/* ** License Applicability. Except to the extent portions of this file are ** made subject to an alternative license as permitted in the SGI Free ** Software License B, Version 2.0 (the "License"), the contents of this ** file are subject only to the provisions of the License. You may not use ** this file except in compliance with the License. You may obtain a copy ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at: ** ** http://oss.sgi.com/projects/FreeB ** ** Note that, as provided in the License, the Software is distributed on an ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT. ** ** NOTE: The Original Code (as defined below) has been licensed to Sun ** Microsystems, Inc. ("Sun") under the SGI Free Software License B ** (Version 1.1), shown above ("SGI License"). Pursuant to Section ** 3.2(3) of the SGI License, Sun is distributing the Covered Code to ** you under an alternative license ("Alternative License"). This ** Alternative License includes all of the provisions of the SGI License ** except that Section 2.2 and 11 are omitted. Any differences between ** the Alternative License and the SGI License are offered solely by Sun ** and not by SGI. ** ** Original Code. The Original Code is: OpenGL Sample Implementation, ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. ** Copyright in any portions created by third parties is as indicated ** elsewhere herein. All Rights Reserved. ** ** Additional Notice Provisions: The application programming interfaces ** established by SGI in conjunction with the Original Code are The ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X ** Window System(R) (Version 1.3), released October 19, 1998. This software ** was created using the OpenGL(R) version 1.2.1 Sample Implementation ** published by SGI, but has not been independently verified as being ** compliant with the OpenGL(R) version 1.2.1 Specification. ** ** $Date: 2009-03-13 22:20:29 -0700 (Fri, 13 Mar 2009) $ $Revision: 1867 $ ** $Header$ */ /* * Copyright (c) 2002-2004 LWJGL Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of 'LWJGL' nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 2003 Sun Microsystems, Inc. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * - Redistribution of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistribution in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Sun Microsystems, Inc. or the names of * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * This software is provided "AS IS," without a warranty of any kind. ALL * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN * MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE FOR * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR * ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR * DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE * DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, * ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF * SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. * * You acknowledge that this software is not designed or intended for use * in the design, construction, operation or maintenance of any nuclear * facility. */ package com.jogamp.opengl.impl; import java.nio.*; import javax.media.opengl.*; import javax.media.opengl.fixedfunc.GLMatrixFunc; import com.jogamp.common.nio.Buffers; /** * ProjectFloat.java *
