
java.sun.com/javaone/sf

| 2004 JavaOne
SM

 Conference | Session TS-1361 1

3D Application and
Game Development
With OpenGL®

Daniel Petersen
Kenneth Russell
Sun Microsystems, Inc.

| 2004 JavaOne
SM

 Conference | Session TS-1361 2

Presentation Goal

Show how to build leading-edge 3D
applications and games using the Java™
programming language and the OpenGL®
3D API

| 2004 JavaOne
SM

 Conference | Session TS-1361 3

Agenda

Introduction
JSR Update
Using JOGL With AWT and Swing
Techniques for Application Development
Optimizing JOGL Applications
Demos
Conclusion

| 2004 JavaOne
SM

 Conference | Session TS-1361 4

Agenda

Introduction
JSR Update
Using JOGL With AWT and Swing
Techniques for Application Development
Optimizing JOGL Applications
Demos
Conclusion

| 2004 JavaOne
SM

 Conference | Session TS-1361 5

Introduction

• OpenGL
─ Powerful, cross-platform 3D API
─ Industry standard for writing 3D applications

and games
─On multiple platforms
─From multiple programming languages

─ Supported by multiple vendors
─ Provides access to latest hardware features

─Vertex and fragment programs
─Floating-point framebuffers

| 2004 JavaOne
SM

 Conference | Session TS-1361 6

Introduction

• A few bindings under active development
• LWJGL
─ Game-focused OpenGL binding
─ Single window
─ Usually full-screen

• JOGL
─ Integrates with AWT and Swing

• Relies on J2SE™ platform for, e.g.,
full-screen support

• Today’s talk will use JOGL for examples

Java programming language OpenGL bindings

| 2004 JavaOne
SM

 Conference | Session TS-1361 7

Introduction

• Standardization effort underway
• One Java programming language binding

to OpenGL
─ Can be implemented by multiple vendors if desired
─ Being developed under the Java Community

ProcessSM service
─ JSRs 231 and 239

Java programming language OpenGL bindings

| 2004 JavaOne
SM

 Conference | Session TS-1361 8

Agenda

Introduction
JSR Update
Using JOGL With AWT and Swing
Techniques for Application Development
Optimizing JOGL Applications
Demos
Conclusion

| 2004 JavaOne
SM

 Conference | Session TS-1361 9

JSR Update

• What are JSR 231 and JSR 239
• Benefits of a JSR
• JSR 231 and JSR 239 Status

Overview

| 2004 JavaOne
SM

 Conference | Session TS-1361 10

JSR 231 and 239

• JSR 231
─ Java bindings to OpenGL
─ Based on JOGL project on java.net
─ Most likely based on OpenGL 1.5

• JSR 239
─ Java bindings to OpenGL ES
─ Will use the GlueGen technology of JOGL

to generate bindings
─ Most likely based on OpenGL ES 1.0

• Both being run under the Java Community
Process version 2.6

What they are

| 2004 JavaOne
SM

 Conference | Session TS-1361 11

Why Do a JSR?

• Align market around one specification
─ No need to download multiple APIs for the

same binding
─ Specification and TCK ensure compliant bindings

can be produced
─ Ensure all functionality of native library present

• Some industries (e.g., mobile devices) prefer
JCP APIs

Benefits of a JSR

| 2004 JavaOne
SM

 Conference | Session TS-1361 12

JSR 231 and 239

• Both JSRs were filed and approved by their
respective ECs

• Both Expert Groups have been formed and
are meeting regularly

• EGs working together to make both APIs as
similar as possible

• Both EGs hope to have EDRs late this year

Status

| 2004 JavaOne
SM

 Conference | Session TS-1361 13

JSR 231 and 239

• Both JSRs are fundamentally tracking a
third-party API

• Want to track the OpenGL APIs as closely
as possible

• Plan to use maintenance releases for updates
─ 30-day review period (shortest possible)

