
Kenneth Russell

Sun Microsystems, Inc.

JOGL and GlueGen Overview



Overview
● JOGL
– Description
– Comparison to other bindings
– Features, Implementation

● GlueGen
– Description
– Features
– Using GlueGen
– Issues

● Build process, status, issues



JOGL
● Java™ programming language binding 

for OpenGL™ 3D API
● Exposes OpenGL 1.5 APIs and nearly all 

vendor extensions
● Designed with latest Java platform 

features in mind
● Integrates with AWT and Swing
● High performance
● Easy to use



JOGL
● Feature comparison:

LWJGL GL4Java Magician JOGL
Latest OpenGL support? Yes No No Yes
Supports New I/O? Yes Yes No Yes
Designed for New I/O? Yes No No Yes
Clean API? Yes No Yes Yes
Open source? Yes Yes No Yes
Swing/AWT support? No Yes Yes Yes
Available? Yes Yes No Yes
Actively developed? Yes No No Yes



JOGL Features 
● Designed with New I/O at the core
– Does not work on pre-1.4 JDKs

● Minimal API
– Heavily inspired from Magician

● GLEventListener, DebugGL, TraceGL

– Some concepts/names borrowed from GL4Java
– Hides unnecessary and problematic concepts
– Does not expose OpenGL context directly

● makeCurrent/free exchanged for GLEventListeners

– Interface-based for flexibility



JOGL Features 
● High performance
– Game programming kept in mind
– Optimized OpenGL context handling behind the 

scenes
● Latest OpenGL features
– Pbuffers
– Floating-point buffers
– Vertex and fragment programs
– ARB_shading_language_100
– ARB_shader_objects



JOGL Features 
● Implemented mostly in Java
– ~50 lines of handwritten native code
– Exceptions instead of (many) crashes
– Improved diagnosability
– Simpler code
– Uses Java language features

● Inheritance
● Interfaces
● Try/finally
● Exceptions



JOGL Implementation
● Platform-specific Java code
● Uses JAWT to implement native 

drawing to AWT surfaces
● JAWT and OpenGL window system 

interface (wgl, glx) bound to Java 
programming language

● GlueGen tool written for this purpose



GlueGen
● Automatic JNI code generator
● Parses ANSI C header files
● Builds intermediate representation (IR) 

of functions and types
● Operates on IR to bind functions into 

Java classes as methods
● Emits Java classes, interfaces, and JNI 

code to call specified functions



GlueGen
● Many other similar tools available
– GL4Java's C2J
– SWIG
– JNIWrapper
– ...

● Why write a new one?



GlueGen Features
● Written in pure Java™
● Parser is built on ANSI C-compliant 

grammar for ANTLR (not handwritten)
– Should handle most if not all C language 

constructs in function prototypes and type 
declarations

● Designed specifically for Java
– Special handling of e.g. #defines

● Builds intermediate representation
– Can transform code fairly drastically



GlueGen Features
● Extensible
– Specialized subclasses for OpenGL-specific 

issues (i.e., calling through function pointers)
● Unique handling of C structs
– Java data types wrapping New I/O buffers

● Powerful
– Converting JOAL to use GlueGen: ~2 days
– Upgrading JOGL from OpenGL 1.4 to 1.5: 1 day



Using GlueGen

1. Assemble header files to be parsed
– GlueGen wraps all functions encountered 

unless specifically ignored
– Usually necessary to stub out some headers
– E.g.: place dummy version of windows.h, 

stdlib.h in include search path which contains 
only the typedefs necessary

– When more than one header to be parsed, 
write a .c file which #includes both

– See make/stub_includes/win32, x11, macosx



Using GlueGen

2. Write GlueGen configuration file
– Controls code generation options 

(InterfaceOnly/AllStatic/ImplOnly), packages, 
classes to contain glue code, output dirs

– Provides semantic information not present in C 
headers but necessary for Java
● Length of returned arrays
● Whether char* arguments are strings
● Whether pointer arguments are held persistently and 

must be held in direct buffers, ...

– Format not currently documented; infer from 
existing ones, look at code, or ask



Using GlueGen

3. Set up command line options
– Include path, like C preprocessor (-I)
– Emitter class (-E, defaults to JavaEmitter)
– Configuration file (-C)
– .c or .h files to process

4. Run GlueGen





Build process

1. ANTLR used to generate GlueGen's 
parser sources

2. GlueGen run in multiple stages
1. GL interface class
2. GL implementation class (platform-specific)
3. Public WGL/GLX/CGL interfaces (for some 

window system-specific vendor extensions)
4. Private WGL/GLX/CGL class (exposes window 

system APIs to Java)
5. JAWT, GLU, optionally Cg



Build process

3. BuildStaticGLInfo run
1. Maps OpenGL function names to the 

extensions containing them
2. Helps with determining availability of 

extensions – but may need rethinking

4. BuildComposablePipeline run
1. Generates DebugGL, TraceGL from GL class

5. Compile all Java code
6. Compile all native code



JOGL Status and Issues
● Mostly feature-complete
– Recent additions: X11 visual selection bug fix, 

X11 multihead support, FSAA support
● Being actively used in many projects
● Some stability issues, in particular on 

ATI cards



JOGL Status and Issues
● Known issues with resource leaks; 

need to be fixed (in progress, by 
community)

● Some missing APIs (i.e., 
glMultiDrawElements) due to GlueGen 
limitations



JOGL Status and Issues
● AWT's inherently multithreaded 

nature causes problems
– Hard to report errors as early as desired
– Recent addition of full-scene antialiasing 

(FSAA) support to JOGL provided insights into 
how this may be improved

– Stability issues in drivers
● Hopefully will be resolved with better resource 

management (and synchronization?) inside JOGL



Q&A



Kenneth Russell

kenneth.russell@sun.com


