1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
|
import java.awt.*;
import java.awt.event.*;
import java.nio.*;
import java.util.*;
import net.java.games.jogl.*;
/** <P> A port of NVidia's [tm] Vertex Array Range demonstration to
OpenGL[tm] for Java[tm] and the Java programming language. The
current web site for the demo (which does not appear to contain
the original C++ source code for this demo) is <a href =
"http://developer.nvidia.com/view.asp?IO=Using_GL_NV_fence">here</a>. </P>
<P> This demonstration requires the following:
<ul>
<li> A JDK 1.4 implementation
<li> an NVidia GeForce-based card
<li> a recent set of drivers
</ul>
</P>
<P> This demonstration illustrates the effective use of the
java.nio direct buffer classes in JDK 1.4 to access memory outside
of the Java garbage-collected heap, in particular that returned
from the NVidia-specific routine wglAllocateMemoryNV. This memory
region is used in conjunction with glVertexArrayRangeNV. </P>
<P> On a 750 MHz PIII with an SDRAM memory bus and a GeForce 256
running the Java HotSpot[tm] Client VM and OpenGL for Java 2.8,
this demonstration attains 90% of the speed of the compiled C++
code, with a frame rate of 27 FPS, compared to 30 FPS for the C++
version. On higher-end hardware (a dual 667 MHz PIII with RDRAM
and a GeForce 2) the demo currently attains between 65% and 75% of
C++ speed with the HotSpot Client and Server compilers,
respectively. </P> */
public class VertexArrayRange {
private boolean[] b = new boolean[256];
private static final int SIZEOF_FLOAT = 4;
private static final int STRIP_SIZE = 48;
private int tileSize = 9 * STRIP_SIZE;
private int numBuffers = 4;
private int bufferLength = 1000000;
private int bufferSize = bufferLength * SIZEOF_FLOAT;
private static final int SIN_ARRAY_SIZE = 1024;
private FloatBuffer bigArrayVar;
private FloatBuffer bigArraySystem;
private FloatBuffer bigArray;
private int[][] elements;
private float[] xyArray;
static class VarBuffer {
public FloatBuffer vertices;
public FloatBuffer normals;
public int fence;
}
private VarBuffer[] buffers;
private float[] sinArray;
private float[] cosArray;
// Primitive: GL_QUAD_STRIP, GL_LINE_STRIP, or GL_POINTS
private int primitive = GL.GL_QUAD_STRIP;
// Animation parameters
private float hicoef = .06f;
private float locoef = .10f;
private float hifreq = 6.1f;
private float lofreq = 2.5f;
private float phaseRate = .02f;
private float phase2Rate = -0.12f;
private float phase = 0;
private float phase2 = 0;
// Temporaries for computation
float[] ysinlo = new float[STRIP_SIZE];
float[] ycoslo = new float[STRIP_SIZE];
float[] ysinhi = new float[STRIP_SIZE];
float[] ycoshi = new float[STRIP_SIZE];
// For thread-safety when dealing with keypresses
private volatile boolean toggleVAR = false;
private volatile boolean toggleLighting = false;
private volatile boolean toggleLightingModel = false;
private volatile boolean recomputeElements = false;
private volatile boolean quit = false;
// Frames-per-second computation
private boolean firstProfiledFrame;
private int profiledFrameCount;
private int numDrawElementsCalls;
private long startTimeMillis;
private GLCanvas canvas = null;
static class PeriodicIterator {
public PeriodicIterator(int arraySize,
float period,
float initialOffset,
float delta) {
float arrayDelta = arraySize * (delta / period); // floating-point steps-per-increment
increment = (int)(arrayDelta * (1<<16)); // fixed-point steps-per-increment
float offset = arraySize * (initialOffset / period); // floating-point initial index
initOffset = (int)(offset * (1<<16)); // fixed-point initial index
arraySizeMask = 0;
int i = 20; // array should be reasonably sized...
