/* ** License Applicability. Except to the extent portions of this file are ** made subject to an alternative license as permitted in the SGI Free ** Software License B, Version 2.0 (the "License"), the contents of this ** file are subject only to the provisions of the License. You may not use ** this file except in compliance with the License. You may obtain a copy ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at: ** ** http://oss.sgi.com/projects/FreeB ** ** Note that, as provided in the License, the Software is distributed on an ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT. ** ** NOTE: The Original Code (as defined below) has been licensed to Sun ** Microsystems, Inc. ("Sun") under the SGI Free Software License B ** (Version 1.1), shown above ("SGI License"). Pursuant to Section ** 3.2(3) of the SGI License, Sun is distributing the Covered Code to ** you under an alternative license ("Alternative License"). This ** Alternative License includes all of the provisions of the SGI License ** except that Section 2.2 and 11 are omitted. Any differences between ** the Alternative License and the SGI License are offered solely by Sun ** and not by SGI. ** ** Original Code. The Original Code is: OpenGL Sample Implementation, ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. ** Copyright in any portions created by third parties is as indicated ** elsewhere herein. All Rights Reserved. ** ** Additional Notice Provisions: The application programming interfaces ** established by SGI in conjunction with the Original Code are The ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X ** Window System(R) (Version 1.3), released October 19, 1998. This software ** was created using the OpenGL(R) version 1.2.1 Sample Implementation ** published by SGI, but has not been independently verified as being ** compliant with the OpenGL(R) version 1.2.1 Specification. ** ** $Date: 2009-03-13 22:20:29 -0700 (Fri, 13 Mar 2009) $ $Revision: 1867 $ ** $Header$ */ /* * Copyright (c) 2002-2004 LWJGL Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of 'LWJGL' nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 2003 Sun Microsystems, Inc. All Rights Reserved. * Copyright (c) 2011 JogAmp Community. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * - Redistribution of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistribution in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Sun Microsystems, Inc. or the names of * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * This software is provided "AS IS," without a warranty of any kind. ALL * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN * MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE FOR * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR * ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR * DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE * DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, * ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF * SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. * * You acknowledge that this software is not designed or intended for use * in the design, construction, operation or maintenance of any nuclear * facility. */ package jogamp.opengl; import java.nio.Buffer; import java.nio.FloatBuffer; import java.nio.IntBuffer; import javax.media.opengl.fixedfunc.GLMatrixFunc; import com.jogamp.common.nio.Buffers; import com.jogamp.opengl.FloatUtil; /** * ProjectFloat.java *
* Created 11-jan-2004 *
* * @author Erik Duijs * @author Kenneth Russell * @author Sven Gothel */ public class ProjectFloat { public static final int getRequiredFloatBufferSize() { return 2*16+2*4+3*3; } // Note that we have cloned parts of the implementation in order to // support incoming Buffers. The reason for this is to avoid loading // non-direct buffer subclasses unnecessarily, because doing so can // cause performance decreases on direct buffer operations, at least // on the current HotSpot JVM. It would be nicer (and make the code // simpler) to simply have the array-based entry points delegate to // the versions taking Buffers by wrapping the arrays. // Array-based implementation private final float[] matrix = new float[16]; private final float[][] tempInvertMatrix = new float[4][4]; private final float[] in = new float[4]; private final float[] out = new float[4]; // Buffer-based implementation private FloatBuffer matrixBuf; private FloatBuffer tempInvertMatrixBuf; private FloatBuffer inBuf; private FloatBuffer outBuf; private FloatBuffer forwardBuf; private FloatBuffer sideBuf; private FloatBuffer upBuf; public ProjectFloat() { this(false); } public ProjectFloat(boolean useBackingArray) { this(useBackingArray ? null : Buffers.newDirectByteBuffer(getRequiredFloatBufferSize() * Buffers.SIZEOF_FLOAT), useBackingArray ? new float[getRequiredFloatBufferSize()] : null, 0); } /** * @param floatBuffer source buffer, may be ByteBuffer (recommended) or FloatBuffer ornull
.
* If used, shall be ≥ {@link #getRequiredFloatBufferSize()} + floatOffset.
* Buffer's position is ignored and floatPos is being used.
* @param floatArray source float array or null
.
* If used, size shall be ≥ {@link #getRequiredFloatBufferSize()} + floatOffset.
