffset) { int i, j, k, swap; float t; final float[][] temp = tempInvertMatrix; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { temp[i][j] = src[i*4+j+srcOffset]; } } FloatUtil.makeIdentityf(inverse, inverseOffset); for (i = 0; i < 4; i++) { // // Look for largest element in column // swap = i; for (j = i + 1; j < 4; j++) { if (Math.abs(temp[j][i]) > Math.abs(temp[i][i])) { swap = j; } } if (swap != i) { // // Swap rows. // for (k = 0; k < 4; k++) { t = temp[i][k]; temp[i][k] = temp[swap][k]; temp[swap][k] = t; t = inverse[i*4+k+inverseOffset]; inverse[i*4+k+inverseOffset] = inverse[swap*4+k+inverseOffset]; inverse[swap*4+k+inverseOffset] = t; } } if (temp[i][i] == 0) { // // No non-zero pivot. The matrix is singular, which shouldn't // happen. This means the user gave us a bad matrix. // return false; } t = temp[i][i]; for (k = 0; k < 4; k++) { temp[i][k] /= t; inverse[i*4+k+inverseOffset] /= t; } for (j = 0; j < 4; j++) { if (j != i) { t = temp[j][i]; for (k = 0; k < 4; k++) { temp[j][k] -= temp[i][k] * t; inverse[j*4+k+inverseOffset] -= inverse[i*4+k+inverseOffset]*t; } } } } return true; } /** * @param src * @param inverse * * @return */ public boolean gluInvertMatrixf(FloatBuffer src, FloatBuffer inverse) { int i, j, k, swap; float t; final int srcPos = src.position(); final int invPos = inverse.position(); final float[][] temp = tempInvertMatrix; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { temp[i][j] = src.get(i*4+j + srcPos); } } FloatUtil.makeIdentityf(inverse); for (i = 0; i < 4; i++) { // // Look for largest element in column // swap = i; for (j = i + 1; j < 4; j++) { if (Math.abs(temp[j][i]) > Math.abs(temp[i][i])) { swap = j; } } if (swap != i) { // // Swap rows. // for (k = 0; k < 4; k++) { t = temp[i][k]; temp[i][k] = temp[swap][k]; temp[swap][k] = t; t = inverse.get(i*4+k + invPos); inverse.put(i*4+k + invPos, inverse.get(swap*4+k + invPos)); inverse.put(swap*4+k + invPos, t); } } if (temp[i][i] == 0) { // // No non-zero pivot. The matrix is singular, which shouldn't // happen. This means the user gave us a bad matrix. // return false; } t = temp[i][i]; for (k = 0; k < 4; k++) { temp[i][k] /= t; final int z = i*4+k + invPos; inverse.put(z, inverse.get(z) / t); } for (j = 0; j < 4; j++) { if (j != i) { t = temp[j][i]; for (k = 0; k < 4; k++) { temp[j][k] -= temp[i][k] * t; final int z = j*4+k + invPos; inverse.put(z, inverse.get(z) - inverse.get(i*4+k + invPos) * t); } } } } return true; } /** * Method gluOrtho2D. * * @param left * @param right * @param bottom * @param top */ public void gluOrtho2D(GLMatrixFunc gl, float left, float right, float bottom, float top) { gl.glOrthof(left, right, bottom, top, -1, 1); } /** * Method gluPerspective. * * @param fovy * @param aspect * @param zNear * @param zFar */ public void gluPerspective(GLMatrixFunc gl, float fovy, float aspect, float zNear, float zFar) { final float radians = fovy / 2 * (float) Math.PI / 180; float sine, cotangent, deltaZ; deltaZ = zFar - zNear; sine = (float) Math.sin(radians); if ((deltaZ == 0) || (sine == 0) || (aspect == 0)) { return; } cotangent = (float) Math.cos(radians) / sine; FloatUtil.makeIdentityf(matrixBuf); final