* * Created 11-jan-2004 * * @author Erik Duijs * @author Kenneth Russell */ public class ProjectFloat { private static final float[] IDENTITY_MATRIX = new float[] { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; private static final float[] ZERO_MATRIX = new float[] { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; // Note that we have cloned parts of the implementation in order to // support incoming Buffers. The reason for this is to avoid loading // non-direct buffer subclasses unnecessarily, because doing so can // cause performance decreases on direct buffer operations, at least // on the current HotSpot JVM. It would be nicer (and make the code // simpler) to simply have the array-based entry points delegate to // the versions taking Buffers by wrapping the arrays. // Array-based implementation private final float[] matrix = new float[16]; private final float[][] tempInvertMatrix = new float[4][4]; private final float[] in = new float[4]; private final float[] out = new float[4]; private final float[] forward = new float[3]; private final float[] side = new float[3]; private final float[] up = new float[3]; // Buffer-based implementation private FloatBuffer locbuf; private final FloatBuffer matrixBuf; private final FloatBuffer tempInvertMatrixBuf; private final FloatBuffer inBuf; private final FloatBuffer outBuf; private final FloatBuffer forwardBuf; private final FloatBuffer sideBuf; private final FloatBuffer upBuf; public ProjectFloat() { // Use direct buffers to avoid loading indirect buffer // implementations for applications trying to avoid doing so. // Slice up one big buffer because some NIO implementations // allocate a huge amount of memory to back even the smallest of // buffers. locbuf = Buffers.newDirectFloatBuffer(2*16+2*4+3*3); int pos = 0; int sz = 16; matrixBuf = slice(locbuf, pos, sz); pos += sz; tempInvertMatrixBuf = slice(locbuf, pos, sz); pos += sz; sz = 4; inBuf = slice(locbuf, pos, sz); pos += sz; outBuf = slice(locbuf, pos, sz); pos += sz; sz = 3; forwardBuf = slice(locbuf, pos, sz); pos += sz; sideBuf = slice(locbuf, pos, sz); pos += sz; upBuf = slice(locbuf, pos, sz); } public void destroy() { if(locbuf!=null) { locbuf.clear(); locbuf=null; } } private static FloatBuffer slice(FloatBuffer buf, int pos, int len) { buf.position(pos); buf.limit(pos + len); return buf.slice(); } /** * Make matrix an identity matrix */ public static void gluMakeIdentityf(FloatBuffer m) { int oldPos = m.position(); m.put(IDENTITY_MATRIX); m.position(oldPos); } /** * Make matrix an zero matrix */ public static void gluMakeZero(FloatBuffer m) { int oldPos = m.position(); m.put(ZERO_MATRIX); m.position(oldPos); } /** * Make matrix an identity matrix */ public static void gluMakeIdentityf(float[] m) { for (int i = 0; i < 16; i++) { m[i] = IDENTITY_MATRIX[i]; } } /** * Method __gluMultMatrixVecf * * @param matrix * @param in * @param out */ private void __gluMultMatrixVecf(float[] matrix, int matrix_offset, float[] in, float[] out) { for (int i = 0; i < 4; i++) { out[i] = in[0] * matrix[0*4+i+matrix_offset] + in[1] * matrix[1*4+i+matrix_offset] + in[2] * matrix[2*4+i+matrix_offset] + in[3] * matrix[3*4+i+matrix_offset]; } } /** * Method __gluMultMatrixVecf * * @param matrix * @param in * @param out */ private void __gluMultMatrixVecf(FloatBuffer matrix, FloatBuffer in, FloatBuffer out) { int inPos = in.position(); int outPos = out.position(); int matrixPos = matrix.position(); for (int i = 0; i < 4; i++) { out.put(i + outPos, in.get(0+inPos) * matrix.get(0*4+i+matrixPos) + in.get(1+inPos) * matrix.get(1*4+i+matrixPos) + in.get(2+inPos) * matrix.get(2*4+i+matrixPos) + in.get(3+inPos) * matrix.get(3*4+i+matrixPos)); } } /** * @param src * @param inverse * * @return */ public boolean gluInvertMatrixf(float[] src, float[] inverse) { int i, j, k, swap; float t; float[][] temp = tempInvertMatrix; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { temp[i][j] = src[i*4+j]; } } gluMakeIdentityf(inverse); for (i = 0; i < 4; i++) { // // Look for