while((arraySize & (1<<i)) == 0) {
i--;
}
arraySizeMask = (1<<i)-1;
index = initOffset;
}
public PeriodicIterator(PeriodicIterator arg) {
this.arraySizeMask = arg.arraySizeMask;
this.increment = arg.increment;
this.initOffset = arg.initOffset;
this.index = arg.index;
}
public int getIndex() {
return (index >> 16) & arraySizeMask;
}
public void incr() {
index += increment;
}
public void decr() {
index -= increment;
}
public void reset() {
index = initOffset;
}
//----------------------------------------------------------------------
// Internals only below this point
//
private int arraySizeMask;
// fraction bits == 16
private int increment;
private int initOffset;
private int index;
}
public static void usage(String className) {
System.out.println("usage: java " + className + " [-slow]");
System.out.println("-slow flag starts up using data in the Java heap");
System.exit(0);
}
public static void main(String[] args) {
new VertexArrayRange().run(args);
}
public void run(String[] args) {
boolean startSlow = false;
if (args.length > 1) {
usage(getClass().getName());
}
if (args.length == 1) {
if (args[0].equals("-slow")) {
startSlow = true;
} else {
usage(getClass().getName());
}
}
if (!startSlow) {
setFlag('v', true); // VAR on
}
setFlag(' ', true); // animation on
setFlag('i', true); // infinite viewer and light
canvas = GLDrawableFactory.getFactory().createGLCanvas(new GLCapabilities());
// canvas.setGL(new TraceGL(canvas.getGL(), System.err));
// canvas.setGL(new DebugGL(canvas.getGL()));
VARListener listener = new VARListener();
canvas.addGLEventListener(listener);
final Animator animator = new Animator(canvas);
Frame frame = new Frame("Very Simple NV_vertex_array_range demo");
frame.setLayout(new BorderLayout());
canvas.setSize(800, 800);
frame.add(canvas, BorderLayout.CENTER);
frame.pack();
frame.show();
canvas.requestFocus();
frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
animator.stop();
System.exit(0);
}
});
animator.start();
}
//----------------------------------------------------------------------
// Internals only below this point
//
private void setFlag(char key, boolean val) {
b[((int) key) & 0xFF] = val;
}
private boolean getFlag(char key) {
return b[((int) key) & 0xFF];
}
private void ensurePresent(String function) {
if (!canvas.getGL().isFunctionAvailable(function)) {
throw new RuntimeException("OpenGL routine \"" + function + "\" not available");
}
}
class VARListener implements GLEventListener {
boolean exiting = false;
public void init(GLDrawable drawable) {
GL gl = drawable.getGL();
GLU glu = drawable.getGLU();
// Try and disable synch-to-retrace for fastest framerate
if (gl.isFunctionAvailable("wglSwapIntervalEXT")) {
System.err.println("wglSwapIntervalEXT available; disabling sync-to-refresh for best framerate");
gl.wglSwapIntervalEXT(0);
}
else {
System.err.println("wglSwapIntervalEXT not available; cannot disable sync-to-refresh");
}
try {
ensurePresent("glVertexArrayRangeNV");
ensurePresent("glGenFencesNV");
ensurePresent("glSetFenceNV");
ensurePresent("glTestFenceNV");
ensurePresent("glFinishFenceNV");
ensurePresent("glAllocateMemoryNV");
} catch (RuntimeException e) {
runExit();
throw (e);
}
gl.glEnable(GL.GL_DEPTH_TEST);
gl.glClearColor(0, 0, 0, 0);
gl.glEnable(GL.GL_LIGHT0);
gl.glEnable(GL.GL_LIGHTING);
gl.glEnable(GL.GL_NORMALIZE);
gl.glMaterialfv(GL.GL_FRONT_AND_BACK, GL.GL_AMBIENT, new float[] {.1f, .1f, 0, 1});
gl.glMaterialfv(GL.GL_FRONT_AND_BACK, GL.GL_DIFFUSE, new float[] {.6f, .6f, .1f, 1});
gl.glMaterialfv(GL.GL_FRONT_AND_BACK, GL.GL_SPECULAR, new float[] { 1, 1, .75f, 1});
gl.glMaterialf(GL.GL_FRONT_AND_BACK, GL.GL_SHININESS, 128.f);
gl.glLightfv(GL.GL_LIGHT0, GL.GL_POSITION, new float[] { .5f, 0, .5f, 0});
gl.glLightModeli(GL.GL_LIGHT_MODEL_LOCAL_VIEWER, 0);
// NOTE: it looks like GLUT (or something else) sets up the
// projection matrix in the C version of this demo.
