JavaOne

Sun’s 2004 Worldwide Java Developer Conference-

3D Application and
Game Development

With OpenGL®

Daniel Petersen
Kenneth Russell
Sun Microsystems, Inc.

java.sun.com/javaone/sf

Presentation Goal

Show how to build leading-edge 3D
applications and games using the Java™
programming language and the OpenGL®
3D API

Agenda

Introduction

JSR Update

Using JOGL With AWT and Swing
Techniques for Application Development
Optimizing JOGL Applications

Demos

Conclusion

Agenda

Introduction

JSR Update

Using JOGL With AWT and Swing
Techniques for Application Development
Optimizing JOGL Applications

Demos

Conclusion

Introduction

 OpenGL
— Powerful, cross-platform 3D API

— Industry standard for writing 3D applications
and games

—On multiple platforms
—From multiple programming languages

— Supported by multiple vendors

— Provides access to latest hardware features
—Vertex and fragment programs
—Floating-point framebuffers

Introduction
Java programming language OpenGL bindings

e A few bindings under active development

« LWJGL

— Game-focused OpenGL binding
— Single window
— Usually full-screen

 JOGL
— Integrates with AWT and Swing

e Relies on J2SE™ platform for, e.g.,
full-screen support

e Today's talk will use JOGL for examples

Introduction
Java programming language OpenGL bindings

o Standardization effort underway

e One Java programming language binding
to OpenGL
— Can be implemented by multiple vendors if desired

— Being developed under the Java Community
Process®M service

— JSRs 231 and 239

Agenda

Introduction

JSR Update

Using JOGL With AWT and Swing
Techniques for Application Development
Optimizing JOGL Applications

Demos

Conclusion

JSR Update

Overview

e What are JSR 231 and JSR 239
* Benefits of a JSSR

 JSR 231 and JSR 239 Status

JSR 231 and 239

What they are

« JSR 231

— Javabindings to OpenGL
— Based on JOGL project on java.net
— Most likely based on OpenGL 1.5

e JSR 239
— Javabindings to OpenGL ES

— Will use the GlueGen technology of JOGL
to generate bindings

— Most likely based on OpenGL ES 1.0

e Both being run under the Java Community
Process version 2.6

Why Do a JSR?
Benefits of a JSR

 Align market around one specification

— No need to download multiple APls for the
same binding

— Specification and TCK ensure compliant bindings
can be produced

— Ensure all functionality of native library present

Some industries (e.g., mobile devices) prefer
JCP APIs

JSR 231 and 239

Status

 Both JSRs were filed and approved by their
respective ECs

e Both Expert Groups have been formed and
are meeting regularly

 EGs working together to make both APls as
similar as possible

 Both EGs hope to have EDRs late this year

JSR 231 and 239

Notes

e Both JSRs are fundamentally tracking a
third-party API

e Want to track the OpenGL APIs as closely
as possible

* Plan to use maintenance releases for updates
— 30-day review period (shortest possible)

What You Can Do

More help is ALWAYS welcome

* Join an Expert Group

— Specification work
— S| work
— TCK work

e Contribute to JOGL project on java.net
e Participate in EDRs

Agenda

Introduction

JSR Update

Using JOGL With AWT and Swing
Techniques for Application Development
Optimizing JOGL Applications

Demos

Conclusion

Using JOGL With AWT and Swing

DirectDraw incompatibilies on Windows

® -Dsun. java2d.noddraw=true

e Disables Java 2D ™ API’s internal use of
DirectDraw APIs on Windows

— Incompatible with OpenGL

— Frequent driver bugs arise when mixing the
two APls, even when they are used in
separate windows

e Should be specified for all JOGL applications!
— No harm specifying on non-Windows platforms
— Especially for Java Web Start applications

— Add following to resources section of JNLP file:

— <property name="sun.java2d.noddraw"
value="true"/>

Using JOGL With AWT and Swing

GLCanvas and GLJPanel

e GLCanvas: heavyweight AWT widget
for OpenGL rendering

— Best performance (hardware accelerated)
— Works in most GUI situations

— See this article on mixing lightweight and
heavyweight widgets successfully:
http://java.sun.com/products/jfc/tsc/articles/mixing/

e JPopupMenu.
setLightweightPopupEnabled (false) ;

