
Session 3167

The J2SE™ 1.4 Release,
OpenGL®, and New I/O
High-Performance 3D Graphics
for the Desktop Client

Sven Goethel Kenneth Russell
President Member of Tech Staff
Jausoft Sun Microsystems, Inc.

Session 3167 2

Presentation Goal

Show how to build high-performance
3D graphics applications using the
Java™ programming language

Session 3167 3

Learning Objectives

 As a result of this presentation, you will
be able to:
 Understand how New I/O benefits

high-throughput applications
 See how OpenGL®, for Java™ Technology

takes advantage of New I/O
 Build effective 3D graphics applications using

the Java™ 2 Platform, Standard Edition, 1.4
release and OpenGL, for Java Technology

 See several cool technology demonstrations

Session 3167 4

Speakers’ Qualifications

 Sven Goethel is the primary developer of
“OpenGL, for Java Technology”, a free
software (LGPL) programming language
binding for the Java platform, for the
OpenGL 3D graphics API

 Kenneth Russell is a member of the Java
HotSpot™ VM group and a contributor
to the New I/O and OpenGL, for Java
Technology projects

Session 3167 5

Presentation Thesis

 You can write portable, high-performance 3D
applications and games today using the Java
2 Platform, Standard Edition, version 1.4
and OpenGL, for Java Technology

Session 3167 6

Presentation Agenda

 New I/O vs. Java Native Interface (JNI)
in the J2SE 1.3 platform and earlier

 OpenGL overview

 OpenGL, for Java Technology

 Demos

 Performance Hints

Session 3167 7

Problem Statement

 Pre-1.4 JNI technology provides limited
interaction with data managed by the Java
virtual machine (JVM™) implementation

Session 3167 8

J2SE 1.3 Platform
Example #1

 Sending float[] down to native code

float[] myArray = new float[10];
// ... fill in with data ...
sendDataToC(myArray);
// ... later ...
releaseCData(myArray);

Session 3167 9

J2SE 1.3 Platform
Example #1

 Native code:
 float* ptr;

 JNIEXPORT void JNICALL Java_MyClass_sendDataToC
 (JNIEnv* env, jobject unused, jfloatArray arr)
 {
 ptr=(*env)->GetFloatArrayElements(env,arr,NULL);
 C_function_requiring_float_ptr(ptr);
 }
 JNIEXPORT void JNICALL Java_MyClass_releaseCData
 (JNIEnv* env, jobject unused, jfloatArray arr)
 {
 (*env)->ReleaseFloatArrayElements(env, arr,
 ptr, JNI_ABORT);
 }

Session 3167 10

J2SE 1.3 Platform
Example #1

 Native code:
 float* ptr;

 JNIEXPORT void JNICALL Java_MyClass_sendDataToC
 (JNIEnv* env, jobject unused, jfloatArray arr)
 {
 ptr=(*env)->GetFloatArrayElements(env,arr,NULL);
 C_function_requiring_float_ptr(ptr);
 }
 JNIEXPORT void JNICALL Java_MyClass_releaseCData
 (JNIEnv* env, jobject unused, jfloatArray arr)
 {
 (*env)->ReleaseFloatArrayElements(env, arr,
 ptr, JNI_ABORT);
 }

Session 3167 11

J2SE 1.3 Platform
Example #1

 Native code:
 float* ptr;

 JNIEXPORT void JNICALL Java_MyClass_sendDataToC
 (JNIEnv* env, jobject unused, jfloatArray arr)
 {
 ptr=(*env)->GetFloatArrayElements(env,arr,NULL);
 C_function_requiring_float_ptr(ptr);
 }
 JNIEXPORT void JNICALL Java_MyClass_releaseCData
 (JNIEnv* env, jobject unused, jfloatArray arr)
 {
 (*env)->ReleaseFloatArrayElements(env, arr,
 ptr, JNI_ABORT);
 }

Session 3167 12

J2SE 1.3 Platform
Example #1 Discussion

 Upon call to GetFloatArrayElements, JVM
must return float* which does not move in
memory (unaffected by garbage collection,
or GC)

 Can be implemented in one of two ways
 Copy data out of garbage-collected heap

into malloc’ed space
 “Pin” object

Session 3167 13

J2SE 1.3 Platform
Example #1 Discussion

 Problems:
 Copying can impose unacceptable overhead

for certain kinds of applications
 Depending on GC algorithm, pinning is difficult

or impossible to implement

Session 3167 14

J2SE 1.3 Platform
Example #2

 Sending float[] down to native code (again)

float[] myArray = new float[10];
// ... fill in with data ...
sendDataToC(myArray);