largest element in column // swap = i; for (j = i + 1; j < 4; j++) { if (Math.abs(temp[j][i]) > Math.abs(temp[i][i])) { swap = j; } } if (swap != i) { // // Swap rows. // for (k = 0; k < 4; k++) { t = temp[i][k]; temp[i][k] = temp[swap][k]; temp[swap][k] = t; t = inverse[i*4+k]; inverse[i*4+k] = inverse[swap*4+k]; inverse[swap*4+k] = t; } } if (temp[i][i] == 0) { // // No non-zero pivot. The matrix is singular, which shouldn't // happen. This means the user gave us a bad matrix. // return false; } t = temp[i][i]; for (k = 0; k < 4; k++) { temp[i][k] /= t; inverse[i*4+k] /= t; } for (j = 0; j < 4; j++) { if (j != i) { t = temp[j][i]; for (k = 0; k < 4; k++) { temp[j][k] -= temp[i][k] * t; inverse[j*4+k] -= inverse[i*4+k]*t; } } } } return true; } /** * @param src * @param inverse * * @return */ public boolean gluInvertMatrixf(FloatBuffer src, FloatBuffer inverse) { int i, j, k, swap; float t; int srcPos = src.position(); int invPos = inverse.position(); FloatBuffer temp = tempInvertMatrixBuf; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { temp.put(i*4+j, src.get(i*4+j + srcPos)); } } gluMakeIdentityf(inverse); for (i = 0; i < 4; i++) { // // Look for largest element in column // swap = i; for (j = i + 1; j < 4; j++) { if (Math.abs(temp.get(j*4+i)) > Math.abs(temp.get(i*4+i))) { swap = j; } } if (swap != i) { // // Swap rows. // for (k = 0; k < 4; k++) { t = temp.get(i*4+k); temp.put(i*4+k, temp.get(swap*4+k)); temp.put(swap*4+k, t); t = inverse.get(i*4+k + invPos); inverse.put(i*4+k + invPos, inverse.get(swap*4+k + invPos)); inverse.put(swap*4+k + invPos, t); } } if (temp.get(i*4+i) == 0) { // // No non-zero pivot. The matrix is singular, which shouldn't // happen. This means the user gave us a bad matrix. // return false; } t = temp.get(i*4+i); for (k = 0; k < 4; k++) { temp.put(i*4+k, temp.get(i*4+k) / t); inverse.put(i*4+k + invPos, inverse.get(i*4+k + invPos) / t); } for (j = 0; j < 4; j++) { if (j != i) { t = temp.get(j*4+i); for (k = 0; k < 4; k++) { temp.put(j*4+k, temp.get(j*4+k) - temp.get(i*4+k) * t); inverse.put(j*4+k + invPos, inverse.get(j*4+k + invPos) - inverse.get(i*4+k + invPos) * t); } } } } return true; } /** * @param a * @param b * @param r */ private void gluMultMatricesf(float[] a, int a_offset, float[] b, int b_offset, float[] r) { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { r[i*4+j] = a[i*4+0+a_offset]*b[0*4+j+b_offset] + a[i*4+1+a_offset]*b[1*4+j+b_offset] + a[i*4+2+a_offset]*b[2*4+j+b_offset] + a[i*4+3+a_offset]*b[3*4+j+b_offset]; } } } /** * @param a * @param b * @param r */ public static void gluMultMatricesf(FloatBuffer a, FloatBuffer b, FloatBuffer r) { int aPos = a.position(); int bPos = b.position(); int rPos = r.position(); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { r.put(i*4+j + rPos, a.get(i*4+0+aPos)*b.get(0*4+j+bPos) + a.get(i*4+1+aPos)*b.get(1*4+j+bPos) + a.get(i*4+2+aPos)*b.get(2*4+j+bPos) + a.get(i*4+3+aPos)*b.get(3*4+j+bPos)); } } } /** * Normalize vector * * @param v */ public static void normalize(float[] v) { float r; r = (float) Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); if ( r == 0.0 || r == 1.0) return; r = 1.0f / r; v[0] *= r; v[1] *= r; v[2] *= r; return; } /** * Normalize vector * * @param v */ public static void normalize(FloatBuffer v) { float r; int vPos = v.position(); r = (float) Math.sqrt(v.get(0+vPos) * v.get(0+vPos) + v.get(1+vPos) * v.get(1+vPos) + v.get(2+vPos) * v.get(2+vPos)); if ( r == 0.0 || r == 1.0) return; r = 1.0f / r; v.put(0+vPos, v.get(0+vPos) * r); v.put(1+vPos, v.get(1+vPos) * r); v.put(2+vPos, v.get(2+vPos) * r); return; } /** * Calculate cross-product * * @param v1 * @param v2 * @param result */ private static