* @param floatOffset Offset for either of the given sources (buffer or array)
*/
public ProjectFloat(Buffer floatBuffer, float[] floatArray, int floatOffset) {
int floatPos = floatOffset;
int floatSize = 16;
matrixBuf = Buffers.slice2Float(floatBuffer, floatArray, floatPos, floatSize);
floatPos += floatSize;
tempInvertMatrixBuf = Buffers.slice2Float(floatBuffer, floatArray, floatPos, floatSize);
floatPos += floatSize;
floatSize = 4;
inBuf = Buffers.slice2Float(floatBuffer, floatArray, floatPos, floatSize);
floatPos += floatSize;
outBuf = Buffers.slice2Float(floatBuffer, floatArray, floatPos, floatSize);
floatPos += floatSize;
floatSize = 3;
forwardBuf = Buffers.slice2Float(floatBuffer, floatArray, floatPos, floatSize);
floatPos += floatSize;
sideBuf = Buffers.slice2Float(floatBuffer, floatArray, floatPos, floatSize);
floatPos += floatSize;
upBuf = Buffers.slice2Float(floatBuffer, floatArray, floatPos, floatSize);
}
public void destroy() {
matrixBuf = null;
tempInvertMatrixBuf = null;
inBuf = null;
outBuf = null;
forwardBuf = null;
sideBuf = null;
upBuf = null;
}
/**
* @param src
* @param srcOffset
* @param inverse
* @param inverseOffset
* @return
*/
public boolean gluInvertMatrixf(float[] src, int srcOffset, float[] inverse, int inverseOffset) {
int i, j, k, swap;
float t;
float[][] temp = tempInvertMatrix;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
temp[i][j] = src[i*4+j+srcOffset];
}
}
FloatUtil.makeIdentityf(inverse, inverseOffset);
for (i = 0; i < 4; i++) {
//
// Look for largest element in column
//
swap = i;
for (j = i + 1; j < 4; j++) {
if (Math.abs(temp[j][i]) > Math.abs(temp[i][i])) {
swap = j;
}
}
if (swap != i) {
//
// Swap rows.
//
for (k = 0; k < 4; k++) {
t = temp[i][k];
temp[i][k] = temp[swap][k];
temp[swap][k] = t;
t = inverse[i*4+k+inverseOffset];
inverse[i*4+k+inverseOffset] = inverse[swap*4+k+inverseOffset];
inverse[swap*4+k+inverseOffset] = t;
}
}
if (temp[i][i] == 0) {
//
// No non-zero pivot. The matrix is singular, which shouldn't
// happen. This means the user gave us a bad matrix.
//
return false;
}
t = temp[i][i];
for (k = 0; k < 4; k++) {
temp[i][k] /= t;
inverse[i*4+k+inverseOffset] /= t;
}
for (j = 0; j < 4; j++) {
if (j != i) {
t = temp[j][i];
for (k = 0; k < 4; k++) {
temp[j][k] -= temp[i][k] * t;
inverse[j*4+k+inverseOffset] -= inverse[i*4+k+inverseOffset]*t;
}
}
}
}
return true;
}
/**
* @param src
* @param inverse
*
* @return
*/
public boolean gluInvertMatrixf(FloatBuffer src, FloatBuffer inverse) {
int i, j, k, swap;
float t;
int srcPos = src.position();
int invPos = inverse.position();
FloatBuffer temp = tempInvertMatrixBuf;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
temp.put(i*4+j, src.get(i*4+j + srcPos));
}
}
FloatUtil.makeIdentityf(inverse);
for (i = 0; i < 4; i++) {
//
// Look for largest element in column
//
swap = i;
for (j = i + 1; j < 4; j++) {
if (Math.abs(temp.get(j*4+i)) > Math.abs(temp.get(i*4+i))) {
swap = j;
}
}
if (swap != i) {
//
// Swap rows.
//
for (k = 0; k < 4; k++) {
t = temp.get(i*4+k);
temp.put(i*4+k, temp.get(swap*4+k));
temp.put(swap*4+k, t);
t = inverse.get(i*4+k + invPos);
inverse.put(i*4+k + invPos, inverse.get(swap*4+k + invPos));
inverse.put(swap*4+k + invPos, t);
}
}
if (temp.get(i*4+i) == 0) {
//
// No non-zero pivot. The matrix is singular, which shouldn't
// happen. This means the user gave us a bad matrix.