Session 3167 15

J2SE 1.3 Platform
Example #2

 Native code:
JNIEXPORT void JNICALLJava_MyClass_sendDataToC
(JNIEnv* env, jobject unused, jfloatArray arr)
{
 float* ptr =
 (float*) (*env)->GetPrimitiveArrayCritical
 (env, arr, NULL);

 C_function_requiring_float_ptr(ptr);

 // C routine must be "done" with pointer by now
 (*env)->ReleasePrimitiveArrayCritical
 (env, arr, ptr, JNI_ABORT);
}

Session 3167 16

J2SE 1.3 Platform
Example #2 Discussion

 Specification of “Get/Release Critical” routines
imposes severe restrictions on what can occur
between them
 No returning between Get/Release
 No calling other JNI functions

 No blocking calls like select() or read()
 Must not access pointer outside Get/Release

Session 3167 17

J2SE 1.3 Platform
Example #2 Discussion

 Restrictions increase probability that “pinning”
will occur
 Java HotSpot™ VM implements by disabling

GC between them

 However, restrictions usually result in having
to copy data anyway, defeating the purpose

Session 3167 18

J2SE 1.3 Platform
Example #2 Discussion

 Even if pinning is implemented, can not talk
to outside memory directly
 Video card RAM
 Sound card buffers

 No way to make “fake array” wrapping
arbitrary memory region

Session 3167 19

The Java™ 2 Platform, Standard Edition
(J2SE™) 1.4 Release and New I/O

 java.nio provides solutions for the two
fundamental problems
 Passing JVM accessible data to C functions
 Making data not managed by the JVM

accessible to Java programming language
code (“Java code”)

 Does so with
 High performance
 Same safety as arrays

Session 3167 20

NIO Buffers

 Classes which define APIs for accessing
primitive data
 get(), put() methods

 Direct buffers provide access to outside
memory

 New JNI routines allow Java/C programming
language interaction
 Programs for the Java platform can operate

on arbitrary data

Session 3167 21

NIO Example #1

 Sending floating-point data to native code:

final int SIZEOF_FLOAT = 4;
FloatBuffer fbuf =
 ByteBuffer.allocateDirect(10 * SIZEOF_FLOAT).
 asFloatBuffer();
for (int i = 0; i < 10; i++) {
 fbuf.put(i, computeDatum(i));
}
sendDataToC(fbuf);

Session 3167 22

NIO Example #1

 Native code:

JNIEXPORT void JNICALL Java_MyClass_sendDataToC
(JNIEnv* env, jobject unused, jobject buf)
{
 float* ptr = (float*)
 (*env)->GetDirectBufferAddress(env, buf);
 C_function_requiring_float_ptr(ptr);
}

Session 3167 23

NIO Example #1 Discussion

 Java code responsible for holding reference
to direct buffer
 Avoiding unexpected GC

 Otherwise, no restrictions on use of pointer
in native code

Session 3167 24

NIO Example #2

 Simple example: inverting video

ByteBuffer buf = getVideoCardMemory();
// Assuming R, G, B components
int size = 3 * width * height;
for (int i = 0; i < size; i++) {
 buf.put(i, (byte) (255 - (buf.get(i) & 0xFF)));
}

Session 3167 25

NIO Example #2

 Native code:
JNIEXPORT jobject JNICALL
Java_MyClass_getVideoCardMemory
(JNIEnv* env, jobject unused)
{
 void* ptr = Get_Video_Card_Memory();
 int width = Get_Screen_Width();
 int height = Get_Screen_Height();
 int bytesPerPixel = Get_Screen_Depth();
 return (*env)->
 NewDirectByteBuffer(env, ptr,
 width * height * bytesPerPixel);
}

Session 3167 26

NIO Summary

 GetDirectBufferAddress

 Outbound data transfer

 NewDirectByteBuffer

 Inbound data transfer

 Individual element access via get/put

Session 3167 27

OpenGL

 3D graphics library developed by Silicon
Graphics in early 1990’s

 Runs on every major operating system
 Hardware range from supercomputers to PCs
 Low-level, immediate-mode API

 Can build higher-level, retained-mode APIs
on top of it

 Java 3D™ API does this (largely in native code)
 SGI’s Open Inventor and OpenGL

Performer APIs

Session 3167 28

OpenGL

 Abstraction is a state machine

 Set up properties for geometric primitives
 Color, texture, shininess, opacity

 Send geometric primitives (usually triangles)
to graphics card

Session 3167 29

OpenGL

 Trivial example:

glBegin(GL_TRIANGLES);
glVertex3f(1.0f, 0.0f, 0.0f);
glVertex3f(0.0f, 1.0f, 0.0f);
glVertex3f(1.0f, 1.0f, 0.0f);
glEnd();