— To get Swing menus to overlap GLCanvas

Using JOGL With AWT and Swing

GLCanvas and GLJPanel

o GLJPanel: lightweight Swing widget for
complete compatibility with Swing Uls

— JInternalFrames

e Currently not hardware-accelerated
— Poor performance

 Investigating using OpenGL pbuffers
to implement GLJPanel

— Faster, but still not fast enough
— Still has texture readback

e Experimental work underway to integrate
better with Java 2D APl and “JFC/Swing”

Using JOGL With AWT and Swing

Rendering and animation options

« Automatic redraws initiated by the AWT
— For static scenes

e Call repaint () in animation thread

 Use Animator class or start your own thread and
call cLprawable. display () dlrectly

— Most efficient for games

— Allows optimized OpenGL context handling
on some platforms

—As efficient as single-threaded C code

Using JOGL With AWT and Swing

Multithreading

e AWT events like mouse and keyboard events
are delivered on AWT event queue thread

e Not allowed / possible to make OpenGL calls
directly inside these listeners

— Though you can schedule or force a redraw

e Instead, pass information between these
threads and any animation threads via
member data
— Use appropriate synchronization
— Read data exactly once in your display() method

— Avoids flickering and other artifacts during mouse
iInteraction

Using JOGL With AWT and Swing

Examples

e See demos at http://jogl-demos.dev.java.net/ for
examples of animation, interaction, and
advanced features

N

21 | 2004 JavaOne Conference | Session TS-1361

Agenda

Introduction

JSR Update
Using JOGL With AWT and Swing

Techniques for Application Development

— Scene graphs and game engines
— QObject picking
— Shadows

Optimizing JOGL Applications
Demos
Conclusion

Scene Graphs and Game Engines

Overview

e Higher-level, typically object-oriented layer
for applications to build on top of

e Often have hierarchical structure
— Good for representing character animation

e Use OpenGL or similar API at the bottom
— Ones discussed here use JOGL

* Look for extensibility

— Ability to call out to OpenGL from within scene graph
to implement leading-edge effects

Scene Graphs and Game Engines

Examples
o Xith3D: http://www.xith.org/

— General-purpose scene graph, but focused on
gaming and high performance

— Designed to be nearly identical to Java 3D™ APIs
— Supports leading-edge functionality like shadow
volumes and vertex and fragment programs
e Aviatrix3D: http://aviatrix3d.j3d.org/
— Focused on visualization market
— Minimal API design
— Also supports vertex and fragment programs

Scene Graphs and Game Engines

Examples

 OpenMind: http://www.mind2machine.com/
— 3D game engine
— Built-in support for 3D Studio Max ASE format
— Supplies tool chain for developers

Scene Graphs and Game Engines

Demo

e Abdul Bezrati (a.k.a. “Java Cool Dude”)
— Xith3D demos
— http://xith.org/demo/JavaCooIDude.php

-

Y ¢ ¥

E |l ;
P :

26 | 2004 JavaOne Conference | Session TS-1361

Object Picking

Using the selection buffer

 Interactive applications require the ability
to pick objects in 3D

 OpenGL provides a built-in mechanism
for object selection

— Special rendering mode

 User supplies storage for results and sets
up special “pick” matrix
— View volume centered around cursor

* Any objects rendered into this view volume
are reported to the user

Object Picking

Using the selection buffer

Set up selection buffer

— IntBuffer buf =
BufferUtils.newIntBuffer (1024) ;
gl.glSelectBuffer (buf.capacity(), buf);

Switch into selection mode
— gl.glRenderMode (GL.GL SELECT) ;

— Color buffer is frozen at this point and not updated
until selection mode is exited

Initialize name stack
— gl.glInitNames () ;

Set up pick matrix
— glu.gluPickMatrix(...);

Object Picking

Using the selection buffer

* Render objects, assigning names to them

— int objectId = ...;
gl.glPushName (objectId) ;
renderObject (gl) ;
gl.glPopName () ;

o Switch out of selection mode

— int numHits =
gl.glRenderMode (GL.GL RENDER) ;

 Process hits

— int idx = 0;
while (idx < numHits) {
int hit = buf.get (idx++) ;

Object Picking

Demo

e Selection buffer demo (courtesy Thomas Bladh)

— http://www.sm.luth.se/csee/courses/smd/159/
TestPrograms/Picking.java

"é Picking Example

Object Picking

Using the selection buffer

e Advantages
— Easy to start working with selection buffer

— Can reuse normal rendering code; just add names
—Names have no effect in GL_RENDER mode

e Disadvantages

— Still have to disambiguate multiple hits based on
depth values

— No surface normal or other information at hit site
—Not exactly casting a ray into the scene