//
return false;
}
t = temp.get(i*4+i);
for (k = 0; k < 4; k++) {
temp.put(i*4+k, temp.get(i*4+k) / t);
inverse.put(i*4+k + invPos, inverse.get(i*4+k + invPos) / t);
}
for (j = 0; j < 4; j++) {
if (j != i) {
t = temp.get(j*4+i);
for (k = 0; k < 4; k++) {
temp.put(j*4+k, temp.get(j*4+k) - temp.get(i*4+k) * t);
inverse.put(j*4+k + invPos, inverse.get(j*4+k + invPos) - inverse.get(i*4+k + invPos) * t);
}
}
}
}
return true;
}
/**
* Method gluOrtho2D.
*
* @param left
* @param right
* @param bottom
* @param top
*/
public void gluOrtho2D(GLMatrixFunc gl, float left, float right, float bottom, float top) {
gl.glOrthof(left, right, bottom, top, -1, 1);
}
/**
* Method gluPerspective.
*
* @param fovy
* @param aspect
* @param zNear
* @param zFar
*/
public void gluPerspective(GLMatrixFunc gl, float fovy, float aspect, float zNear, float zFar) {
float sine, cotangent, deltaZ;
float radians = fovy / 2 * (float) Math.PI / 180;
deltaZ = zFar - zNear;
sine = (float) Math.sin(radians);
if ((deltaZ == 0) || (sine == 0) || (aspect == 0)) {
return;
}
cotangent = (float) Math.cos(radians) / sine;
FloatUtil.makeIdentityf(matrixBuf);
matrixBuf.put(0 * 4 + 0, cotangent / aspect);
matrixBuf.put(1 * 4 + 1, cotangent);
matrixBuf.put(2 * 4 + 2, - (zFar + zNear) / deltaZ);
matrixBuf.put(2 * 4 + 3, -1);
matrixBuf.put(3 * 4 + 2, -2 * zNear * zFar / deltaZ);
matrixBuf.put(3 * 4 + 3, 0);
gl.glMultMatrixf(matrixBuf);
}
/**
* Method gluLookAt
*
* @param eyex
* @param eyey
* @param eyez
* @param centerx
* @param centery
* @param centerz
* @param upx
* @param upy
* @param upz
*/
public void gluLookAt(GLMatrixFunc gl,
float eyex, float eyey, float eyez,
float centerx, float centery, float centerz,
float upx, float upy, float upz) {
FloatBuffer forward = this.forwardBuf;
FloatBuffer side = this.sideBuf;
FloatBuffer up = this.upBuf;
forward.put(0, centerx - eyex);
forward.put(1, centery - eyey);
forward.put(2, centerz - eyez);
up.put(0, upx);
up.put(1, upy);
up.put(2, upz);
FloatUtil.normalize(forward);
/* Side = forward x up */
FloatUtil.cross(forward, up, side);
FloatUtil.normalize(side);
/* Recompute up as: up = side x forward */
FloatUtil.cross(side, forward, up);
FloatUtil.makeIdentityf(matrixBuf);
matrixBuf.put(0 * 4 + 0, side.get(0));
matrixBuf.put(1 * 4 + 0, side.get(1));
matrixBuf.put(2 * 4 + 0, side.get(2));
matrixBuf.put(0 * 4 + 1, up.get(0));
matrixBuf.put(1 * 4 + 1, up.get(1));
matrixBuf.put(2 * 4 + 1, up.get(2));
matrixBuf.put(0 * 4 + 2, -forward.get(0));
matrixBuf.put(1 * 4 + 2, -forward.get(1));
matrixBuf.put(2 * 4 + 2, -forward.get(2));
gl.glMultMatrixf(matrixBuf);
gl.glTranslatef(-eyex, -eyey, -eyez);
}
/**
* Method gluProject
*
* @param objx
* @param objy
* @param objz
* @param modelMatrix
* @param projMatrix
* @param viewport
* @param win_pos
*
* @return
*/
public boolean gluProject(float objx, float objy, float objz,
float[] modelMatrix, int modelMatrix_offset,
float[] projMatrix, int projMatrix_offset,
int[] viewport, int viewport_offset,
float[] win_pos, int win_pos_offset ) {
float[] in = this.in;
float[] out = this.out;
in[0] = objx;
in[1] = objy;
in[2] = objz;
in[3] = 1.0f;
FloatUtil.multMatrixVecf(modelMatrix, modelMatrix_offset, in, 0, out);
FloatUtil.multMatrixVecf(projMatrix, projMatrix_offset, out, 0, in);
