aboutsummaryrefslogtreecommitdiffstats
path: root/src/jogl/classes/com/jogamp/opengl/math/FloatUtil.java
blob: cf56ff0a42fc0fa3ef99d86f2d44eba7585fc3cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
/**
 * Copyright 2010 JogAmp Community. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *
 *    1. Redistributions of source code must retain the above copyright notice, this list of
 *       conditions and the following disclaimer.
 *
 *    2. Redistributions in binary form must reproduce the above copyright notice, this list
 *       of conditions and the following disclaimer in the documentation and/or other materials
 *       provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * The views and conclusions contained in the software and documentation are those of the
 * authors and should not be interpreted as representing official policies, either expressed
 * or implied, of JogAmp Community.
 */
package com.jogamp.opengl.math;

import java.nio.FloatBuffer;

import javax.media.opengl.GLException;

import jogamp.opengl.Debug;

import com.jogamp.common.os.Platform;

/**
 * Basic Float math utility functions.
 * <p>
 * Implementation assumes linear matrix layout in column-major order
 * matching OpenGL's implementation, illustration:
 * <pre>
  Row-Major                    Column-Major (OpenGL):

        | 0  1  2  3  |            | 0  4  8  12 |
        |             |            |             |
        | 4  5  6  7  |            | 1  5  9  13 |
    M = |             |        M = |             |
        | 8  9  10 11 |            | 2  6  10 14 |
        |             |            |             |
        | 12 13 14 15 |            | 3  7  11 15 |
 * </pre>
 * </p>
 * <p>
 * See <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html">Matrix-FAQ</a>
 * </p>
 * <p>
 * Derived from ProjectFloat.java - Created 11-jan-2004
 * </p>
 *
 * @author Erik Duijs, Kenneth Russell, et al.
 */
public class FloatUtil {
  public static final boolean DEBUG = Debug.debug("Math");

  private static final float[] IDENTITY_MATRIX =
    new float[] {
      1.0f, 0.0f, 0.0f, 0.0f,
      0.0f, 1.0f, 0.0f, 0.0f,
      0.0f, 0.0f, 1.0f, 0.0f,
      0.0f, 0.0f, 0.0f, 1.0f };

  private static final float[] ZERO_MATRIX =
    new float[] {
      0.0f, 0.0f, 0.0f, 0.0f,
      0.0f, 0.0f, 0.0f, 0.0f,
      0.0f, 0.0f, 0.0f, 0.0f,
      0.0f, 0.0f, 0.0f, 0.0f };

  /**
   * Make matrix an identity matrix
   */
  public static final void makeIdentityf(float[] m, int offset) {
    for (int i = 0; i < 16; i++) {
      m[i+offset] = IDENTITY_MATRIX[i];
    }
  }

  /**
   * Make matrix an identity matrix
   */
  public static final void makeIdentityf(FloatBuffer m) {
    final int oldPos = m.position();
    m.put(IDENTITY_MATRIX);
    m.position(oldPos);
  }

  /**
   * Make matrix an zero matrix
   */
  public static final void makeZero(float[] m, int offset) {
    for (int i = 0; i < 16; i++) {
      m[i+offset] = 0;
    }
  }

  /**
   * Make matrix an zero matrix
   */
  public static final void makeZero(FloatBuffer m) {
    final int oldPos = m.position();
    m.put(ZERO_MATRIX);
    m.position(oldPos);
  }

  /**
   * Make a rotation matrix from the given axis and angle in radians.
   * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q38">Matrix-FAQ Q38</a>
   */
  public static final void makeRotationAxis(final float angrad, float x, float y, float z, final float[] mat, final int mat_offset, final float[] tmpVec3f) {
        final float c = cos(angrad);
        final float ic= 1.0f - c;
        final float s = sin(angrad);

        tmpVec3f[0]=x; tmpVec3f[1]=y; tmpVec3f[2]=z;
        VectorUtil.normalizeVec3(tmpVec3f);
        x = tmpVec3f[0]; y = tmpVec3f[1]; z = tmpVec3f[2];

        // Rotation matrix (Row Order):
        //      xx(1-c)+c  xy(1-c)+zs xz(1-c)-ys 0
        //      xy(1-c)-zs yy(1-c)+c  yz(1-c)+xs 0
        //      xz(1-c)+ys yz(1-c)-xs zz(1-c)+c  0
        //      0          0          0          1
        final float xy = x*y;
        final float xz = x*z;
        final float xs = x*s;
        final float ys = y*s;
        final float yz = y*z;
        final float zs = z*s;
        mat[0+0*4+mat_offset] = x*x*ic+c;
        mat[1+0*4+mat_offset] = xy*ic+zs;
        mat[2+0*4+mat_offset] = xz*ic-ys;

        mat[0+1*4+mat_offset] = xy*ic-zs;
        mat[1+1*4+mat_offset] = y*y*ic+c;
        mat[2+1*4+mat_offset] = yz*ic+xs;

        mat[0+2*4+mat_offset] = xz*ic+ys;
        mat[1+2*4+mat_offset] = yz*ic-xs;
        mat[2+2*4+mat_offset] = z*z*ic+c;
  }