Session 3167 30

OpenGL

 Most flexible way of drawing geometry
with OpenGL is via vertex arrays
 Set up region of memory containing 3D points
 Transfer connectivity information to card
 Allows application to modify geometry without

having to make on the order of one function
call per triangle

Session 3167 31

OpenGL

 Vertex array example:
// Set up data buffer
// Two adjacent triangles forming a square
GLfloat* coords = { 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 0.0f, 0.0f, 0.0f };
GLint* elements = { 0, 1, 2, 1, 2, 3 };
glEnableClientState(GL_VERTEX_ARRAY);
// Size of vertices (2, 3, 4), type of vertices,
// stride between vertices (unused), ptr to data
glVertexPointer(3, GL_FLOAT, 0, coords);
// Geometry type, num primitives, indices' data type
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT,
 elements);

Session 3167 32

OpenGL

 OpenGL semantics are strict and vertex arrays
are not as efficient as desired
 Application can not continue until

glDrawElements call is complete

 NVidia® and ATI® have devised extensions
to allow parallel processing of vertex arrays
 Allocate memory on AGP bus or on card itself

 More on this later

Session 3167 33

OpenGL®, for Java™ Technology

 Jausoft’s programming language binding,
for the Java platform, for OpenGL
 Licensed under the “Lesser GNU Public

License” (LGPL)
 Provides Java technology-based APIs

for accessing all OpenGL routines
 Default implementation for many

operating systems

Session 3167 34

OpenGL, for Java Technology

 Highly portable
 Works on development kits from Sun™, IBM, Apple

 Java™ Platform releases 1.1.x through 1.4

 Works on Netscape™ and Internet Explorer VMs

 Binaries available for GNU/Linux, Mac OS,
Solaris™, Windows

 Should work on any Java 2 Platform + OpenGL +
Unix® + X11 environment

 QNX + X11 + OpenGL + J2ME platform

 OSGI/Automotive Systems

Session 3167 35

OpenGL, for Java Technology

 How it works
 C2J program parses C header files (gl.h, glu.h)

 Using current Mesa3D OpenGL compatible headers
 C2J is LGPL and part of OpenGL, for Java technology

 Generates JNI based code and Java platform
interfaces

 A few routines are coded by hand, but most
are autogenerated

 Binding for OpenGL 1.3 plus extensions (983
functions) all based upon the same well tested
primitives in the C2J compiler

Session 3167 36

OpenGL, for Java Technology
and New I/O

 OpenGL, for Java Technology 2.8 includes
built-in java.nio support

 Vertex arrays, textures, other large objects
can be stored in java.nio direct buffers

 Allows fast, robust, portable 3D applications
to be written with no native code in the
application

Session 3167 37

Unique Features

 Easy-to-use, multithreaded user API
 Animations or still frames
 Textured objects
 Screen snapshots

 Provides access to all vendor extensions
with no additional native code
 Can test for and use optimized routines;

i.e., NVidia vertex array range extension
 Compatible with full-screen support in the

J2SE 1.4 release
 Sun’s Java™ Development Kit (JDK™):
java -Dsun.java2d.noddraw=true

Session 3167

Session 3167 39

NVidia vertex_array_range Demo

Session 3167 40

NVidia vertex_array_range Demo

 C++ version illustrates 2x speedups
with this extension

 Runs at 30 Hz on PIII, 700 MHz, GeForce 256

 Amounts to different version of malloc()
 Minimal change for C/C++ programs

Session 3167 41

NVidia vertex_array_range Demo

 Ported to the Java platform using JDK 1.4
software; OpenGL, for Java Technology 2.8;
Java HotSpot™ Client VM

 Frame rate of port is 27 Hz
 90% of optimized C++ speed

 Java programming language code now able to
take advantage of leading-edge 3D hardware

 On faster PCs, Java technology version is not
as competitive (65–75% of C speed)
 More optimizations to be done in compilers

(e.g., Java HotSpot VM)

Session 3167 42

Arkanae Demo

Session 3167 43

Arkanae Demo

 Free software 3D fantasy/adventure game

 Core team: Bertrand and Jean-Baptiste Lamy

 Runs fast; quite polished

 Application is built on top of OpenGL, for Java
Technology and itself contains no native code

 Get it at http://arkanae.tuxfamily.org/

Session 3167 44

Grand Canyon Demo

Session 3167 45

Grand Canyon Demo

 Introduced at the 2001 JavaOneSM conference

 300 MB data set visualized in real time with
Sun JDK 1.4; OpenGL, for Java Technology
2.8; and Java HotSpot Client VM

Session 3167 46

Grand Canyon Demo

 Multiresolution algorithm
 More detail for terrain closer to camera
 Data set divided into square tiles