void cross(float[] v1, float[] v2, float[] result) { result[0] = v1[1] * v2[2] - v1[2] * v2[1]; result[1] = v1[2] * v2[0] - v1[0] * v2[2]; result[2] = v1[0] * v2[1] - v1[1] * v2[0]; } /** * Calculate cross-product * * @param v1 * @param v2 * @param result */ private static void cross(FloatBuffer v1, FloatBuffer v2, FloatBuffer result) { int v1Pos = v1.position(); int v2Pos = v2.position(); int rPos = result.position(); result.put(0+rPos, v1.get(1+v1Pos) * v2.get(2+v2Pos) - v1.get(2+v1Pos) * v2.get(1+v2Pos)); result.put(1+rPos, v1.get(2+v1Pos) * v2.get(0+v2Pos) - v1.get(0+v1Pos) * v2.get(2+v2Pos)); result.put(2+rPos, v1.get(0+v1Pos) * v2.get(1+v2Pos) - v1.get(1+v1Pos) * v2.get(0+v2Pos)); } /** * Method gluOrtho2D. * * @param left * @param right * @param bottom * @param top */ public void gluOrtho2D(GLMatrixFunc gl, float left, float right, float bottom, float top) { gl.glOrthof(left, right, bottom, top, -1, 1); } /** * Method gluPerspective. * * @param fovy * @param aspect * @param zNear * @param zFar */ public void gluPerspective(GLMatrixFunc gl, float fovy, float aspect, float zNear, float zFar) { float sine, cotangent, deltaZ; float radians = fovy / 2 * (float) Math.PI / 180; deltaZ = zFar - zNear; sine = (float) Math.sin(radians); if ((deltaZ == 0) || (sine == 0) || (aspect == 0)) { return; } cotangent = (float) Math.cos(radians) / sine; gluMakeIdentityf(matrixBuf); matrixBuf.put(0 * 4 + 0, cotangent / aspect); matrixBuf.put(1 * 4 + 1, cotangent); matrixBuf.put(2 * 4 + 2, - (zFar + zNear) / deltaZ); matrixBuf.put(2 * 4 + 3, -1); matrixBuf.put(3 * 4 + 2, -2 * zNear * zFar / deltaZ); matrixBuf.put(3 * 4 + 3, 0); gl.glMultMatrixf(matrixBuf); } /** * Method gluLookAt * * @param eyex * @param eyey * @param eyez * @param centerx * @param centery * @param centerz * @param upx * @param upy * @param upz */ public void gluLookAt(GLMatrixFunc gl, float eyex, float eyey, float eyez, float centerx, float centery, float centerz, float upx, float upy, float upz) { FloatBuffer forward = this.forwardBuf; FloatBuffer side = this.sideBuf; FloatBuffer up = this.upBuf; forward.put(0, centerx - eyex); forward.put(1, centery - eyey); forward.put(2, centerz - eyez); up.put(0, upx); up.put(1, upy); up.put(2, upz); normalize(forward); /* Side = forward x up */ cross(forward, up, side); normalize(side); /* Recompute up as: up = side x forward */ cross(side, forward, up); gluMakeIdentityf(matrixBuf); matrixBuf.put(0 * 4 + 0, side.get(0)); matrixBuf.put(1 * 4 + 0, side.get(1)); matrixBuf.put(2 * 4 + 0, side.get(2)); matrixBuf.put(0 * 4 + 1, up.get(0)); matrixBuf.put(1 * 4 + 1, up.get(1)); matrixBuf.put(2 * 4 + 1, up.get(2)); matrixBuf.put(0 * 4 + 2, -forward.get(0)); matrixBuf.put(1 * 4 + 2, -forward.get(1)); matrixBuf.put(2 * 4 + 2, -forward.get(2)); gl.glMultMatrixf(matrixBuf); gl.glTranslatef(-eyex, -eyey, -eyez); } /** * Method gluProject * * @param objx * @param objy * @param objz * @param modelMatrix * @param projMatrix * @param viewport * @param win_pos * * @return */ public boolean gluProject(float objx, float objy, float objz, float[] modelMatrix, int modelMatrix_offset, float[] projMatrix, int projMatrix_offset, int[] viewport, int viewport_offset, float[] win_pos, int win_pos_offset ) { float[] in = this.in; float[] out = this.out; in[0] = objx; in[1] = objy; in[2] = objz; in[3] = 1.0f; __gluMultMatrixVecf(modelMatrix, modelMatrix_offset, in, out); __gluMultMatrixVecf(projMatrix, projMatrix_offset, out, in); if (in[3] == 0.0f) return false; in[3] = (1.0f / in[3]) * 0.5f; // Map x, y and z to range 0-1 in[0] = in[0] * in[3] + 0.5f; in[1] = in[1] * in[3] + 0.5f; in[2] = in[2] * in[3] + 0.5f; // Map x,y to viewport