if (in[3] == 0.0f) {
return false;
}
in[3] = (1.0f / in[3]) * 0.5f;
// Map x, y and z to range 0-1
in[0] = in[0] * in[3] + 0.5f;
in[1] = in[1] * in[3] + 0.5f;
in[2] = in[2] * in[3] + 0.5f;
// Map x,y to viewport
win_pos[0+win_pos_offset] = in[0] * viewport[2+viewport_offset] + viewport[0+viewport_offset];
win_pos[1+win_pos_offset] = in[1] * viewport[3+viewport_offset] + viewport[1+viewport_offset];
win_pos[2+win_pos_offset] = in[2];
return true;
}
public boolean gluProject(float objx, float objy, float objz,
FloatBuffer modelMatrix,
FloatBuffer projMatrix,
int[] viewport, int viewport_offset,
float[] win_pos, int win_pos_offset ) {
FloatBuffer in = this.inBuf;
FloatBuffer out = this.outBuf;
in.put(0, objx);
in.put(1, objy);
in.put(2, objz);
in.put(3, 1.0f);
FloatUtil.multMatrixVecf(modelMatrix, in, out);
FloatUtil.multMatrixVecf(projMatrix, out, in);
if (in.get(3) == 0.0f) {
return false;
}
in.put(3, (1.0f / in.get(3)) * 0.5f);
// Map x, y and z to range 0-1
in.put(0, in.get(0) * in.get(3) + 0.5f);
in.put(1, in.get(1) * in.get(3) + 0.5f);
in.put(2, in.get(2) * in.get(3) + 0.5f);
// Map x,y to viewport
win_pos[0+win_pos_offset] = in.get(0) * viewport[2+viewport_offset] + viewport[0+viewport_offset];
win_pos[1+win_pos_offset] = in.get(1) * viewport[3+viewport_offset] + viewport[1+viewport_offset];
win_pos[2+win_pos_offset] = in.get(2);
return true;
}
/**
* Method gluProject
*
* @param objx
* @param objy
* @param objz
* @param modelMatrix
* @param projMatrix
* @param viewport
* @param win_pos
*
* @return
*/
public boolean gluProject(float objx, float objy, float objz,
FloatBuffer modelMatrix,
FloatBuffer projMatrix,
IntBuffer viewport,
FloatBuffer win_pos) {
FloatBuffer in = this.inBuf;
FloatBuffer out = this.outBuf;
in.put(0, objx);
in.put(1, objy);
in.put(2, objz);
in.put(3, 1.0f);
FloatUtil.multMatrixVecf(modelMatrix, in, out);
FloatUtil.multMatrixVecf(projMatrix, out, in);
if (in.get(3) == 0.0f) {
return false;
}
in.put(3, (1.0f / in.get(3)) * 0.5f);
// Map x, y and z to range 0-1
in.put(0, in.get(0) * in.get(3) + 0.5f);
in.put(1, in.get(1) * in.get(3) + 0.5f);
in.put(2, in.get(2) * in.get(3) + 0.5f);
// Map x,y to viewport
int vPos = viewport.position();
int wPos = win_pos.position();
win_pos.put(0+wPos, in.get(0) * viewport.get(2+vPos) + viewport.get(0+vPos));
win_pos.put(1+wPos, in.get(1) * viewport.get(3+vPos) + viewport.get(1+vPos));
win_pos.put(2+wPos, in.get(2));
return true;
}
/**
* Method gluUnproject
*
* @param winx
* @param winy
* @param winz
* @param modelMatrix
* @param projMatrix
* @param viewport
* @param obj_pos
*
* @return
*/
public boolean gluUnProject(float winx, float winy, float winz,
float[] modelMatrix, int modelMatrix_offset,
float[] projMatrix, int projMatrix_offset,
int[] viewport, int viewport_offset,
float[] obj_pos, int obj_pos_offset) {
float[] in = this.in;
float[] out = this.out;
FloatUtil.multMatrixf(modelMatrix, modelMatrix_offset, projMatrix, projMatrix_offset, matrix, 0);
if (!gluInvertMatrixf(matrix, 0, matrix, 0)) {
return false;
}
in[0] = winx;
in[1] = winy;
in[2] = winz;
in[3] = 1.0f;
// Map x and y from window coordinates
in[0] = (in[0] - viewport[0+viewport_offset]) / viewport[2+viewport_offset];