  /**
   * Make a concatenated rotation matrix in column-major order from the given Euler rotation angles in radians.
   * <p>
   * The rotations are applied in the given order:
   * <ul>
   *  <li>y - heading</li>
   *  <li>z - attitude</li>
   *  <li>x - bank</li>
   * </ul>
   * </p>
   * @param bankX the Euler pitch angle in radians. (rotation about the X axis)
   * @param headingY the Euler yaw angle in radians. (rotation about the Y axis)
   * @param attitudeZ the Euler roll angle in radians. (rotation about the Z axis)
   * <p>
   * Implementation does not use Quaternion and hence is exposed to
   * <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q34">Gimbal-Lock</a>
   * </p>
   * @see <a href="http://web.archive.org/web/20041029003853/http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q36">Matrix-FAQ Q36</a>
   * @see <a href="http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToMatrix/index.htm">euclideanspace.com-eulerToMatrix</a>
   */
  public static final void makeRotationEuler(final float bankX, final float headingY, final float attitudeZ, final float[] mat, final int mat_offset) {
      // Assuming the angles are in radians.
      final float ch = cos(headingY);
      final float sh = sin(headingY);
      final float ca = cos(attitudeZ);
      final float sa = sin(attitudeZ);
      final float cb = cos(bankX);
      final float sb = sin(bankX);

      mat[0+0*4+mat_offset] =  ch*ca;
      mat[0+1*4+mat_offset] =  sh*sb    - ch*sa*cb;
      mat[0+2*4+mat_offset] =  ch*sa*sb + sh*cb;
      mat[1+0*4+mat_offset] =  sa;
      mat[1+1*4+mat_offset] =  ca*cb;
      mat[1+2*4+mat_offset] = -ca*sb;
      mat[2+0*4+mat_offset] = -sh*ca;
      mat[2+1*4+mat_offset] =  sh*sa*cb + ch*sb;
      mat[2+2*4+mat_offset] = -sh*sa*sb + ch*cb;

      mat[3+0*4+mat_offset] =  0;
      mat[3+1*4+mat_offset] =  0;
      mat[3+2*4+mat_offset] =  0;

      mat[0+3*4+mat_offset] =  0;
      mat[1+3*4+mat_offset] =  0;
      mat[2+3*4+mat_offset] =  0;
      mat[3+3*4+mat_offset] =  1;
  }

  /**
   * Make given matrix the orthogonal matrix based on given parameters.
   *
   * @param a 4x4 matrix in column-major order (also result)
   * @param a_off
   * @param initA if true, given matrix will be initialized w/ identity matrix.
   * @param left
   * @param right
   * @param bottom
   * @param top
   * @param zNear
   * @param zFar
   * @return given matrix for chaining
   */
  public static final float[] makeOrthof(final float[] a, final int a_off, final boolean initA,
                                         final float left, final float right,
                                         final float bottom, final float top,
                                         final float zNear, final float zFar) {
      if( initA ) {
          FloatUtil.makeIdentityf(a, a_off);
      }
      // Ortho matrix (Column Order):
      //  2/dx  0     0    0
      //  0     2/dy  0    0
      //  0     0     2/dz 0
      //  tx    ty    tz   1
      final float dx=right-left;
      final float dy=top-bottom;
      final float dz=zFar-zNear;
      final float tx=-1.0f*(right+left)/dx;
      final float ty=-1.0f*(top+bottom)/dy;
      final float tz=-1.0f*(zFar+zNear)/dz;

      a[a_off+0+4*0] =  2.0f/dx;
      a[a_off+1+4*1] =  2.0f/dy;
      a[a_off+2+4*2] = -2.0f/dz;
      a[a_off+0+4*3] = tx;
      a[a_off+1+4*3] = ty;
      a[a_off+2+4*3] = tz;