— To implement dragging behavior, still need some
kind of policy for motion

— Doesn't solve problem of moving camera in
response to mouse motion

Object Picking

Using Manual Linear Algebra

Picking can also be done at the

application level

— Perform ray-triangle intersection tests using
a linear algebra library

Depending on application’s representation of
geometry, may be able to accelerate drastically

— QOctrees or other spatial partitioning techniques
— Degenerate cases like vertical rays

Have full control over information returned
and response to dragging

May require some more code

Object Picking

Using Manual Linear Algebra

 Libraries exist for adding 3D interaction

— gleem (OpenGL Extremely Easy-To-Use
Manipulators)—in jogl-demos workspace on java.net

—Will be shown shortly
— Most scene graphs have picking mechanisms
—3cene graphs discussed earlier support it

— Depending on application and library, may be
very easy to integrate the two

Shadows

Why do we need shadows?

 Humans use shadows to infer spatial
relationships

— Relative positions of objects
— Locations of light sources
— Shape of an object

e Scene looks more natural
e Scene is easier to understand
e Shadows look cool

Shadows

Two basic techniques

e Render-to-texture shadows
— Image-space technique

e Volumetric
— Geometric technique

35 | 2004 JavaOne Conference | Session TS-1361

Shadows

Render-to-texture shadows

Render the scene from the light's perspective
Store depth of rendered scene as texture
Render scene from viewer’s perspective

Render the depth texture onto the scene

— Careful setup of texture transform and texture-coord
generation

—QODbject’s position maps to correct u-v texture coords
in depth texture

—QODbject’s r texture coord maps to distance from
the object to the light source

— If r value is greater than texture value, pixel is
In shadow

Shadows

Demo
* NVidia Hardware Shadow Mapping

Shadows

Render-to-texture shadows

e Advantages:
— Performance independent of geometric complexity
— No additional cost for animated geometry

— Can take into account alpha-masked geometry
(example: a chain-link fence)

Shadows

Render-to-texture shadows

e Disadvantages:
— Dependent on texture resolution (aliasing)
— Not good for long projections

— Need special tricks to get self-shadowing to
work well

— QOlder hardware may not support render-to-texture
In hardware

— Fall back to slow framebuffer --> texture copy

Shadows

Volumetric shadows

e Basic idea: Use geometry to calculate volume of
space that is in shadow

— Calculate silhouette edge of object, from
light’s perspective

— Extrude the silhouette away from the light

— QObjects inside this volume are in shadow
from the light

Shadows

Volumetric shadows

» Uses stencil buffer for per-pixel infout test

— Render scene, ambient light only
— Sets the depth buffer

— Render shadow volumes with stencil enabled
— Render front / back faces separately
— If pixel passes depth test, adjust stencil value
— Many adjustment heuristics (z-pass, z-fail)

— If stencil value is 0 afterwards, pixel is not
In shadow

Shadows

Demo
 NVidia Infinite Shadow Volumes

a | — |y
Cam s Ca

42 | 2004 JavaOne Conference | Session TS-1361

Shadows

Volumetric shadows

e Advantages:
— Self-shadowing “just works”
— No aliasing problems
— Crisp shadows, even at infinite projection distances
— Good for wide-open spaces

Shadows

Volumetric shadows

e Disadvantages:
— Performance depends on scene

—Expensive for complex objects, many lights,
or many shadow receivers

— N lights = N+1 render passes per
shadowed object

—Slow for non-static geometry / non-static lights
— Silhouettes must be recalculated each frame

— Incorrect shadows cast from alpha-masked
geometry

—Purely geometric technique

— Many subtleties to make it work correctly for all
intersections of light, viewer, and shadow volume

Agenda

Introduction

JSR Update

Using JOGL With AWT and Swing
Techniques for Application Development
Optimizing JOGL Applications

Demos

Conclusion

Optimizing JOGL Applications

Data organization

e Application writer needs to decide how to
lay out data in memory

— Multiple Java objects in heap?
— Primitive types and/or primitive arrays?