gl.glMatrixMode(GL.GL_PROJECTION);
gl.glLoadIdentity();
glu.gluPerspective(60, 1.0, 0.1, 100);
gl.glMatrixMode(GL.GL_MODELVIEW);
allocateBigArray(gl, true);
allocateBuffersAndFences(gl);
sinArray = new float[SIN_ARRAY_SIZE];
cosArray = new float[SIN_ARRAY_SIZE];
for (int i = 0; i < SIN_ARRAY_SIZE; i++) {
double step = i * 2 * Math.PI / SIN_ARRAY_SIZE;
sinArray[i] = (float) Math.sin(step);
cosArray[i] = (float) Math.cos(step);
}
if (getFlag('v')) {
gl.glEnableClientState(GL.GL_VERTEX_ARRAY_RANGE_NV);
gl.glVertexArrayRangeNV(bufferSize, bigArrayVar);
bigArray = bigArrayVar;
} else {
bigArray = bigArraySystem;
}
setupBuffers();
gl.glEnableClientState(GL.GL_VERTEX_ARRAY);
gl.glEnableClientState(GL.GL_NORMAL_ARRAY);
computeElements();
drawable.addKeyListener(new KeyAdapter() {
public void keyTyped(KeyEvent e) {
dispatchKey(e.getKeyChar());
}
});
}
private void allocateBuffersAndFences(GL gl) {
buffers = new VarBuffer[numBuffers];
int[] fences = new int[1];
for (int i = 0; i < numBuffers; i++) {
buffers[i] = new VarBuffer();
gl.glGenFencesNV(1, fences);
buffers[i].fence = fences[0];
}
}
private void setupBuffers() {
int sliceSize = bufferLength / numBuffers;
for (int i = 0; i < numBuffers; i++) {
int startIndex = i * sliceSize;
buffers[i].vertices = sliceBuffer(bigArray, startIndex, sliceSize);
buffers[i].normals = sliceBuffer(buffers[i].vertices, 3,
buffers[i].vertices.limit() - 3);
}
}
private void dispatchKey(char k) {
setFlag(k, !getFlag(k));
// Quit on escape or 'q'
if ((k == (char) 27) || (k == 'q')) {
runExit();
}
if (k == 'r') {
if (getFlag(k)) {
profiledFrameCount = 0;
numDrawElementsCalls = 0;
firstProfiledFrame = true;
}
}
if (k == 'w') {
if (getFlag(k)) {
primitive = GL.GL_LINE_STRIP;
} else {
primitive = GL.GL_QUAD_STRIP;
}
}
if (k == 'p') {
if (getFlag(k)) {
primitive = GL.GL_POINTS;
} else {
primitive = GL.GL_QUAD_STRIP;
}
}
if (k == 'v') {
toggleVAR = true;
}
if (k == 'd') {
toggleLighting = true;
}
if (k == 'i') {
toggleLightingModel = true;
}
if('h'==k)
hicoef += .005;
if('H'==k)
hicoef -= .005;
if('l'==k)
locoef += .005;
if('L'==k)
locoef -= .005;
if('1'==k)
lofreq += .1f;
if('2'==k)
lofreq -= .1f;
if('3'==k)
hifreq += .1f;
if('4'==k)
hifreq -= .1f;
if('5'==k)
phaseRate += .01f;
if('6'==k)
phaseRate -= .01f;
if('7'==k)
phase2Rate += .01f;
if('8'==k)
phase2Rate -= .01f;
if('t'==k) {
if(tileSize < 864) {
tileSize += STRIP_SIZE;
recomputeElements = true;
System.err.println("tileSize = " + tileSize);
}
}
if('T'==k) {
if(tileSize > STRIP_SIZE) {
tileSize -= STRIP_SIZE;
recomputeElements = true;
System.err.println("tileSize = " + tileSize);
}
}
}
public void display(GLDrawable drawable) {
// Don't try to do OpenGL operations if we're tearing things down
if (quit) {
return;
}
GL gl = drawable.getGL();
GLU glu = drawable.getGLU();
// Check to see whether to animate
if (getFlag(' ')) {
phase += phaseRate;
phase2 += phase2Rate;