in[1] = (in[1] - viewport[1+viewport_offset]) / viewport[3+viewport_offset];
// Map to range -1 to 1
in[0] = in[0] * 2 - 1;
in[1] = in[1] * 2 - 1;
in[2] = in[2] * 2 - 1;
FloatUtil.multMatrixVecf(matrix, in, out);
if (out[3] == 0.0) {
return false;
}
out[3] = 1.0f / out[3];
obj_pos[0+obj_pos_offset] = out[0] * out[3];
obj_pos[1+obj_pos_offset] = out[1] * out[3];
obj_pos[2+obj_pos_offset] = out[2] * out[3];
return true;
}
public boolean gluUnProject(float winx, float winy, float winz,
FloatBuffer modelMatrix,
FloatBuffer projMatrix,
int[] viewport, int viewport_offset,
float[] obj_pos, int obj_pos_offset) {
FloatBuffer in = this.inBuf;
FloatBuffer out = this.outBuf;
FloatUtil.multMatrixf(modelMatrix, projMatrix, matrixBuf);
if (!gluInvertMatrixf(matrixBuf, matrixBuf)) {
return false;
}
in.put(0, winx);
in.put(1, winy);
in.put(2, winz);
in.put(3, 1.0f);
// Map x and y from window coordinates
in.put(0, (in.get(0) - viewport[0+viewport_offset]) / viewport[2+viewport_offset]);
in.put(1, (in.get(1) - viewport[1+viewport_offset]) / viewport[3+viewport_offset]);
// Map to range -1 to 1
in.put(0, in.get(0) * 2 - 1);
in.put(1, in.get(1) * 2 - 1);
in.put(2, in.get(2) * 2 - 1);
FloatUtil.multMatrixVecf(matrixBuf, in, out);
if (out.get(3) == 0.0f) {
return false;
}
out.put(3, 1.0f / out.get(3));
obj_pos[0+obj_pos_offset] = out.get(0) * out.get(3);
obj_pos[1+obj_pos_offset] = out.get(1) * out.get(3);
obj_pos[2+obj_pos_offset] = out.get(2) * out.get(3);
return true;
}
/**
* Method gluUnproject
*
* @param winx
* @param winy
* @param winz
* @param modelMatrix
* @param projMatrix
* @param viewport
* @param obj_pos
*
* @return
*/
public boolean gluUnProject(float winx, float winy, float winz,
FloatBuffer modelMatrix,
FloatBuffer projMatrix,
IntBuffer viewport,
FloatBuffer obj_pos) {
FloatBuffer in = this.inBuf;
FloatBuffer out = this.outBuf;
FloatUtil.multMatrixf(modelMatrix, projMatrix, matrixBuf);
if (!gluInvertMatrixf(matrixBuf, matrixBuf)) {
return false;
}
in.put(0, winx);
in.put(1, winy);
in.put(2, winz);
in.put(3, 1.0f);
// Map x and y from window coordinates
int vPos = viewport.position();
int oPos = obj_pos.position();
in.put(0, (in.get(0) - viewport.get(0+vPos)) / viewport.get(2+vPos));
in.put(1, (in.get(1) - viewport.get(1+vPos)) / viewport.get(3+vPos));
// Map to range -1 to 1
in.put(0, in.get(0) * 2 - 1);
in.put(1, in.get(1) * 2 - 1);
in.put(2, in.get(2) * 2 - 1);
FloatUtil.multMatrixVecf(matrixBuf, in, out);
if (out.get(3) == 0.0f) {
return false;
}
out.put(3, 1.0f / out.get(3));
obj_pos.put(0+oPos, out.get(0) * out.get(3));
obj_pos.put(1+oPos, out.get(1) * out.get(3));
obj_pos.put(2+oPos, out.get(2) * out.get(3));
return true;
}
/**
* Method gluUnproject4
*
* @param winx
* @param winy
* @param winz
* @param clipw
* @param modelMatrix
* @param projMatrix
* @param viewport
* @param near
* @param far
* @param obj_pos
*
* @return
*/
public boolean gluUnProject4(float winx,
float winy,
float winz,
float clipw,
float[] modelMatrix,
int modelMatrix_offset,
float[] projMatrix,
int projMatrix_offset,
int[] viewport,
int viewport_offset,
float near,
float far,
float[] obj_pos,
int obj_pos_offset ) {
float[] in = this.in;
float[] out = this.out;