      return a;
  }

  /**
   * Make given matrix the frustum matrix based on given parameters.
   *
   * @param a 4x4 matrix in column-major order (also result)
   * @param a_off
   * @param initA if true, given matrix will be initialized w/ identity matrix.
   * @param left
   * @param right
   * @param bottom
   * @param top
   * @param zNear
   * @param zFar
   * @return given matrix for chaining
   */
  public static final float[] makeFrustumf(final float[] a, final int a_off, final boolean initA,
                                           final float left, final float right,
                                           final float bottom, final float top,
                                           final float zNear, final float zFar) {
      if(zNear<=0.0f||zFar<0.0f) {
          throw new GLException("GL_INVALID_VALUE: zNear and zFar must be positive, and zNear>0");
      }
      if(left==right || top==bottom) {
          throw new GLException("GL_INVALID_VALUE: top,bottom and left,right must not be equal");
      }
      if( initA ) {
          FloatUtil.makeIdentityf(a, a_off);
      }
      // Frustum matrix (Column Order):
      //  2*zNear/dx   0          0   0
      //  0            2*zNear/dy 0   0
      //  A            B          C  -1
      //  0            0          D   0
      final float zNear2 = 2.0f*zNear;
      final float dx=right-left;
      final float dy=top-bottom;
      final float dz=zFar-zNear;
      final float A=(right+left)/dx;
      final float B=(top+bottom)/dy;
      final float C=-1.0f*(zFar+zNear)/dz;
      final float D=-2.0f*(zFar*zNear)/dz;

      a[a_off+0+4*0] = zNear2/dx;
      a[a_off+1+4*1] = zNear2/dy;
      a[a_off+2+4*2] = C;

      a[a_off+0+4*2] = A;
      a[a_off+1+4*2] = B;

      a[a_off+2+4*3] = D;
      a[a_off+3+4*2] = -1.0f;
      return a;
  }

  /**
   * Make given matrix the perspective matrix based on given parameters.
   *
   * @param a 4x4 matrix in column-major order (also result)
   * @param a_off
   * @param initA if true, given matrix will be initialized w/ identity matrix.
   * @param fovy angle in radians
   * @param aspect
   * @param zNear
   * @param zFar
   * @return given matrix for chaining
   */
  public static final float[] makePerspective(final float[] a, final int a_off, final boolean initA,
                                              final float fovy, final float aspect, final float zNear, final float zFar) {
      float top=(float)Math.tan(fovy)*zNear;
      float bottom=-1.0f*top;
      float left=aspect*bottom;
      float right=aspect*top;
      return makeFrustumf(a, a_off, initA, left, right, bottom, top, zNear, zFar);
  }

  /**
   * Multiply matrix: [d] = [a] x [b]
   * @param a 4x4 matrix in column-major order
   * @param b 4x4 matrix in column-major order
   * @param d result a*b in column-major order
   */
  public static final void multMatrixf(final float[] a, int a_off, final float[] b, int b_off, float[] d, int d_off) {
     for (int i = 0; i < 4; i++) {
        // one row in column-major order
        final float ai0=a[a_off+i+0*4],  ai1=a[a_off+i+1*4],  ai2=a[a_off+i+2*4],  ai3=a[a_off+i+3*4]; // row-i of a
        d[d_off+i+0*4] = ai0 * b[b_off+0+0*4] + ai1 * b[b_off+1+0*4] + ai2 * b[b_off+2+0*4] + ai3 * b[b_off+3+0*4] ;
        d[d_off+i+1*4] = ai0 * b[b_off+0+1*4] + ai1 * b[b_off+1+1*4] + ai2 * b[b_off+2+1*4] + ai3 * b[b_off+3+1*4] ;
        d[d_off+i+2*4] = ai0 * b[b_off+0+2*4] + ai1 * b[b_off+1+2*4] + ai2 * b[b_off+2+2*4] + ai3 * b[b_off+3+2*4] ;
        d[d_off+i+3*4] = ai0 * b[b_off+0+3*4] + ai1 * b[b_off+1+3*4] + ai2 * b[b_off+2+3*4] + ai3 * b[b_off+3+3*4] ;
     }
  }

  /**
   * Multiply matrix: [a] = [a] x [b]
   * @param a 4x4 matrix in column-major order (also result)
   * @param b 4x4 matrix in column-major order
   */
  public static final void multMatrixf(final float[] a, int a_off, final float[] b, int b_off) {
     for (int i = 0; i < 4; i++) {
        // one row in column-major order
        final int a_off_i = a_off+i;
        final float ai0=a[a_off_i+0*4],  ai1=a[a_off_i+1*4],  ai2=a[a_off_i+2*4],  ai3=a[a_off_i+3*4]; // row-i of a
        a[a_off_i+0*4] = ai0 * b[b_off+0+0*4] + ai1 * b[b_off+1+0*4] + ai2 * b[b_off+2+0*4] + ai3 * b[b_off+3+0*4] ;
        a[a_off_i+1*4] = ai0 * b[b_off+0+1*4] + ai1 * b[b_off+1+1*4] + ai2 * b[b_off+2+1*4] + ai3 * b[b_off+3+1*4] ;
        a[a_off_i+2*4] = ai0 * b[b_off+0+2*4] + ai1 * b[b_off+1+2*4] + ai2 * b[b_off+2+2*4] + ai3 * b[b_off+3+2*4] ;
        a[a_off_i+3*4] = ai0 * b[b_off+0+3*4] + ai1 * b[b_off+1+3*4] + ai2 * b[b_off+2+3*4] + ai3 * b[b_off+3+3*4] ;
     }
  }