Notes

| 2004 JavaOne
SM

 Conference | Session TS-1361 14

What You Can Do

• Join an Expert Group
─ Specification work
─ SI work
─ TCK work

• Contribute to JOGL project on java.net
• Participate in EDRs

More help is ALWAYS welcome

| 2004 JavaOne
SM

 Conference | Session TS-1361 15

Agenda

Introduction
JSR Update
Using JOGL With AWT and Swing
Techniques for Application Development
Optimizing JOGL Applications
Demos
Conclusion

| 2004 JavaOne
SM

 Conference | Session TS-1361 16

Using JOGL With AWT and Swing

• -Dsun.java2d.noddraw=true
• Disables Java 2D™ API’s internal use of

DirectDraw APIs on Windows
─ Incompatible with OpenGL
─ Frequent driver bugs arise when mixing the

two APIs, even when they are used in
separate windows

• Should be specified for all JOGL applications!
─ No harm specifying on non-Windows platforms
─ Especially for Java Web Start applications
─ Add following to resources section of JNLP file:
─ <property name="sun.java2d.noddraw"

value="true"/>

DirectDraw incompatibilies on Windows

| 2004 JavaOne
SM

 Conference | Session TS-1361 17

Using JOGL With AWT and Swing

• GLCanvas: heavyweight AWT widget
for OpenGL rendering
─ Best performance (hardware accelerated)
─ Works in most GUI situations
─ See this article on mixing lightweight and

heavyweight widgets successfully:
http://java.sun.com/products/jfc/tsc/articles/mixing/

• JPopupMenu.
setLightweightPopupEnabled(false);
─ To get Swing menus to overlap GLCanvas

GLCanvas and GLJPanel

| 2004 JavaOne
SM

 Conference | Session TS-1361 18

Using JOGL With AWT and Swing

• GLJPanel: lightweight Swing widget for
complete compatibility with Swing UIs
─ JInternalFrames

• Currently not hardware-accelerated
─ Poor performance

• Investigating using OpenGL pbuffers
to implement GLJPanel
─ Faster, but still not fast enough
─ Still has texture readback

• Experimental work underway to integrate
better with Java 2D API and “JFC/Swing”

GLCanvas and GLJPanel

| 2004 JavaOne
SM

 Conference | Session TS-1361 19

Using JOGL With AWT and Swing

• Automatic redraws initiated by the AWT
─ For static scenes

• Call repaint() in animation thread
• Use Animator class or start your own thread and

call GLDrawable.display() directly
─ Most efficient for games
─ Allows optimized OpenGL context handling

on some platforms
─As efficient as single-threaded C code

Rendering and animation options

| 2004 JavaOne
SM

 Conference | Session TS-1361 20

Using JOGL With AWT and Swing

• AWT events like mouse and keyboard events
are delivered on AWT event queue thread

• Not allowed / possible to make OpenGL calls
directly inside these listeners
─ Though you can schedule or force a redraw

• Instead, pass information between these
threads and any animation threads via
member data
─ Use appropriate synchronization
─ Read data exactly once in your display() method

─ Avoids flickering and other artifacts during mouse
interaction

Multithreading

| 2004 JavaOne
SM

 Conference | Session TS-1361 21

Using JOGL With AWT and Swing

• See demos at http://jogl-demos.dev.java.net/ for
examples of animation, interaction, and
advanced features

Examples

| 2004 JavaOne
SM

 Conference | Session TS-1361 22

Agenda

Introduction
JSR Update
Using JOGL With AWT and Swing
Techniques for Application Development
─ Scene graphs and game engines
─ Object picking
─ Shadows

Optimizing JOGL Applications
Demos
Conclusion

| 2004 JavaOne
SM

 Conference | Session TS-1361 23

Scene Graphs and Game Engines

• Higher-level, typically object-oriented layer
for applications to build on top of

• Often have hierarchical structure
─ Good for representing character animation

• Use OpenGL or similar API at the bottom
─ Ones discussed here use JOGL

• Look for extensibility
─ Ability to call out to OpenGL from within scene graph

to implement leading-edge effects

Overview

| 2004 JavaOne
SM

 Conference | Session TS-1361 24

Scene Graphs and Game Engines

• Xith3D: http://www.xith.org/
─ General-purpose scene graph, but focused on

gaming and high performance
─ Designed to be nearly identical to Java 3D™ APIs
─ Supports leading-edge functionality like shadow

volumes and vertex and fragment programs

• Aviatrix3D: http://aviatrix3d.j3d.org/
─ Focused on visualization market
─ Minimal API design
─ Also supports vertex and fragment programs