int mPos = matrixBuf.position(); matrixBuf.put(0 * 4 + 0 + mPos, cotangent / aspect); matrixBuf.put(1 * 4 + 1 + mPos, cotangent); matrixBuf.put(2 * 4 + 2 + mPos, - (zFar + zNear) / deltaZ); matrixBuf.put(2 * 4 + 3 + mPos, -1); matrixBuf.put(3 * 4 + 2 + mPos, -2 * zNear * zFar / deltaZ); matrixBuf.put(3 * 4 + 3 + mPos, 0); gl.glMultMatrixf(matrixBuf); } /** * Method gluLookAt * * @param eyex * @param eyey * @param eyez * @param centerx * @param centery * @param centerz * @param upx * @param upy * @param upz */ public void gluLookAt(GLMatrixFunc gl, float eyex, float eyey, float eyez, float centerx, float centery, float centerz, float upx, float upy, float upz) { final float[] forward = this.forward; final float[] side = this.side; final float[] up = this.up; forward[0] = centerx - eyex; forward[1] = centery - eyey; forward[2] = centerz - eyez; up[0] = upx; up[1] = upy; up[2] = upz; VectorUtil.normalizeVec3(forward); /* Side = forward x up */ VectorUtil.crossVec3(side, forward, up); VectorUtil.normalizeVec3(side); /* Recompute up as: up = side x forward */ VectorUtil.crossVec3(up, side, forward); FloatUtil.makeIdentityf(matrixBuf); final int mPos = matrixBuf.position(); matrixBuf.put(0 * 4 + 0 + mPos, side[0]); matrixBuf.put(1 * 4 + 0 + mPos, side[1]); matrixBuf.put(2 * 4 + 0 + mPos, side[2]); matrixBuf.put(0 * 4 + 1 + mPos, up[0]); matrixBuf.put(1 * 4 + 1 + mPos, up[1]); matrixBuf.put(2 * 4 + 1 + mPos, up[2]); matrixBuf.put(0 * 4 + 2 + mPos, -forward[0]); matrixBuf.put(1 * 4 + 2 + mPos, -forward[1]); matrixBuf.put(2 * 4 + 2 + mPos, -forward[2]); gl.glMultMatrixf(matrixBuf); gl.glTranslatef(-eyex, -eyey, -eyez); } /** * Map object coordinates to window coordinates. * * @param objx * @param objy * @param objz * @param modelMatrix * @param projMatrix * @param viewport * @param win_pos * * @return */ public boolean gluProject(float objx, float objy, float objz, float[] modelMatrix, int modelMatrix_offset, float[] projMatrix, int projMatrix_offset, int[] viewport, int viewport_offset, float[] win_pos, int win_pos_offset ) { final float[] in = this.in; final float[] out = this.out; in[0] = objx; in[1] = objy; in[2] = objz; in[3] = 1.0f; FloatUtil.multMatrixVecf(modelMatrix, modelMatrix_offset, in, 0, out, 0); FloatUtil.multMatrixVecf(projMatrix, projMatrix_offset, out, 0, in, 0); if (in[3] == 0.0f) { return false; } in[3] = (1.0f / in[3]) * 0.5f; // Map x, y and z to range 0-1 in[0] = in[0] * in[3] + 0.5f; in[1] = in[1] * in[3] + 0.5f; in[2] = in[2] * in[3] + 0.5f; // Map x,y to viewport win_pos[0+win_pos_offset] = in[0] * viewport[2+viewport_offset] + viewport[0+viewport_offset]; win_pos[1+win_pos_offset] = in[1] * viewport[3+viewport_offset] + viewport[1+viewport_offset]; win_pos[2+win_pos_offset] = in[2]; return true; } /** * Map object coordinates to window coordinates. */ public boolean gluProject(float objx, float objy, float objz, FloatBuffer modelMatrix, FloatBuffer projMatrix, int[] viewport, int viewport_offset, float[] win_pos, int win_pos_offset ) { final float[] in = this.in; final float[] out = this.out; in[0] = objx; in[1] = objy; in[2] = objz; in[3] = 