  /**
   * Multiply matrix: [d] = [a] x [b]
   * @param a 4x4 matrix in column-major order
   * @param b 4x4 matrix in column-major order
   * @param d result a*b in column-major order
   */
  public static final void multMatrixf(final float[] a, int a_off, final float[] b, int b_off, FloatBuffer d) {
     final int dP = d.position();
     for (int i = 0; i < 4; i++) {
        // one row in column-major order
        final float ai0=a[a_off+i+0*4],  ai1=a[a_off+i+1*4],  ai2=a[a_off+i+2*4],  ai3=a[a_off+i+3*4]; // row-i of a
        d.put(dP+i+0*4 , ai0 * b[b_off+0+0*4] + ai1 * b[b_off+1+0*4] + ai2 * b[b_off+2+0*4] + ai3 * b[b_off+3+0*4] );
        d.put(dP+i+1*4 , ai0 * b[b_off+0+1*4] + ai1 * b[b_off+1+1*4] + ai2 * b[b_off+2+1*4] + ai3 * b[b_off+3+1*4] );
        d.put(dP+i+2*4 , ai0 * b[b_off+0+2*4] + ai1 * b[b_off+1+2*4] + ai2 * b[b_off+2+2*4] + ai3 * b[b_off+3+2*4] );
        d.put(dP+i+3*4 , ai0 * b[b_off+0+3*4] + ai1 * b[b_off+1+3*4] + ai2 * b[b_off+2+3*4] + ai3 * b[b_off+3+3*4] );
     }
  }

  /**
   * Multiply matrix: [d] = [a] x [b]
   * @param a 4x4 matrix in column-major order
   * @param b 4x4 matrix in column-major order
   * @param d result a*b in column-major order
   */
  public static final void multMatrixf(final FloatBuffer a, final float[] b, int b_off, FloatBuffer d) {
     final int aP = a.position();
     final int dP = d.position();
     for (int i = 0; i < 4; i++) {
        // one row in column-major order
        final float ai0=a.get(aP+i+0*4),  ai1=a.get(aP+i+1*4),  ai2=a.get(aP+i+2*4),  ai3=a.get(aP+i+3*4); // row-i of a
        d.put(dP+i+0*4 , ai0 * b[b_off+0+0*4] + ai1 * b[b_off+1+0*4] + ai2 * b[b_off+2+0*4] + ai3 * b[b_off+3+0*4] );
        d.put(dP+i+1*4 , ai0 * b[b_off+0+1*4] + ai1 * b[b_off+1+1*4] + ai2 * b[b_off+2+1*4] + ai3 * b[b_off+3+1*4] );
        d.put(dP+i+2*4 , ai0 * b[b_off+0+2*4] + ai1 * b[b_off+1+2*4] + ai2 * b[b_off+2+2*4] + ai3 * b[b_off+3+2*4] );
        d.put(dP+i+3*4 , ai0 * b[b_off+0+3*4] + ai1 * b[b_off+1+3*4] + ai2 * b[b_off+2+3*4] + ai3 * b[b_off+3+3*4] );
     }
  }

  /**
   * Multiply matrix: [a] = [a] x [b]
   * @param a 4x4 matrix in column-major order (also result)
   * @param b 4x4 matrix in column-major order
   */
  public static final void multMatrixf(final FloatBuffer a, final float[] b, int b_off) {
     final int aP = a.position();
     for (int i = 0; i < 4; i++) {
        // one row in column-major order
        final int aP_i = aP+i;
        final float ai0=a.get(aP_i+0*4),  ai1=a.get(aP_i+1*4),  ai2=a.get(aP_i+2*4),  ai3=a.get(aP_i+3*4); // row-i of a
        a.put(aP_i+0*4 , ai0 * b[b_off+0+0*4] + ai1 * b[b_off+1+0*4] + ai2 * b[b_off+2+0*4] + ai3 * b[b_off+3+0*4] );
        a.put(aP_i+1*4 , ai0 * b[b_off+0+1*4] + ai1 * b[b_off+1+1*4] + ai2 * b[b_off+2+1*4] + ai3 * b[b_off+3+1*4] );
        a.put(aP_i+2*4 , ai0 * b[b_off+0+2*4] + ai1 * b[b_off+1+2*4] + ai2 * b[b_off+2+2*4] + ai3 * b[b_off+3+2*4] );
        a.put(aP_i+3*4 , ai0 * b[b_off+0+3*4] + ai1 * b[b_off+1+3*4] + ai2 * b[b_off+2+3*4] + ai3 * b[b_off+3+3*4] );
     }
  }