Examples

| 2004 JavaOne
SM

 Conference | Session TS-1361 25

Scene Graphs and Game Engines

• OpenMind: http://www.mind2machine.com/
─ 3D game engine
─ Built-in support for 3D Studio Max ASE format
─ Supplies tool chain for developers

Examples

| 2004 JavaOne
SM

 Conference | Session TS-1361 26

Scene Graphs and Game Engines

• Abdul Bezrati (a.k.a. “Java Cool Dude”)
─ Xith3D demos
─ http://xith.org/demo/JavaCoolDude.php

Demo

| 2004 JavaOne
SM

 Conference | Session TS-1361 27

Object Picking

• Interactive applications require the ability
to pick objects in 3D

• OpenGL provides a built-in mechanism
for object selection
─ Special rendering mode

• User supplies storage for results and sets
up special “pick” matrix
─ View volume centered around cursor

• Any objects rendered into this view volume
are reported to the user

Using the selection buffer

| 2004 JavaOne
SM

 Conference | Session TS-1361 28

Object Picking

• Set up selection buffer
─ IntBuffer buf =

 BufferUtils.newIntBuffer(1024);
gl.glSelectBuffer(buf.capacity(), buf);

• Switch into selection mode
─ gl.glRenderMode(GL.GL_SELECT);
─ Color buffer is frozen at this point and not updated

until selection mode is exited

• Initialize name stack
─ gl.glInitNames();

• Set up pick matrix
─ glu.gluPickMatrix(...);

Using the selection buffer

| 2004 JavaOne
SM

 Conference | Session TS-1361 29

Object Picking

• Render objects, assigning names to them
─ int objectId = ...;

gl.glPushName(objectId);
renderObject(gl);
gl.glPopName();

• Switch out of selection mode
─ int numHits =

 gl.glRenderMode(GL.GL_RENDER);
• Process hits

─ int idx = 0;
while (idx < numHits) {
 int hit = buf.get(idx++);
 ...
}

Using the selection buffer

| 2004 JavaOne
SM

 Conference | Session TS-1361 30

Object Picking

• Selection buffer demo (courtesy Thomas Bladh)
─ http://www.sm.luth.se/csee/courses/smd/159/

 TestPrograms/Picking.java

Demo

| 2004 JavaOne
SM

 Conference | Session TS-1361 31

Object Picking

• Advantages
─ Easy to start working with selection buffer
─ Can reuse normal rendering code; just add names

─Names have no effect in GL_RENDER mode

• Disadvantages
─ Still have to disambiguate multiple hits based on

depth values
─ No surface normal or other information at hit site

─Not exactly casting a ray into the scene
─ To implement dragging behavior, still need some

kind of policy for motion
─ Doesn’t solve problem of moving camera in

response to mouse motion

Using the selection buffer

| 2004 JavaOne
SM

 Conference | Session TS-1361 32

Object Picking

• Picking can also be done at the
application level
─ Perform ray-triangle intersection tests using

a linear algebra library

• Depending on application’s representation of
geometry, may be able to accelerate drastically
─ Octrees or other spatial partitioning techniques
─ Degenerate cases like vertical rays

• Have full control over information returned
and response to dragging

• May require some more code

Using Manual Linear Algebra

| 2004 JavaOne
SM

 Conference | Session TS-1361 33

Object Picking

• Libraries exist for adding 3D interaction
─ gleem (OpenGL Extremely Easy-To-Use

Manipulators)—in jogl-demos workspace on java.net
─Will be shown shortly

─ Most scene graphs have picking mechanisms
─Scene graphs discussed earlier support it

─ Depending on application and library, may be
very easy to integrate the two

Using Manual Linear Algebra

| 2004 JavaOne
SM

 Conference | Session TS-1361 34

Shadows

• Humans use shadows to infer spatial
relationships
─ Relative positions of objects
─ Locations of light sources
─ Shape of an object

• Scene looks more natural
• Scene is easier to understand
• Shadows look cool

Why do we need shadows?