1.0f; FloatUtil.multMatrixVecf(modelMatrix, in, out); FloatUtil.multMatrixVecf(projMatrix, out, in); if (in[3] == 0.0f) { return false; } in[3] = (1.0f / in[3]) * 0.5f; // Map x, y and z to range 0-1 in[0] = in[0] * in[3] + 0.5f; in[1] = in[1] * in[3] + 0.5f; in[2] = in[2] * in[3] + 0.5f; // Map x,y to viewport win_pos[0+win_pos_offset] = in[0] * viewport[2+viewport_offset] + viewport[0+viewport_offset]; win_pos[1+win_pos_offset] = in[1] * viewport[3+viewport_offset] + viewport[1+viewport_offset]; win_pos[2+win_pos_offset] = in[2]; return true; } /** * Map object coordinates to window coordinates. * * @param objx * @param objy * @param objz * @param modelMatrix * @param projMatrix * @param viewport * @param win_pos * * @return */ public boolean gluProject(float objx, float objy, float objz, FloatBuffer modelMatrix, FloatBuffer projMatrix, IntBuffer viewport, FloatBuffer win_pos) { final float[] in = this.in; final float[] out = this.out; in[0] = objx; in[1] = objy; in[2] = objz; in[3] = 1.0f; FloatUtil.multMatrixVecf(modelMatrix, in, out); FloatUtil.multMatrixVecf(projMatrix, out, in); if (in[3] == 0.0f) { return false; } in[3] = (1.0f / in[3]) * 0.5f; // Map x, y and z to range 0-1 in[0] = in[0] * in[3] + 0.5f; in[1] = in[1] * in[3] + 0.5f; in[2] = in[2] * in[3] + 0.5f; // Map x,y to viewport final int vPos = viewport.position(); final int wPos = win_pos.position(); win_pos.put(0+wPos, in[0] * viewport.get(2+vPos) + viewport.get(0+vPos)); win_pos.put(1+wPos, in[1] * viewport.get(3+vPos) + viewport.get(1+vPos)); win_pos.put(2+wPos, in[2]); return true; } /** * Map window coordinates to object coordinates. * * @param winx * @param winy * @param winz * @param modelMatrix * @param projMatrix * @param viewport * @param obj_pos * * @return true if successful, otherwise false (failed to invert matrix, or becomes z is infinity) */ public boolean gluUnProject(float winx, float winy, float winz, float[] modelMatrix, int modelMatrix_offset, float[] projMatrix, int projMatrix_offset, int[] viewport, int viewport_offset, float[] obj_pos, int obj_pos_offset) { final float[] in = this.in; final float[] out = this.out; FloatUtil.multMatrixf(projMatrix, projMatrix_offset, modelMatrix, modelMatrix_offset, matrix, 0); if (!gluInvertMatrixf(matrix, 0, matrix, 0)) { return false; } in[0] = winx; in[1] = winy; in[2] = winz; in[3] = 1.0f; // Map x and y from window coordinates in[0] = (in[0] - viewport[0+viewport_offset]) / viewport[2+viewport_offset]; in[1] = (in[1] - viewport[1+viewport_offset]) / viewport[3+viewport_offset]; // Map to range -1 to 1 in[0] = in[0] * 2 - 1; in[1] = in[1] * 2 - 1; in[2] = in[2] * 2 - 1; FloatUtil.multMatrixVecf(matrix, in, out); if (out[3] == 0.0) { return false; } out[3] = 1.0f / out[3]; obj_pos[0+obj_pos_offset] = out[0] * out[3]; obj_pos[1+obj_pos_offset] = out[1] * out[3]; obj_pos[2+obj_pos_offset] = out[2] * out[3]; return true; } /** * Map window coordinates to object coordinates. * * @param winx * @param winy * @param winz * @param modelMatrix * @param projMatrix * @param viewport * @param viewport_offset * @param obj_pos * @param obj_pos_offset * @return