  /**
   * Multiply matrix: [d] = [a] x [b]
   * @param a 4x4 matrix in column-major order
   * @param b 4x4 matrix in column-major order
   * @param d result a*b in column-major order
   */
  public static final void multMatrixf(final FloatBuffer a, final FloatBuffer b, FloatBuffer d) {
     final int aP = a.position();
     final int bP = b.position();
     final int dP = d.position();
     for (int i = 0; i < 4; i++) {
        // one row in column-major order
        final float ai0=a.get(aP+i+0*4),  ai1=a.get(aP+i+1*4),  ai2=a.get(aP+i+2*4),  ai3=a.get(aP+i+3*4); // row-i of a
        d.put(dP+i+0*4 , ai0 * b.get(bP+0+0*4) + ai1 * b.get(bP+1+0*4) + ai2 * b.get(bP+2+0*4) + ai3 * b.get(bP+3+0*4) );
        d.put(dP+i+1*4 , ai0 * b.get(bP+0+1*4) + ai1 * b.get(bP+1+1*4) + ai2 * b.get(bP+2+1*4) + ai3 * b.get(bP+3+1*4) );
        d.put(dP+i+2*4 , ai0 * b.get(bP+0+2*4) + ai1 * b.get(bP+1+2*4) + ai2 * b.get(bP+2+2*4) + ai3 * b.get(bP+3+2*4) );
        d.put(dP+i+3*4 , ai0 * b.get(bP+0+3*4) + ai1 * b.get(bP+1+3*4) + ai2 * b.get(bP+2+3*4) + ai3 * b.get(bP+3+3*4) );
     }
  }

  /**
   * Multiply matrix: [a] = [a] x [b]
   * @param a 4x4 matrix in column-major order (also result)
   * @param b 4x4 matrix in column-major order
   */
  public static final void multMatrixf(final FloatBuffer a, final FloatBuffer b) {
     final int aP = a.position();
     final int bP = b.position();
     for (int i = 0; i < 4; i++) {
        // one row in column-major order
        final int aP_i = aP+i;
        final float ai0=a.get(aP_i+0*4),  ai1=a.get(aP_i+1*4),  ai2=a.get(aP_i+2*4),  ai3=a.get(aP_i+3*4); // row-i of a
        a.put(aP_i+0*4 , ai0 * b.get(bP+0+0*4) + ai1 * b.get(bP+1+0*4) + ai2 * b.get(bP+2+0*4) + ai3 * b.get(bP+3+0*4) );
        a.put(aP_i+1*4 , ai0 * b.get(bP+0+1*4) + ai1 * b.get(bP+1+1*4) + ai2 * b.get(bP+2+1*4) + ai3 * b.get(bP+3+1*4) );
        a.put(aP_i+2*4 , ai0 * b.get(bP+0+2*4) + ai1 * b.get(bP+1+2*4) + ai2 * b.get(bP+2+2*4) + ai3 * b.get(bP+3+2*4) );
        a.put(aP_i+3*4 , ai0 * b.get(bP+0+3*4) + ai1 * b.get(bP+1+3*4) + ai2 * b.get(bP+2+3*4) + ai3 * b.get(bP+3+3*4) );
     }
  }

  /**
   * Multiply matrix: [d] = [a] x [b]
   * @param a 4x4 matrix in column-major order
   * @param b 4x4 matrix in column-major order
   * @param d result a*b in column-major order
   */
  public static final void multMatrixf(final FloatBuffer a, final FloatBuffer b, float[] d, int d_off) {
     final int aP = a.position();
     final int bP = b.position();
     for (int i = 0; i < 4; i++) {
        // one row in column-major order
        final float ai0=a.get(aP+i+0*4),  ai1=a.get(aP+i+1*4),  ai2=a.get(aP+i+2*4),  ai3=a.get(aP+i+3*4); // row-i of a
        d[d_off+i+0*4] = ai0 * b.get(bP+0+0*4) + ai1 * b.get(bP+1+0*4) + ai2 * b.get(bP+2+0*4) + ai3 * b.get(bP+3+0*4) ;
        d[d_off+i+1*4] = ai0 * b.get(bP+0+1*4) + ai1 * b.get(bP+1+1*4) + ai2 * b.get(bP+2+1*4) + ai3 * b.get(bP+3+1*4) ;
        d[d_off+i+2*4] = ai0 * b.get(bP+0+2*4) + ai1 * b.get(bP+1+2*4) + ai2 * b.get(bP+2+2*4) + ai3 * b.get(bP+3+2*4) ;
        d[d_off+i+3*4] = ai0 * b.get(bP+0+3*4) + ai1 * b.get(bP+1+3*4) + ai2 * b.get(bP+2+3*4) + ai3 * b.get(bP+3+3*4) ;
     }
  }