| 2004 JavaOne
SM

 Conference | Session TS-1361 35

Shadows

• Render-to-texture shadows
─ Image-space technique

• Volumetric
─ Geometric technique

Two basic techniques

| 2004 JavaOne
SM

 Conference | Session TS-1361 36

Shadows

• Render the scene from the light’s perspective
• Store depth of rendered scene as texture
• Render scene from viewer’s perspective
• Render the depth texture onto the scene
─ Careful setup of texture transform and texture-coord

generation
─Object’s position maps to correct u-v texture coords

in depth texture
─Object’s r texture coord maps to distance from

the object to the light source
─ If r value is greater than texture value, pixel is

in shadow

Render-to-texture shadows

| 2004 JavaOne
SM

 Conference | Session TS-1361 37

Shadows

• NVidia Hardware Shadow Mapping
Demo

| 2004 JavaOne
SM

 Conference | Session TS-1361 38

Shadows

• Advantages:
─ Performance independent of geometric complexity
─ No additional cost for animated geometry
─ Can take into account alpha-masked geometry

(example: a chain-link fence)

Render-to-texture shadows

| 2004 JavaOne
SM

 Conference | Session TS-1361 39

Shadows

• Disadvantages:
─ Dependent on texture resolution (aliasing)

─ Not good for long projections
─ Need special tricks to get self-shadowing to

work well
─ Older hardware may not support render-to-texture

in hardware
─ Fall back to slow framebuffer --> texture copy

Render-to-texture shadows

| 2004 JavaOne
SM

 Conference | Session TS-1361 40

Shadows

• Basic idea: Use geometry to calculate volume of
space that is in shadow
─ Calculate silhouette edge of object, from

light’s perspective
─ Extrude the silhouette away from the light
─ Objects inside this volume are in shadow

from the light

Volumetric shadows

| 2004 JavaOne
SM

 Conference | Session TS-1361 41

Shadows

• Uses stencil buffer for per-pixel in/out test
─ Render scene, ambient light only

─ Sets the depth buffer
─ Render shadow volumes with stencil enabled

─ Render front / back faces separately
─ If pixel passes depth test, adjust stencil value
─ Many adjustment heuristics (z-pass, z-fail)

─ If stencil value is 0 afterwards, pixel is not
in shadow

Volumetric shadows

| 2004 JavaOne
SM

 Conference | Session TS-1361 42

Shadows

• NVidia Infinite Shadow Volumes
Demo

| 2004 JavaOne
SM

 Conference | Session TS-1361 43

Shadows

• Advantages:
─ Self-shadowing “just works”
─ No aliasing problems
─ Crisp shadows, even at infinite projection distances
─ Good for wide-open spaces

Volumetric shadows

| 2004 JavaOne
SM

 Conference | Session TS-1361 44

Shadows

• Disadvantages:
─ Performance depends on scene

─Expensive for complex objects, many lights,
or many shadow receivers
– N lights = N+1 render passes per

shadowed object
─Slow for non-static geometry / non-static lights

– Silhouettes must be recalculated each frame
─ Incorrect shadows cast from alpha-masked

geometry
─Purely geometric technique

─ Many subtleties to make it work correctly for all
intersections of light, viewer, and shadow volume

Volumetric shadows

| 2004 JavaOne
SM

 Conference | Session TS-1361 45

Agenda

Introduction
JSR Update
Using JOGL With AWT and Swing
Techniques for Application Development
Optimizing JOGL Applications
Demos
Conclusion

| 2004 JavaOne
SM

 Conference | Session TS-1361 46

Optimizing JOGL Applications

• Application writer needs to decide how to
lay out data in memory
─ Multiple Java objects in heap?
─ Primitive types and/or primitive arrays?
─ New I/O? Use memory-mapped files instead

of reading them in?