true if successful, otherwise false (failed to invert matrix, or becomes z is infinity) */ public boolean gluUnProject(float winx, float winy, float winz, FloatBuffer modelMatrix, FloatBuffer projMatrix, int[] viewport, int viewport_offset, float[] obj_pos, int obj_pos_offset) { final float[] in = this.in; final float[] out = this.out; FloatUtil.multMatrixf(projMatrix, modelMatrix, matrixBuf); if (!gluInvertMatrixf(matrixBuf, matrixBuf)) { return false; } in[0] = winx; in[1] = winy; in[2] = winz; in[3] = 1.0f; // Map x and y from window coordinates in[0] = (in[0] - viewport[0+viewport_offset]) / viewport[2+viewport_offset]; in[1] = (in[1] - viewport[1+viewport_offset]) / viewport[3+viewport_offset]; // Map to range -1 to 1 in[0] = in[0] * 2 - 1; in[1] = in[1] * 2 - 1; in[2] = in[2] * 2 - 1; FloatUtil.multMatrixVecf(matrixBuf, in, out); if (out[3] == 0.0) { return false; } out[3] = 1.0f / out[3]; obj_pos[0+obj_pos_offset] = out[0] * out[3]; obj_pos[1+obj_pos_offset] = out[1] * out[3]; obj_pos[2+obj_pos_offset] = out[2] * out[3]; return true; } /** * Map window coordinates to object coordinates. * * @param winx * @param winy * @param winz * @param modelMatrix * @param projMatrix * @param viewport * @param obj_pos * * @return true if successful, otherwise false (failed to invert matrix, or becomes z is infinity) */ public boolean gluUnProject(float winx, float winy, float winz, FloatBuffer modelMatrix, FloatBuffer projMatrix, IntBuffer viewport, FloatBuffer obj_pos) { final float[] in = this.in; final float[] out = this.out; FloatUtil.multMatrixf(projMatrix, modelMatrix, matrixBuf); if (!gluInvertMatrixf(matrixBuf, matrixBuf)) { return false; } in[0] = winx; in[1] = winy; in[2] = winz; in[3] = 1.0f; // Map x and y from window coordinates final int vPos = viewport.position(); final int oPos = obj_pos.position(); in[0] = (in[0] - viewport.get(0+vPos)) / viewport.get(2+vPos); in[1] = (in[1] - viewport.get(1+vPos)) / viewport.get(3+vPos); // Map to range -1 to 1 in[0] = in[0] * 2 - 1; in[1] = in[1] * 2 - 1; in[2] = in[2] * 2 - 1; FloatUtil.multMatrixVecf(matrixBuf, in, out); if (out[3] == 0.0) { return false; } out[3] = 1.0f / out[3]; obj_pos.put(0+oPos, out[0] * out[3]); obj_pos.put(1+oPos, out[1] * out[3]); obj_pos.put(2+oPos, out[2] * out[3]); return true; } /** * Map window coordinates to object coordinates. * * @param winx * @param winy * @param winz * @param clipw * @param modelMatrix * @param projMatrix * @param viewport * @param near * @param far * @param obj_pos * * @return true if successful, otherwise false (failed to invert matrix, or becomes z is infinity) */ public boolean gluUnProject4(float winx, float winy, float winz, float clipw, float[] modelMatrix, int modelMatrix_offset, float[] projMatrix, int projMatrix_offset, int[] viewport, int viewport_offset, float near, float far, float[] obj_pos, int obj_pos_offset ) { final float[] in = this.in; final float[] out = this.out; FloatUtil.multMatrixf(projMatrix, projMatrix_offset, modelMatrix, modelMatrix_offset, matrix, 0); if (!gluInvertMatrixf(matrix, 0, matrix, 0)) return false; in[0] = winx; in[1] = winy; in[2] = winz; in[3] = clipw; // Map