  /**
   * @param m_in 4x4 matrix in column-major order
   * @param m_in_off
   * @param v_in 4-component column-vector
   * @param v_out m_in * v_in
   */
  public static final void multMatrixVecf(float[] m_in, int m_in_off, float[] v_in, int v_in_off, float[] v_out, int v_out_off) {
    for (int i = 0; i < 4; i++) {
      // (one matrix row in column-major order) X (column vector)
      v_out[i + v_out_off] =
        v_in[0+v_in_off] * m_in[0*4+i+m_in_off] +
        v_in[1+v_in_off] * m_in[1*4+i+m_in_off] +
        v_in[2+v_in_off] * m_in[2*4+i+m_in_off] +
        v_in[3+v_in_off] * m_in[3*4+i+m_in_off];
    }
  }

  /**
   * @param m_in 4x4 matrix in column-major order
   * @param m_in_off
   * @param v_in 4-component column-vector
   * @param v_out m_in * v_in
   */
  public static final void multMatrixVecf(float[] m_in, float[] v_in, float[] v_out) {
    for (int i = 0; i < 4; i++) {
      // (one matrix row in column-major order) X (column vector)
      v_out[i] =
        v_in[0] * m_in[0*4+i] +
        v_in[1] * m_in[1*4+i] +
        v_in[2] * m_in[2*4+i] +
        v_in[3] * m_in[3*4+i];
    }
  }

  /**
   * @param m_in 4x4 matrix in column-major order
   * @param v_in 4-component column-vector
   * @param v_out m_in * v_in
   */
  public static final void multMatrixVecf(FloatBuffer m_in, float[] v_in, int v_in_off, float[] v_out, int v_out_off) {
    final int matrixPos = m_in.position();
    for (int i = 0; i < 4; i++) {
      // (one matrix row in column-major order) X (column vector)
      v_out[i+v_out_off] =
        v_in[0+v_in_off] * m_in.get(0*4+i+matrixPos) +
        v_in[1+v_in_off] * m_in.get(1*4+i+matrixPos) +
        v_in[2+v_in_off] * m_in.get(2*4+i+matrixPos) +
        v_in[3+v_in_off] * m_in.get(3*4+i+matrixPos);
    }
  }

  /**
   * @param m_in 4x4 matrix in column-major order
   * @param v_in 4-component column-vector
   * @param v_out m_in * v_in
   */
  public static final void multMatrixVecf(FloatBuffer m_in, float[] v_in, float[] v_out) {
    final int matrixPos = m_in.position();
    for (int i = 0; i < 4; i++) {
      // (one matrix row in column-major order) X (column vector)
      v_out[i] =
        v_in[0] * m_in.get(0*4+i+matrixPos) +
        v_in[1] * m_in.get(1*4+i+matrixPos) +
        v_in[2] * m_in.get(2*4+i+matrixPos) +
        v_in[3] * m_in.get(3*4+i+matrixPos);
    }
  }

  /**
   * @param m_in 4x4 matrix in column-major order
   * @param v_in 4-component column-vector
   * @param v_out m_in * v_in
   */
  public static final void multMatrixVecf(FloatBuffer m_in, FloatBuffer v_in, FloatBuffer v_out) {
    final int inPos = v_in.position();
    final int outPos = v_out.position();
    final int matrixPos = m_in.position();
    for (int i = 0; i < 4; i++) {
      // (one matrix row in column-major order) X (column vector)
      v_out.put(i + outPos,
              v_in.get(0+inPos) * m_in.get(0*4+i+matrixPos) +
              v_in.get(1+inPos) * m_in.get(1*4+i+matrixPos) +
              v_in.get(2+inPos) * m_in.get(2*4+i+matrixPos) +
              v_in.get(3+inPos) * m_in.get(3*4+i+matrixPos));
    }
  }

  /**
   * Copy the named column of the given column-major matrix to v_out.
   * <p>
   * v_out may be 3 or 4 components long, hence the 4th row may not be stored.
   * </p>
   * @param m_in input column-major matrix
   * @param m_in_off offset to input matrix
   * @param column named column to copy
   * @param v_out the column-vector storage, at least 3 components long
   * @param v_out_off offset to storage
   */
  public static final void copyMatrixColumn(final float[] m_in, final int m_in_off, final int column, final float[] v_out, final int v_out_off) {
      v_out[0+v_out_off]=m_in[0+column*4+m_in_off];
      v_out[1+v_out_off]=m_in[1+column*4+m_in_off];
      v_out[2+v_out_off]=m_in[2+column*4+m_in_off];
      if( v_out.length > 3+v_out_off ) {
          v_out[3+v_out_off]=m_in[3+column*4+m_in_off];
      }
  }