• Guide decisions by how various data structures
will be used and how much data they store

• When compatibility with C data structures in
memory-mapped files is required, GlueGen tool
can help provide access to data
─ GlueGen is in JOGL workspace on java.net

Data organization

| 2004 JavaOne
SM

 Conference | Session TS-1361 47

Optimizing JOGL Applications

• 300 MB of terrain data visualized in real time
using Java technology and OpenGL

• Multiresolution algorithm
─ More detail for terrain closer to camera

• Two components of data: geometry and texture
─ NIO used to memory-map both
─ Highest-resolution geometry mapped all of the time

─Processed by Java code to decimate to appropriate
resolution

─ Appropriate resolution textures mapped in by
background thread
─Raw data handed off to OpenGL

Data organization: Grand Canyon demo

| 2004 JavaOne
SM

 Conference | Session TS-1361 48

Optimizing JOGL Applications

• Very little data stored in Java objects heap
• Plenty of garbage generated, but all short-lived
─ No visible GC pauses

• Shows alternative to earlier programming
models in Java language
─ E.g., all data read in to Java objects heap

Data organization: Grand Canyon demo

| 2004 JavaOne
SM

 Conference | Session TS-1361 49

Optimizing JOGL Applications

• Grand Canyon demo
─ http://java.sun.com/products/jfc/tsc/articles/jcanyon/

Demo

| 2004 JavaOne
SM

 Conference | Session TS-1361 50

Optimizing JOGL Applications

• JNI has a non-zero cost
• All OpenGL routines are necessarily called from

the Java programming language
through JNI

• Minimize number of OpenGL function calls
per frame

• Use vertex arrays and New I/O
Float/Double/IntBuffers to store and send
down geometric data to OpenGL
─ glVertexPointer, glNormalPointer, glColorPointer

Efficiency

| 2004 JavaOne
SM

 Conference | Session TS-1361 51

Agenda

Introduction
JSR Update
Using JOGL With AWT and Swing
Techniques for Application Development
Optimizing JOGL Applications
Demos
Conclusion

| 2004 JavaOne
SM

 Conference | Session TS-1361 52

Demos

Wurm Online

| 2004 JavaOne
SM

 Conference | Session TS-1361 53

Demos

• Being developed by Mojang Specifications
• Fantasy Massively Multiplayer Online Role

Playing Game written in Java language
using JOGL

• http://www.wurmonline.com/

Wurm Online

| 2004 JavaOne
SM

 Conference | Session TS-1361 54

Demos

Max

| 2004 JavaOne
SM

 Conference | Session TS-1361 55

Demos

• Developed by Synthetic Characters Group
at The Media Lab, MIT
http://characters.media.mit.edu/

• Explores behavior systems that:
─ Support teasing
─ Develop expectations about people

they interact with
─ Develop over time, like animals do

• Characters code base written in Java
programming language
─ Small pieces of native code to interface to

custom input devices

Max

| 2004 JavaOne
SM

 Conference | Session TS-1361 56

Demos

Jake2

| 2004 JavaOne
SM

 Conference | Session TS-1361 57

Demos

• Port of Quake 2 engine to Java technology
and JOGL

• Done by Bytonic Software
http://www.bytonic.de/

• Illustrates that Java platform is capable of
creating commercial-quality games

• Better than 85% of speed of original C
─ 210 fps compared to 245 fps

Jake2

| 2004 JavaOne
SM

 Conference | Session TS-1361 58

Agenda

Introduction
JSR Update
Using JOGL With AWT and Swing
Techniques for Application Development
Optimizing JOGL Applications
Demos
Conclusion

| 2004 JavaOne
SM

 Conference | Session TS-1361 59

Conclusion

• Java platform and OpenGL 3D API provide the
tools to develop leading-edge 3D applications
and games
─ High performance, portability, and safety of the

Java platform

• JOGL project and JSR 231 / 239 aiming for
robust, full-featured, and easy-to-use interfaces
to OpenGL

• Open source; join the development community
• Use the Java programming language for your

next project

| 2004 JavaOne
SM

 Conference | Session TS-1361 60

For More Information

• Technical Sessions
─ TS-1338 Desktop Game Development

• BOFs
─ BOF-1241 Meet the Java 2D API Team
─ BOF-1938 Meet the AWT Team
─ BOF-3215 Java 3D API

• URLs
─ http://jogl.dev.java.net/
─ http://community.java.net/games/

| 2004 JavaOne
SM

 Conference | Session TS-1361 61

Q&A

61

java.sun.com/javaone/sf

| 2004 JavaOne
SM

 Conference | Session TS-1361 62

Daniel Petersen
Kenneth Russell
Sun Microsystems, Inc.

3D Application and
Game Development
With OpenGL®