if (phase > (float) (20 * Math.PI)) {
phase = 0;
}
if (phase2 < (float) (-20 * Math.PI)) {
phase2 = 0;
}
}
PeriodicIterator loX =
new PeriodicIterator(SIN_ARRAY_SIZE, (float) (2 * Math.PI), phase, (float) ((1.f/tileSize)*lofreq*Math.PI));
PeriodicIterator loY = new PeriodicIterator(loX);
PeriodicIterator hiX =
new PeriodicIterator(SIN_ARRAY_SIZE, (float) (2 * Math.PI), phase2, (float) ((1.f/tileSize)*hifreq*Math.PI));
PeriodicIterator hiY = new PeriodicIterator(hiX);
if (toggleVAR) {
if (getFlag('v')) {
gl.glEnableClientState(GL.GL_VERTEX_ARRAY_RANGE_NV);
gl.glVertexArrayRangeNV(bufferSize, bigArrayVar);
bigArray = bigArrayVar;
} else {
gl.glDisableClientState(GL.GL_VERTEX_ARRAY_RANGE_NV);
bigArray = bigArraySystem;
}
toggleVAR = false;
setupBuffers();
}
if (toggleLighting) {
if (getFlag('d')) {
gl.glDisable(GL.GL_LIGHTING);
} else {
gl.glEnable(GL.GL_LIGHTING);
}
toggleLighting = false;
}
if (toggleLightingModel) {
if(getFlag('i')) {
// infinite light
gl.glLightfv(GL.GL_LIGHT0, GL.GL_POSITION, new float[] { .5f, 0, .5f, 0 });
gl.glLightModeli(GL.GL_LIGHT_MODEL_LOCAL_VIEWER, 0);
} else {
gl.glLightfv(GL.GL_LIGHT0, GL.GL_POSITION, new float[] { .5f, 0, -.5f,1 });
gl.glLightModeli(GL.GL_LIGHT_MODEL_LOCAL_VIEWER, 1);
}
toggleLightingModel = false;
}
if (recomputeElements) {
computeElements();
recomputeElements = false;
}
gl.glClear(GL.GL_COLOR_BUFFER_BIT | GL.GL_DEPTH_BUFFER_BIT);
gl.glPushMatrix();
final float[] modelViewMatrix = new float[] {
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, -1, 1
};
gl.glLoadMatrixf(modelViewMatrix);
// FIXME: add mouse interaction
// camera.apply_inverse_transform();
// object.apply_transform();
int cur = 0;
int numSlabs = tileSize / STRIP_SIZE;
for(int slab = numSlabs; --slab>=0; ) {
cur = slab % numBuffers;
if (slab >= numBuffers) {
if (!gl.glTestFenceNV(buffers[cur].fence)) {
gl.glFinishFenceNV(buffers[cur].fence);
}
}
FloatBuffer v = buffers[cur].vertices;
int vertexIndex = 0;
gl.glVertexPointer(3, GL.GL_FLOAT, 6 * SIZEOF_FLOAT, v);
gl.glNormalPointer(GL.GL_FLOAT, 6 * SIZEOF_FLOAT, buffers[cur].normals);
for(int jj=STRIP_SIZE; --jj>=0; ) {
ysinlo[jj] = sinArray[loY.getIndex()];
ycoslo[jj] = cosArray[loY.getIndex()]; loY.incr();
ysinhi[jj] = sinArray[hiY.getIndex()];
ycoshi[jj] = cosArray[hiY.getIndex()]; hiY.incr();
}
loY.decr();
hiY.decr();
for(int i = tileSize; --i>=0; ) {
float x = xyArray[i];
int loXIndex = loX.getIndex();
int hiXIndex = hiX.getIndex();
int jOffset = (STRIP_SIZE-1)*slab;
float nx = locoef * -cosArray[loXIndex] + hicoef * -cosArray[hiXIndex];
// Help the HotSpot Client Compiler by hoisting loop
// invariant variables into locals. Note that this may be
// good practice for innermost loops anyway since under
// the new memory model operations like accidental
// synchronization may force any compiler to reload these
// fields from memory, destroying their ability to
// optimize.