— New I/O? Use memory-mapped files instead
of reading them in”?

e Guide decisions by how various data structures
will be used and how much data they store

 When compatibility with C data structures in
memory-mapped files is required, GlueGen tool
can help provide access to data

— GlueGen is in JOGL workspace on java.net

Optimizing JOGL Applications

Data organization: Grand Canyon demo

e 300 MB of terrain data visualized in real time
using Java technology and OpenGL

e Multiresolution algorithm
— More detail for terrain closer to camera

e Two components of data: geometry and texture
— NIO used to memory-map both
— Highest-resolution geometry mapped all of the time

—Processed by Java code to decimate to appropriate
resolution

— Appropriate resolution textures mapped in by
background thread

—Raw data handed off to OpenGL

Optimizing JOGL Applications

Data organization: Grand Canyon demo
* Very little data stored in Java objects heap

* Plenty of garbage generated, but all short-lived
— No visible GC pauses

« Shows alternative to earlier programming
models in Java language

— E.g., all data read in to Javaobjects heap

Optimizing JOGL Applications

Demo

e Grand Canyon demo
— http://java.sun.com/products/jfc/tsc/articles/jcanyon/

49 | 2004 JavaOne™ Conference | Session TS-1361

Optimizing JOGL Applications
Efficiency
e JNI has a non-zero cost

e All OpenGL routines are necessarily called from
the Java programming language
through JNI

* Minimize number of OpenGL function calls
per frame

o Use vertex arrays and New /O
Float/Double/IntBuffers to store and send
down geometric data to OpenGL

— glVertexPointer, gINormalPointer, glColorPointer

Agenda

Introduction

JSR Update

Using JOGL With AWT and Swing
Techniques for Application Development
Optimizing JOGL Applications

Demos

Conclusion

Demos

Wurm Online

Y% Wurm Online version 0.1.4a

F12 Guit F1: Help F2 Skille F3: Ihventory F4: Action gueue F5: Togole beeps FE: Toggle timestamps F7: Toggle walk prevention
18 fpz, i 1270.00KE (0.41/3 40 KBpe), out 145 00kE (0.41/0.39 KBps), 0.00 ke (total 025 km)

Erergetic, Starving

vant foogive out toa much information. Manuals tends ta kil

C art to pack the ground
;48] The dirt iz packed and hard nowe
0:59] ' ou guistly fricenble: Zarm...
4] ou feel & slight tingks in Your spine
Zorn e alkl
:01:34] <Taths we goofed & lithe bit :01:30] Dactunch lost link

52 | 2004 JavaOne Conference | Session TS-1361

Demos

Wurm Online
e Being developed by Mojang Specifications

 Fantasy Massively Multiplayer Online Role
Playing Game written in Java language
using JOGL

e http://www.wurmonline.com/

Demos

Max

Synthetic Characters Group

Demos

Max

* Developed by Synthetic Characters Group
at The Media Lab, MIT
http://characters.media.mit.edu/

e Explores behavior systems that:
— Support teasing

— Develop expectations about people
they interact with

— Develop over time, like animals do

e Characters code base written in Java
programming language

— Small pieces of native code to interface to
custom input devices

btoni
SOFTWARE

Demos

Jake2

* Port of Quake 2 engine to Java technology
and JOGL

e Done by Bytonic Software
http://www.bytonic.de/

 |llustrates that Java platform is capable of
creating commercial-quality games

o Better than 85% of speed of original C
— 210 fps compared to 245 fps

Agenda

Introduction

JSR Update

Using JOGL With AWT and Swing
Techniques for Application Development
Optimizing JOGL Applications

Demos

Conclusion

Conclusion

e Java platform and OpenGL 3D API provide the
tools to develop leading-edge 3D applications
and games

— High performance, portability, and safety of the
Java platform

e JOGL project and JSR 231 /239 aiming for

robust, full-featured, and easy-to-use interfaces
to OpenGL

e Open source; join the development community

e Use the Java programming language for your
next project

For More Information

e Technical Sessions
— TS-1338 Desktop Game Development

e BOFs

— BOF-1241 Meet the Java 2D APl Team
— BOF-1938 Meet the AWT Team
— BOF-3215 Java 3D API

e URLSs

— http://jogl.dev.java.net/
— http://community.java.net/games/

IEVE]

61 | 2004 JavaOne™ Conference | Session TS-1361

JavaOne

Sun’s 2004 Worldwide Java Developer Conference-

3D Application and
Game Development

With OpenGL®

Daniel Petersen
Kenneth Russell
Sun Microsystems, Inc.

java.sun.com/javaone/sf