 513x513 vertices; 15x13 tiles

 Highest resolution memory-mapped in
using java.nio

 100 MB of geometric data

 Every vertex, every frame is processed by Java
programming language code (“Java code”)

Session 3167 47

Grand Canyon Demo

 To render tile at lower resolution, recursively
drop every other sample

 Done every frame for every visible tile by
Java code
 Output buffer is a java.nio direct FloatBuffer

 View culling, collision detection

Session 3167 48

Grand Canyon Demo

 Cracks between tiles at differing resolutions
are patched with “fillets”

Session 3167 49

Grand Canyon Demo

 Cracks relatively minor feature of landscape
 Fillets allow independent processing of tiles

and faster inner loops

Session 3167 50

Grand Canyon Demo

 Lower-resolution textures are generated offline
 Appropriate resolution memory-mapped

in using java.nio
 Textures paged in by background thread

 Advantageous in multi-CPU systems
 Very easy to implement using Java technology

 synchronized keyword
 Thread and Collections APIs

 Memory-mapped texture data passed directly
down into OpenGL, for Java Technology

Session 3167 51

Grand Canyon Demo

 Run-time statistics:
 Roughly 90,000 triangles per frame at 45 fps
 4.0 million tris/second; up to 5.0 in some areas

Session 3167 52

Pup Demo

Session 3167 53

Pup Demo

 Developed by the Synthetic Characters Group
at The Media Lab, MIT

 Showcases research in behavior systems for
intelligent, interactive 3D animated characters

Session 3167 54

Pup Demo

 Sophisticated behavior system research and
learning algorithms
 Inspired by ethology (study of animal behavior)

 Run-time motion blending and animation
 Walk left/straight/right
 Sit happy/sad

 All done in the Java programming language

Session 3167 55

Pup Demo

 Graphics system
 Skinning on complex model

 53 joints, > 2000 vertices

 Custom vertex shaders
 Cartoon shading
 Real-time shadows

 Originally implemented in C++ using
Microsoft’s Direct3D

 Hooked into the Java platform with large
quantities of native code

Session 3167 56

Pup Demo

 Graphics system ported to JDK 1.4 software
and OpenGL, for Java Technology 2.8
 Minimal scene graph written to wrap OpenGL,

for Java Technology
 Skinning implemented in Java programming

language
 Cartoon shading and shadows implemented

using OpenGL techniques
 Eliminates nearly all native code in application

 Remaining: game controller…

Session 3167 57

Pup Demo

 Results
 Java programming language port of graphics

system is 86% of the speed of optimized C++
 Can be debugged with no performance penalty

 Full-speed debugging in J2SE 1.4 release

 Up to 11% faster than C++ debug build

Session 3167 58

Performance Hints

 When using direct buffers in conjunction with
JNI, always set the byte order
 ByteBuffer.order(ByteOrder.nativeOrder())

 This is a correctness issue

 Very easy to forget

 Write utility class for allocating direct buffers
and make this call before returning them

Session 3167 59

Performance Hints

 Use absolute put(index, data) and
get(index) methods in inner loops instead
of put(data) and get()
 Typically have a loop index available anyway
 Non-absolute versions maintain internal indices

 Duplicated work

 Absolute versions generate code very similar
to array indexing (i.e., fast)

Session 3167 60

Performance Hints

 In inner loops, access only locals instead
of data members
 Sometimes tricky to see with presence of

inner classes

Session 3167 61

Performance Hints

 class MyClass {
 FloatBuffer myBuf;
 // ...
 void doComputation() {
 for (int i = 0; i < size; i++) {
 // Avoid
 myBuf.put(i, computeNextDatum());
 }
 }
 }

Session 3167 62

Performance Hints

 class MyClass {
 FloatBuffer myBuf;
 // ...
 void doComputation() {
 // Better
 FloatBuffer buf = myBuf;
 for (int i = 0; i < size; i++) {
 buf.put(i, computeNextDatum());
 }
 }
 }

Session 3167 63

Performance Hints

 Avoid mixing use of direct and non-direct
buffers in applications
 Compilers for the Java HotSpot VM currently

will not be able to inline accessors well
 Other DKs for Java technology may do better

 Problem we are taking very seriously and will
address in future release

Session 3167 64

Summary

 J2SE™ 1.4 release; OpenGL, for Java™
Technology; and New I/O reach previously
unattainable performance levels for the Java
programming language

 Can write high-performance 3D applications
in the Java programming language today
 Portability, safety, and ease-of-development

of Java technology

 Already fast; future releases will only be faster

Session 3167 65

Conclusion

 Start writing 3D applications and games
in the Java programming language!

Session 3167

Session 3167