  /**
   * Copy the named row of the given column-major matrix to v_out.
   * <p>
   * v_out may be 3 or 4 components long, hence the 4th column may not be stored.
   * </p>
   * @param m_in input column-major matrix
   * @param m_in_off offset to input matrix
   * @param row named row to copy
   * @param v_out the row-vector storage, at least 3 components long
   * @param v_out_off offset to storage
   */
  public static final void copyMatrixRow(final float[] m_in, final int m_in_off, final int row, final float[] v_out, final int v_out_off) {
      v_out[0+v_out_off]=m_in[row+0*4+m_in_off];
      v_out[1+v_out_off]=m_in[row+1*4+m_in_off];
      v_out[2+v_out_off]=m_in[row+2*4+m_in_off];
      if( v_out.length > 3+v_out_off ) {
          v_out[3+v_out_off]=m_in[row+3*4+m_in_off];
      }
  }

  /**
   * @param sb optional passed StringBuilder instance to be used
   * @param f the format string of one floating point, i.e. "%10.5f", see {@link java.util.Formatter}
   * @param a mxn matrix (rows x columns)
   * @param aOffset offset to <code>a</code>'s current position
   * @param rows
   * @param columns
   * @param rowMajorOrder if true floats are layed out in row-major-order, otherwise column-major-order (OpenGL)
   * @param row row number to print
   * @return matrix row string representation
   */
  public static StringBuilder matrixRowToString(StringBuilder sb, String f, FloatBuffer a, int aOffset, int rows, int columns, boolean rowMajorOrder, int row) {
      if(null == sb) {
          sb = new StringBuilder();
      }
      final int a0 = aOffset + a.position();
      if(rowMajorOrder) {
          for(int c=0; c<columns; c++) {
              sb.append( String.format( f+" ", a.get( a0 + row*columns + c ) ) );
          }
      } else {
          for(int r=0; r<columns; r++) {
              sb.append( String.format( f+" ", a.get( a0 + row + r*rows ) ) );
          }
      }
      return sb;
  }

  /**
   * @param sb optional passed StringBuilder instance to be used
   * @param f the format string of one floating point, i.e. "%10.5f", see {@link java.util.Formatter}
   * @param a mxn matrix (rows x columns)
   * @param aOffset offset to <code>a</code>'s current position
   * @param rows
   * @param columns
   * @param rowMajorOrder if true floats are layed out in row-major-order, otherwise column-major-order (OpenGL)
   * @param row row number to print
   * @return matrix row string representation
   */
  public static StringBuilder matrixRowToString(StringBuilder sb, String f, float[] a, int aOffset, int rows, int columns, boolean rowMajorOrder, int row) {
      if(null == sb) {
          sb = new StringBuilder();
      }
      if(rowMajorOrder) {
          for(int c=0; c<columns; c++) {
              sb.append( String.format( f+" ", a[ aOffset + row*columns + c ] ) );
          }
      } else {
          for(int r=0; r<columns; r++) {
              sb.append( String.format( f+" ", a[ aOffset + row + r*rows ] ) );
          }
      }
      return sb;
  }

  /**
   * @param sb optional passed StringBuilder instance to be used
   * @param rowPrefix optional prefix for each row
   * @param f the format string of one floating point, i.e. "%10.5f", see {@link java.util.Formatter}
   * @param a mxn matrix (rows x columns)
   * @param aOffset offset to <code>a</code>'s current position
   * @param rows
   * @param columns
   * @param rowMajorOrder if true floats are layed out in row-major-order, otherwise column-major-order (OpenGL)
   * @return matrix string representation
   */
  public static StringBuilder matrixToString(StringBuilder sb, String rowPrefix, String f, FloatBuffer a, int aOffset, int rows, int columns, boolean rowMajorOrder) {
      if(null == sb) {
          sb = new StringBuilder();
      }
      final String prefix = ( null == rowPrefix ) ? "" : rowPrefix;
      for(int i=0; i<rows; i++) {
          sb.append(prefix).append("[ ");
          matrixRowToString(sb, f, a, aOffset, rows, columns, rowMajorOrder, i);
          sb.append("]").append(Platform.getNewline());
      }
      return sb;
  }

  /**
   * @param sb optional passed StringBuilder instance to be used
   * @param rowPrefix optional prefix for each row
   * @param f the format string of one floating point, i.e. "%10.5f", see {@link java.util.Formatter}
   * @param a mxn matrix (rows x columns)
   * @param aOffset offset to <code>a</code>'s current position
   * @param rows
   * @param columns
   * @param rowMajorOrder if true floats are layed out in row-major-order, otherwise column-major-order (OpenGL)
   * @return matrix string representation
   */
  public static StringBuilder matrixToString(StringBuilder sb, String rowPrefix, String f, float[] a, int aOffset, int rows, int columns, boolean rowMajorOrder) {
      if(null == sb) {
          sb = new StringBuilder();
      }
      final String prefix = ( null == rowPrefix ) ? "" : rowPrefix;
      for(int i=0; i<rows; i++) {
          sb.append(prefix).append("[ ");
          matrixRowToString(sb, f, a, aOffset, rows, columns, rowMajorOrder, i);
          sb.append("]").append(Platform.getNewline());
      }
      return sb;
  }