FloatUtil.multMatrixf(modelMatrix, modelMatrix_offset, projMatrix, projMatrix_offset, matrix, 0);
if (!gluInvertMatrixf(matrix, 0, matrix, 0))
return false;
in[0] = winx;
in[1] = winy;
in[2] = winz;
in[3] = clipw;
// Map x and y from window coordinates
in[0] = (in[0] - viewport[0+viewport_offset]) / viewport[2+viewport_offset];
in[1] = (in[1] - viewport[1+viewport_offset]) / viewport[3+viewport_offset];
in[2] = (in[2] - near) / (far - near);
// Map to range -1 to 1
in[0] = in[0] * 2 - 1;
in[1] = in[1] * 2 - 1;
in[2] = in[2] * 2 - 1;
FloatUtil.multMatrixVecf(matrix, in, out);
if (out[3] == 0.0f)
return false;
obj_pos[0+obj_pos_offset] = out[0];
obj_pos[1+obj_pos_offset] = out[1];
obj_pos[2+obj_pos_offset] = out[2];
obj_pos[3+obj_pos_offset] = out[3];
return true;
}
/**
* Method gluUnproject4
*
* @param winx
* @param winy
* @param winz
* @param clipw
* @param modelMatrix
* @param projMatrix
* @param viewport
* @param near
* @param far
* @param obj_pos
*
* @return
*/
public boolean gluUnProject4(float winx,
float winy,
float winz,
float clipw,
FloatBuffer modelMatrix,
FloatBuffer projMatrix,
IntBuffer viewport,
float near,
float far,
FloatBuffer obj_pos) {
FloatBuffer in = this.inBuf;
FloatBuffer out = this.outBuf;
FloatUtil.multMatrixf(modelMatrix, projMatrix, matrixBuf);
if (!gluInvertMatrixf(matrixBuf, matrixBuf))
return false;
in.put(0, winx);
in.put(1, winy);
in.put(2, winz);
in.put(3, clipw);
// Map x and y from window coordinates
int vPos = viewport.position();
in.put(0, (in.get(0) - viewport.get(0+vPos)) / viewport.get(2+vPos));
in.put(1, (in.get(1) - viewport.get(1+vPos)) / viewport.get(3+vPos));
in.put(2, (in.get(2) - near) / (far - near));
// Map to range -1 to 1
in.put(0, in.get(0) * 2 - 1);
in.put(1, in.get(1) * 2 - 1);
in.put(2, in.get(2) * 2 - 1);
FloatUtil.multMatrixVecf(matrixBuf, in, out);
if (out.get(3) == 0.0f)
return false;
int oPos = obj_pos.position();
obj_pos.put(0+oPos, out.get(0));
obj_pos.put(1+oPos, out.get(1));
obj_pos.put(2+oPos, out.get(2));
obj_pos.put(3+oPos, out.get(3));
return true;
}
/**
* Method gluPickMatrix
*
* @param x
* @param y
* @param deltaX
* @param deltaY
* @param viewport
*/
public void gluPickMatrix(GLMatrixFunc gl,
float x,
float y,
float deltaX,
float deltaY,
IntBuffer viewport) {
if (deltaX <= 0 || deltaY <= 0) {
return;
}
/* Translate and scale the picked region to the entire window */
int vPos = viewport.position();
gl.glTranslatef((viewport.get(2+vPos) - 2 * (x - viewport.get(0+vPos))) / deltaX,
(viewport.get(3+vPos) - 2 * (y - viewport.get(1+vPos))) / deltaY,
0);
gl.glScalef(viewport.get(2) / deltaX, viewport.get(3) / deltaY, 1.0f);
}
/**
* Method gluPickMatrix
*
* @param x
* @param y
* @param deltaX
* @param deltaY
* @param viewport
* @param viewport_offset
*/
public void gluPickMatrix(GLMatrixFunc gl,
float x,
float y,
float deltaX,
float deltaY,
int[] viewport,
int viewport_offset) {
if (deltaX <= 0 || deltaY <= 0) {
return;
}
/* Translate and scale the picked region to the entire window */
gl.glTranslatef((viewport[2+viewport_offset] - 2 * (x - viewport[0+viewport_offset])) / deltaX,
(viewport[3+viewport_offset] - 2 * (y - viewport[1+viewport_offset])) / deltaY,
0);
gl.glScalef(viewport[2+viewport_offset] / deltaX, viewport[3+viewport_offset] / deltaY, 1.0f);
}
}