1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
/*
* Copyright (c) 2008 Sun Microsystems, Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* - Redistribution of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistribution in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of Sun Microsystems, Inc. or the names of
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* This software is provided "AS IS," without a warranty of any kind. ALL
* EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
* INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN
* MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE FOR
* ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
* DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR
* ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR
* DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
* DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
* ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF
* SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
*/
package com.jogamp.audio.windows.waveout;
import java.io.*;
import java.nio.*;
import java.util.*;
import com.jogamp.common.util.InterruptSource;
import com.jogamp.common.util.InterruptedRuntimeException;
// Needed only for NIO workarounds on CVM
import java.lang.reflect.*;
public class Mixer {
// This class is a singleton
private static Mixer mixer;
volatile boolean fillerAlive;
volatile boolean mixerAlive;
volatile boolean shutdown;
volatile Object shutdownLock = new Object();
// Windows Event object
private final long event;
private volatile ArrayList<Track> tracks = new ArrayList<Track>();
private final Vec3f leftSpeakerPosition = new Vec3f(-1, 0, 0);
private final Vec3f rightSpeakerPosition = new Vec3f( 1, 0, 0);
private float falloffFactor = 1.0f;
static {
mixer = new Mixer();
}
private Mixer() {
event = CreateEvent();
fillerAlive = false;
mixerAlive = false;
shutdown = false;
new FillerThread().start();
final MixerThread m = new MixerThread();
m.setPriority(Thread.MAX_PRIORITY - 1);
m.start();
}
public static Mixer getMixer() {
return mixer;
}
synchronized void add(final Track track) {
final ArrayList<Track> newTracks = new ArrayList<Track>(tracks);
newTracks.add(track);
tracks = newTracks;
}
synchronized void remove(final Track track) {
final ArrayList<Track> newTracks = new ArrayList<Track>(tracks);
newTracks.remove(track);
tracks = newTracks;
}
// NOTE: due to a bug on the APX device, we only have mono sounds,
// so we currently only pay attention to the position of the left
// speaker
public void setLeftSpeakerPosition(final float x, final float y, final float z) {
leftSpeakerPosition.set(x, y, z);
}
// NOTE: due to a bug on the APX device, we only have mono sounds,
// so we currently only pay attention to the position of the left
// speaker
public void setRightSpeakerPosition(final float x, final float y, final float z) {
rightSpeakerPosition.set(x, y, z);
}
/** This defines a scale factor of sorts -- the higher the number,
the larger an area the sound will affect. Default value is
1.0f. Valid values are [1.0f, ...]. The formula for the gain
for each channel is
<PRE>
falloffFactor
-------------------
falloffFactor + r^2
</PRE>
*/
public void setFalloffFactor(final float factor) {
falloffFactor = factor;
}
public void shutdown() {
synchronized(shutdownLock) {
shutdown = true;
SetEvent(event);
try {
while(fillerAlive || mixerAlive) {
shutdownLock.wait();
}
} catch (final InterruptedException e) {
throw new InterruptedRuntimeException(e);
}
}
}
class FillerThread extends InterruptSource.Thread {
FillerThread() {
super(null, null, "Mixer Thread");
}
@Override
public void run() {
fillerAlive = true;
try {
while (!shutdown) {
final List<Track> curTracks = tracks;
for (final Iterator<Track> iter = curTracks.iterator(); iter.hasNext(); ) {
final Track track = iter.next();
try {
track.fill();
} catch (final IOException e) {
e.printStackTrace();
remove(track);
}
}
try {
// Run ten times per second
java.lang.Thread.sleep(100);
} catch (final InterruptedException e) {
throw new InterruptedRuntimeException(e);
}
}
} finally {
fillerAlive = false;
}
}
}
class MixerThread extends InterruptSource.Thread {
// Temporary mixing buffer
// Interleaved left and right channels
float[] mixingBuffer;
private final Vec3f temp = new Vec3f();
MixerThread() {
super(null, null, "Mixer Thread");
if (!initializeWaveOut(event)) {
throw new InternalError("Error initializing waveout device");
}
}
@Override
public void run() {
mixerAlive = true;
try {
while (!shutdown) {
// Get the next buffer
final long mixerBuffer = getNextMixerBuffer();
if (mixerBuffer != 0) {
ByteBuffer buf = getMixerBufferData(mixerBuffer);
if (buf == null) {
// This is happening on CVM because
// JNI_NewDirectByteBuffer isn't implemented
// by default and isn't compatible with the
// JSR-239 NIO implementation (apparently)
buf = newDirectByteBuffer(getMixerBufferDataAddress(mixerBuffer),
getMixerBufferDataCapacity(mixerBuffer));
}
if (buf == null) {
throw new InternalError("Couldn't wrap the native address with a direct byte buffer");
}
// System.out.println("Mixing buffer");
// If we don't have enough samples in our mixing buffer, expand it
// FIXME: knowledge of native output rendering format