float locoef_tmp = locoef;
float hicoef_tmp = hicoef;
float[] ysinlo_tmp = ysinlo;
float[] ysinhi_tmp = ysinhi;
float[] ycoslo_tmp = ycoslo;
float[] ycoshi_tmp = ycoshi;
float[] sinArray_tmp = sinArray;
float[] xyArray_tmp = xyArray;
for(int j = STRIP_SIZE; --j>=0; ) {
float y;
y = xyArray_tmp[j + jOffset];
float ny;
v.put(vertexIndex, x);
v.put(vertexIndex + 1, y);
v.put(vertexIndex + 2, (locoef_tmp * (sinArray_tmp[loXIndex] + ysinlo_tmp[j]) +
hicoef_tmp * (sinArray_tmp[hiXIndex] + ysinhi_tmp[j])));
v.put(vertexIndex + 3, nx);
ny = locoef_tmp * -ycoslo_tmp[j] + hicoef_tmp * -ycoshi_tmp[j];
v.put(vertexIndex + 4, ny);
v.put(vertexIndex + 5, .15f); //.15f * (1.f - sqrt(nx * nx + ny * ny));
vertexIndex += 6;
}
loX.incr();
hiX.incr();
}
loX.reset();
hiX.reset();
for (int i = 0; i < elements.length; i++) {
++numDrawElementsCalls;
gl.glDrawElements(primitive, elements[i].length, GL.GL_UNSIGNED_INT, elements[i]);
if(getFlag('f')) {
gl.glFlush();
}
}
gl.glSetFenceNV(buffers[cur].fence, GL.GL_ALL_COMPLETED_NV);
}
gl.glPopMatrix();
gl.glFinishFenceNV(buffers[cur].fence);
if (getFlag('r')) {
if (!firstProfiledFrame) {
if (++profiledFrameCount == 30) {
long endTimeMillis = System.currentTimeMillis();
double secs = (endTimeMillis - startTimeMillis) / 1000.0;
double fps = 30.0 / secs;
double ppf = tileSize * tileSize * 2;
double mpps = ppf * fps / 1000000.0;
System.err.println("fps: " + fps + " polys/frame: " + ppf + " million polys/sec: " + mpps +
" DrawElements calls/frame: " + (numDrawElementsCalls / 30));
profiledFrameCount = 0;
numDrawElementsCalls = 0;
startTimeMillis = System.currentTimeMillis();
}
} else {
startTimeMillis = System.currentTimeMillis();
firstProfiledFrame = false;
}
}
}
public void reshape(GLDrawable drawable, int x, int y, int width, int height) {}
// Unused routines
public void displayChanged(GLDrawable drawable, boolean modeChanged, boolean deviceChanged) {}
private void runExit() {
quit = true;
// Note: calling System.exit() synchronously inside the draw,
// reshape or init callbacks can lead to deadlocks on certain
// platforms (in particular, X11) because the JAWT's locking
// routines cause a global AWT lock to be grabbed. Run the
// exit routine in another thread and cause this one to
// terminate by throwing an exception out of it.
new Thread(new Runnable() {
public void run() {
System.exit(0);
}
}).start();
}
} // end class VARListener
private void allocateBigArray(GL gl, boolean tryAgain) {
float priority = .5f;
bigArraySystem = setupBuffer(ByteBuffer.allocateDirect(bufferSize));
float megabytes = (bufferSize / 1000000.f);
try {
bigArrayVar = setupBuffer(gl.glAllocateMemoryNV(bufferSize, 0, 0, priority));
}
catch (OutOfMemoryError e1) {
// Try a higher priority
try {
bigArrayVar = setupBuffer(gl.glAllocateMemoryNV(bufferSize, 0, 0, 1.f));
}
catch (OutOfMemoryError e2) {
if (!tryAgain) {
throw new RuntimeException("Unable to allocate " + megabytes +
" megabytes of fast memory. Giving up.");
}
System.err.println("Unable to allocate " + megabytes +
" megabytes of fast memory. Trying less.");
bufferSize /= 2;
numBuffers /= 2;
allocateBigArray(gl, false);
return;
}
}
System.err.println("Allocated " + megabytes + " megabytes of fast memory");
}
private FloatBuffer setupBuffer(ByteBuffer buf) {
buf.order(ByteOrder.nativeOrder());
return buf.asFloatBuffer();
}
private FloatBuffer sliceBuffer(FloatBuffer array,
int sliceStartIndex, int sliceLength) {
array.position(sliceStartIndex);
FloatBuffer ret = array.slice();
array.position(0);
ret.limit(sliceLength);
return ret;
}
private void computeElements() {
xyArray = new float[tileSize];
for (int i = 0; i < tileSize; i++) {
xyArray[i] = i / (tileSize - 1.0f) - 0.5f;
}
elements = new int[tileSize - 1][];
for (int i = 0; i < tileSize - 1; i++) {
elements[i] = new int[2 * STRIP_SIZE];
for (int j = 0; j < 2 * STRIP_SIZE; j += 2) {
elements[i][j] = i * STRIP_SIZE + (j / 2);
elements[i][j+1] = (i + 1) * STRIP_SIZE + (j / 2);
}
}
}
}
|