win_pos[0+win_pos_offset] = in[0] * viewport[2+viewport_offset] + viewport[0+viewport_offset]; win_pos[1+win_pos_offset] = in[1] * viewport[3+viewport_offset] + viewport[1+viewport_offset]; win_pos[2+win_pos_offset] = in[2]; return true; } /** * Method gluProject * * @param objx * @param objy * @param objz * @param modelMatrix * @param projMatrix * @param viewport * @param win_pos * * @return */ public boolean gluProject(float objx, float objy, float objz, FloatBuffer modelMatrix, FloatBuffer projMatrix, IntBuffer viewport, FloatBuffer win_pos) { FloatBuffer in = this.inBuf; FloatBuffer out = this.outBuf; in.put(0, objx); in.put(1, objy); in.put(2, objz); in.put(3, 1.0f); __gluMultMatrixVecf(modelMatrix, in, out); __gluMultMatrixVecf(projMatrix, out, in); if (in.get(3) == 0.0f) return false; in.put(3, (1.0f / in.get(3)) * 0.5f); // Map x, y and z to range 0-1 in.put(0, in.get(0) * in.get(3) + 0.5f); in.put(1, in.get(1) * in.get(3) + 0.5f); in.put(2, in.get(2) * in.get(3) + 0.5f); // Map x,y to viewport int vPos = viewport.position(); int wPos = win_pos.position(); win_pos.put(0+wPos, in.get(0) * viewport.get(2+vPos) + viewport.get(0+vPos)); win_pos.put(1+wPos, in.get(1) * viewport.get(3+vPos) + viewport.get(1+vPos)); win_pos.put(2+wPos, in.get(2)); return true; } /** * Method gluUnproject * * @param winx * @param winy * @param winz * @param modelMatrix * @param projMatrix * @param viewport * @param obj_pos * * @return */ public boolean gluUnProject(float winx, float winy, float winz, float[] modelMatrix, int modelMatrix_offset, float[] projMatrix, int projMatrix_offset, int[] viewport, int viewport_offset, float[] obj_pos, int obj_pos_offset) { float[] in = this.in; float[] out = this.out; gluMultMatricesf(modelMatrix, modelMatrix_offset, projMatrix, projMatrix_offset, matrix); if (!gluInvertMatrixf(matrix, matrix)) return false; in[0] = winx; in[1] = winy; in[2] = winz; in[3] = 1.0f; // Map x and y from window coordinates in[0] = (in[0] - viewport[0+viewport_offset]) / viewport[2+viewport_offset]; in[1] = (in[1] - viewport[1+viewport_offset]) / viewport[3+viewport_offset]; // Map to range -1 to 1 in[0] = in[0] * 2 - 1; in[1] = in[1] * 2 - 1; in[2] = in[2] * 2 - 1; __gluMultMatrixVecf(matrix, 0, in, out); if (out[3] == 0.0) return false; out[3] = 1.0f / out[3]; obj_pos[0+obj_pos_offset] = out[0] * out[3]; obj_pos[1+obj_pos_offset] = out[1] * out[3]; obj_pos[2+obj_pos_offset] = out[2] * out[3]; return true; } /** * Method gluUnproject * * @param winx * @param winy * @param winz * @param modelMatrix * @param projMatrix * @param viewport * @param obj_pos * * @return */ public boolean gluUnProject(float winx, float winy, float winz, FloatBuffer modelMatrix, FloatBuffer projMatrix, IntBuffer viewport, FloatBuffer obj_pos) { FloatBuffer in = this.inBuf; FloatBuffer out = this.outBuf; gluMultMatricesf(modelMatrix, projMatrix, matrixBuf); if (!gluInvertMatrixf(matrixBuf, matrixBuf)) return false; in.put(0, winx); in.put(1, winy); in.put(2, winz); in.put(3, 1.0f); // Map x and y from window coordinates int vPos = viewport.position(); int oPos = obj_pos.position(); in.put(0, (in.get(0) - viewport.get(0+vPos)) / viewport.get(2+vPos)); in.put(1, (in.get(1) - viewport.get(1+vPos)) / viewport.get(3+vPos)); // Map to range -1 to 1 in.put(0, in.get(0) * 2 - 1); in.put(1, in.get(1) * 2 - 1); in.put(2, in.get(2) * 2 - 1); __gluMultMatrixVecf(matrixBuf, in, out); if (out.get(3) == 0.0f) return false; out.put(3, 1.0f / out.get(3)); obj_pos.put(0+oPos, out.get(0) * out.get(3)); obj_pos.put(1+oPos, out.get(1) * out.get(3)); obj_pos.put(2+oPos, out.get(2) * out.get(3)); return true; } /** * Method gluUnproject4 * * @param winx * @param winy * @param winz * @param