if ((mixingBuffer == null) || (mixingBuffer.length < (buf.capacity() / 2 /* bytes / sample */))) {
mixingBuffer = new float[buf.capacity() / 2];
} else {
// Zap it
for (int i = 0; i < mixingBuffer.length; i++) {
mixingBuffer[i] = 0.0f;
}
}
// This assertion should be in place if we have stereo
if ((mixingBuffer.length % 2) != 0) {
final String msg = "FATAL ERROR: odd number of samples in the mixing buffer";
System.out.println(msg);
throw new InternalError(msg);
}
// Run down all of the registered tracks mixing them in
final List<Track> curTracks = tracks;
for (final Iterator<Track> iter = curTracks.iterator(); iter.hasNext(); ) {
final Track track = iter.next();
// Consider only playing tracks
if (track.isPlaying()) {
// First recompute its gain
final Vec3f pos = track.getPosition();
final float leftGain = gain(pos, leftSpeakerPosition);
final float rightGain = gain(pos, rightSpeakerPosition);
// Now mix it in
int i = 0;
while (i < mixingBuffer.length) {
if (track.hasNextSample()) {
final float sample = track.nextSample();
mixingBuffer[i++] = sample * leftGain;
mixingBuffer[i++] = sample * rightGain;
} else {
// This allows tracks to stall without being abruptly cancelled
if (track.done()) {
remove(track);
}
break;
}
}
}
}
// Now that we have our data, send it down to the card
int outPos = 0;
for (int i = 0; i < mixingBuffer.length; i++) {
final short val = (short) mixingBuffer[i];
buf.put(outPos++, (byte) val);
buf.put(outPos++, (byte) (val >> 8));
}
if (!prepareMixerBuffer(mixerBuffer)) {
throw new RuntimeException("Error preparing mixer buffer");
}
if (!writeMixerBuffer(mixerBuffer)) {
throw new RuntimeException("Error writing mixer buffer to device");
}
} else {
// System.out.println("No mixer buffer available");
// Wait for a buffer to become available
if (!WaitForSingleObject(event)) {
throw new RuntimeException("Error while waiting for event object");
}
/*
try {
Thread.sleep(10);
} catch (InterruptedException e) {
throw new InterruptedRuntimeException(e);
}
*/
}
}
} finally {
mixerAlive = false;
// Need to shut down
shutdownWaveOut();
synchronized(shutdownLock) {
shutdownLock.notifyAll();
}
}
}
// This defines the 3D spatialization gain function.
// The function is defined as:
// falloffFactor
// -------------------
// falloffFactor + r^2
private float gain(final Vec3f pos, final Vec3f speakerPos) {
temp.sub(pos, speakerPos);
final float dotp = temp.dot(temp);
return (falloffFactor / (falloffFactor + dotp));
}
}
// Initializes waveout device
private static native boolean initializeWaveOut(long eventObject);
// Shuts down waveout device
private static native void shutdownWaveOut();
// Gets the next (opaque) buffer of data to fill from the native
// code, or 0 if none was available yet (it should not happen that
// none is available the way the code is written).
private static native long getNextMixerBuffer();
// Gets the next ByteBuffer to fill out of the mixer buffer. It
// requires interleaved left and right channel samples, 16 signed
// bits per sample, little endian. Implicit 44.1 kHz sample rate.
private static native ByteBuffer getMixerBufferData(long mixerBuffer);
// We need these to work around the lack of
// JNI_NewDirectByteBuffer in CVM + the JSR 239 NIO classes
private static native long getMixerBufferDataAddress(long mixerBuffer);
private static native int getMixerBufferDataCapacity(long mixerBuffer);
// Prepares this mixer buffer for writing to the device.
private static native boolean prepareMixerBuffer(long mixerBuffer);
// Writes this mixer buffer to the device.
private static native boolean writeMixerBuffer(long mixerBuffer);
// Helpers to prevent mixer thread from busy waiting
private static native long CreateEvent();
private static native boolean WaitForSingleObject(long event);
private static native void SetEvent(long event);
private static native void CloseHandle(long handle);
// We need a reflective hack to wrap a direct ByteBuffer around
// the native memory because JNI_NewDirectByteBuffer doesn't work
// in CVM + JSR-239 NIO
private static Class directByteBufferClass;
private static Constructor directByteBufferConstructor;
private static Map createdBuffers = new HashMap(); // Map Long, ByteBuffer
private static ByteBuffer newDirectByteBuffer(final long address, final long capacity) {
final Long key = Long.valueOf(address);
ByteBuffer buf = (ByteBuffer) createdBuffers.get(key);
if (buf == null) {
buf = newDirectByteBufferImpl(address, capacity);
if (buf != null) {
createdBuffers.put(key, buf);
}
}
return buf;
}
private static ByteBuffer newDirectByteBufferImpl(final long address, final long capacity) {
if (directByteBufferClass == null) {
try {
directByteBufferClass = Class.forName("java.nio.DirectByteBuffer");
final byte[] tmp = new byte[0];
directByteBufferConstructor =
directByteBufferClass.getDeclaredConstructor(new Class[] { Integer.TYPE,
tmp.getClass(),
Integer.TYPE });
directByteBufferConstructor.setAccessible(true);
} catch (final Exception e) {
e.printStackTrace();
}
}
if (directByteBufferConstructor != null) {
try {
return (ByteBuffer)
directByteBufferConstructor.newInstance(new Object[] {
Integer.valueOf((int) capacity),
null,
Integer.valueOf((int) address)
});
} catch (final Exception e) {
e.printStackTrace();
}
}
return null;
}
}
|