x and y from window coordinates in[0] = (in[0] - viewport[0+viewport_offset]) / viewport[2+viewport_offset]; in[1] = (in[1] - viewport[1+viewport_offset]) / viewport[3+viewport_offset]; in[2] = (in[2] - near) / (far - near); // Map to range -1 to 1 in[0] = in[0] * 2 - 1; in[1] = in[1] * 2 - 1; in[2] = in[2] * 2 - 1; FloatUtil.multMatrixVecf(matrix, in, out); if (out[3] == 0.0f) { return false; } obj_pos[0+obj_pos_offset] = out[0]; obj_pos[1+obj_pos_offset] = out[1]; obj_pos[2+obj_pos_offset] = out[2]; obj_pos[3+obj_pos_offset] = out[3]; return true; } /** * Map window coordinates to object coordinates. * * @param winx * @param winy * @param winz * @param clipw * @param modelMatrix * @param projMatrix * @param viewport * @param near * @param far * @param obj_pos * * @return true if successful, otherwise false (failed to invert matrix, or becomes z is infinity) */ public boolean gluUnProject4(float winx, float winy, float winz, float clipw, FloatBuffer modelMatrix, FloatBuffer projMatrix, IntBuffer viewport, float near, float far, FloatBuffer obj_pos) { final float[] in = this.in; final float[] out = this.out; FloatUtil.multMatrixf(projMatrix, modelMatrix, matrixBuf); if (!gluInvertMatrixf(matrixBuf, matrixBuf)) return false; in[0] = winx; in[1] = winy; in[2] = winz; in[3] = clipw; // Map x and y from window coordinates final int vPos = viewport.position(); in[0] = (in[0] - viewport.get(0+vPos)) / viewport.get(2+vPos); in[1] = (in[1] - viewport.get(1+vPos)) / viewport.get(3+vPos); in[2] = (in[2] - near) / (far - near); // Map to range -1 to 1 in[0] = in[0] * 2 - 1; in[1] = in[1] * 2 - 1; in[2] = in[2] * 2 - 1; FloatUtil.multMatrixVecf(matrixBuf, in, out); if (out[3] == 0.0f) { return false; } final int oPos = obj_pos.position(); obj_pos.put(0+oPos, out[0]); obj_pos.put(1+oPos, out[1]); obj_pos.put(2+oPos, out[2]); obj_pos.put(3+oPos, out[3]); return true; } /** * Method gluPickMatrix * * @param x * @param y * @param deltaX * @param deltaY * @param viewport */ public void gluPickMatrix(GLMatrixFunc gl, float x, float y, float deltaX, float deltaY, IntBuffer viewport) { if (deltaX <= 0 || deltaY <= 0) { return; } /* Translate and scale the picked region to the entire window */ final int vPos = viewport.position(); gl.glTranslatef((viewport.get(2+vPos) - 2 * (x - viewport.get(0+vPos))) / deltaX, (viewport.get(3+vPos) - 2 * (y - viewport.get(1+vPos))) / deltaY, 0); gl.glScalef(viewport.get(2) / deltaX, viewport.get(3) / deltaY, 1.0f); } /** * Method gluPickMatrix * * @param x * @param y * @param deltaX * @param deltaY * @param viewport * @param viewport_offset */ public void gluPickMatrix(GLMatrixFunc gl, float x, float y, float deltaX, float deltaY, int[] viewport, int viewport_offset) { if (deltaX <= 0 || deltaY <= 0) { return; } /* Translate and scale the picked region to the entire window */ gl.glTranslatef((viewport[2+viewport_offset] - 2 * (x - viewport[0+viewport_offset])) / deltaX, (viewport[3+viewport_offset] - 2 * (y - viewport[1+viewport_offset])) / deltaY, 0); gl.glScalef(viewport[2+viewport_offset] / deltaX, viewport[3+viewport_offset] / deltaY, 1.0f); } }