clipw * @param modelMatrix * @param projMatrix * @param viewport * @param near * @param far * @param obj_pos * * @return */ public boolean gluUnProject4(float winx, float winy, float winz, float clipw, float[] modelMatrix, int modelMatrix_offset, float[] projMatrix, int projMatrix_offset, int[] viewport, int viewport_offset, float near, float far, float[] obj_pos, int obj_pos_offset ) { float[] in = this.in; float[] out = this.out; gluMultMatricesf(modelMatrix, modelMatrix_offset, projMatrix, projMatrix_offset, matrix); if (!gluInvertMatrixf(matrix, matrix)) return false; in[0] = winx; in[1] = winy; in[2] = winz; in[3] = clipw; // Map x and y from window coordinates in[0] = (in[0] - viewport[0+viewport_offset]) / viewport[2+viewport_offset]; in[1] = (in[1] - viewport[1+viewport_offset]) / viewport[3+viewport_offset]; in[2] = (in[2] - near) / (far - near); // Map to range -1 to 1 in[0] = in[0] * 2 - 1; in[1] = in[1] * 2 - 1; in[2] = in[2] * 2 - 1; __gluMultMatrixVecf(matrix, 0, in, out); if (out[3] == 0.0f) return false; obj_pos[0+obj_pos_offset] = out[0]; obj_pos[1+obj_pos_offset] = out[1]; obj_pos[2+obj_pos_offset] = out[2]; obj_pos[3+obj_pos_offset] = out[3]; return true; } /** * Method gluUnproject4 * * @param winx * @param winy * @param winz * @param clipw * @param modelMatrix * @param projMatrix * @param viewport * @param near * @param far * @param obj_pos * * @return */ public boolean gluUnProject4(float winx, float winy, float winz, float clipw, FloatBuffer modelMatrix, FloatBuffer projMatrix, IntBuffer viewport, float near, float far, FloatBuffer obj_pos) { FloatBuffer in = this.inBuf; FloatBuffer out = this.outBuf; gluMultMatricesf(modelMatrix, projMatrix, matrixBuf); if (!gluInvertMatrixf(matrixBuf, matrixBuf)) return false; in.put(0, winx); in.put(1, winy); in.put(2, winz); in.put(3, clipw); // Map x and y from window coordinates int vPos = viewport.position(); in.put(0, (in.get(0) - viewport.get(0+vPos)) / viewport.get(2+vPos)); in.put(1, (in.get(1) - viewport.get(1+vPos)) / viewport.get(3+vPos)); in.put(2, (in.get(2) - near) / (far - near)); // Map to range -1 to 1 in.put(0, in.get(0) * 2 - 1); in.put(1, in.get(1) * 2 - 1); in.put(2, in.get(2) * 2 - 1); __gluMultMatrixVecf(matrixBuf, in, out); if (out.get(3) == 0.0f) return false; int oPos = obj_pos.position(); obj_pos.put(0+oPos, out.get(0)); obj_pos.put(1+oPos, out.get(1)); obj_pos.put(2+oPos, out.get(2)); obj_pos.put(3+oPos, out.get(3)); return true; } /** * Method gluPickMatrix * * @param x * @param y * @param deltaX * @param deltaY * @param viewport */ public void gluPickMatrix(GLMatrixFunc gl, float x, float y, float deltaX, float deltaY, IntBuffer viewport) { if (deltaX <= 0 || deltaY <= 0) { return; } /* Translate and scale the picked region to the entire window */ int vPos = viewport.position(); gl.glTranslatef((viewport.get(2+vPos) - 2 * (x - viewport.get(0+vPos))) / deltaX, (viewport.get(3+vPos) - 2 * (y - viewport.get(1+vPos))) / deltaY, 0); gl.glScalef(viewport.get(2) / deltaX, viewport.get(3) / deltaY, 1.0f); } /** * Method gluPickMatrix * * @param x * @param y * @param deltaX * @param deltaY * @param viewport * @param viewport_offset */ public void gluPickMatrix(GLMatrixFunc gl, float x, float y, float deltaX, float deltaY, int[] viewport, int viewport_offset) { if (deltaX <= 0 || deltaY <= 0) { return; } /* Translate and scale the picked region to the entire window */ gl.glTranslatef((viewport[2+viewport_offset] - 2 * (x - viewport[0+viewport_offset])) / deltaX, (viewport[3+viewport_offset] - 2 * (y - viewport[1+viewport_offset])) / deltaY, 0); gl.glScalef(viewport[2+viewport_offset] / deltaX, viewport[3+viewport_offset] / deltaY, 1.0f); } }