  /**
   * @param sb optional passed StringBuilder instance to be used
   * @param rowPrefix optional prefix for each row
   * @param f the format string of one floating point, i.e. "%10.5f", see {@link java.util.Formatter}
   * @param a 4x4 matrix in column major order (OpenGL)
   * @param aOffset offset to <code>a</code>'s current position
   * @param b 4x4 matrix in column major order (OpenGL)
   * @param bOffset offset to <code>a</code>'s current position
   * @param rows
   * @param columns
   * @param rowMajorOrder if true floats are layed out in row-major-order, otherwise column-major-order (OpenGL)
   * @return side by side representation
   */
  public static StringBuilder matrixToString(StringBuilder sb, String rowPrefix, String f, FloatBuffer a, int aOffset, FloatBuffer b, int bOffset, int rows, int columns, boolean rowMajorOrder) {
      if(null == sb) {
          sb = new StringBuilder();
      }
      final String prefix = ( null == rowPrefix ) ? "" : rowPrefix;
      for(int i=0; i<rows; i++) {
          sb.append(prefix).append("[ ");
          matrixRowToString(sb, f, a, aOffset, rows, columns, rowMajorOrder, i);
          sb.append("=?= ");
          matrixRowToString(sb, f, b, bOffset, rows, columns, rowMajorOrder, i);
          sb.append("]").append(Platform.getNewline());
      }
      return sb;
  }

  /**
   * @param sb optional passed StringBuilder instance to be used
   * @param rowPrefix optional prefix for each row
   * @param f the format string of one floating point, i.e. "%10.5f", see {@link java.util.Formatter}
   * @param a 4x4 matrix in column major order (OpenGL)
   * @param aOffset offset to <code>a</code>'s current position
   * @param b 4x4 matrix in column major order (OpenGL)
   * @param bOffset offset to <code>a</code>'s current position
   * @param rows
   * @param columns
   * @param rowMajorOrder if true floats are layed out in row-major-order, otherwise column-major-order (OpenGL)
   * @return side by side representation
   */
  public static StringBuilder matrixToString(StringBuilder sb, String rowPrefix, String f, float[] a, int aOffset, float[] b, int bOffset, int rows, int columns, boolean rowMajorOrder) {
      if(null == sb) {
          sb = new StringBuilder();
      }
      final String prefix = ( null == rowPrefix ) ? "" : rowPrefix;
      for(int i=0; i<rows; i++) {
          sb.append(prefix).append("[ ");
          matrixRowToString(sb, f, a, aOffset, rows, columns, rowMajorOrder, i);
          sb.append("=?= ");
          matrixRowToString(sb, f, b, bOffset, rows, columns, rowMajorOrder, i);
          sb.append("]").append(Platform.getNewline());
      }
      return sb;
  }

  @SuppressWarnings("unused")
  private static void calculateMachineEpsilonFloat() {
      final long t0;
      if( DEBUG_EPSILON ) {
          t0 = Platform.currentTimeMillis();
      }
      float machEps = 1.0f;
      int i=0;
      do {
          machEps /= 2.0f;
          i++;
      } while (1.0f + (machEps / 2.0f) != 1.0f);
      machEpsilon = machEps;
      if( DEBUG_EPSILON ) {
          final long t1 = Platform.currentTimeMillis();
          System.err.println("MachineEpsilon: "+machEpsilon+", in "+i+" iterations within "+(t1-t0)+" ms");
      }
  }
  private static volatile boolean machEpsilonAvail = false;
  private static float machEpsilon = 0f;
  private static final boolean DEBUG_EPSILON = false;

  /**
   * Return computed machine Epsilon value.
   * <p>
   * The machine Epsilon value is computed once.
   * </p>
   * <p>
   * On a reference machine the result was {@link #EPSILON} in 23 iterations.
   * </p>
   * @see #EPSILON
   */
  public static float getMachineEpsilon() {
      if( !machEpsilonAvail ) {
          synchronized(FloatUtil.class) {
              if( !machEpsilonAvail ) {
                  machEpsilonAvail = true;
                  calculateMachineEpsilonFloat();
              }
          }
      }
      return machEpsilon;
  }

  public static final float E = 2.7182818284590452354f;

  /** The value PI, i.e. 180 degrees in radians. */
  public static final float PI = 3.14159265358979323846f;

  /** The value 2PI, i.e. 360 degrees in radians. */
  public static final float TWO_PI = 2f * PI;

  /** The value PI/2, i.e. 90 degrees in radians. */
  public static final float HALF_PI = PI / 2f;

  /** The value PI/4, i.e. 45 degrees in radians. */
  public static final float QUARTER_PI = PI / 4f;

  /** The value PI^2. */
  public final static float SQUARED_PI = PI * PI;

  /**
   * Epsilon for floating point {@value}, as once computed via {@link #getMachineEpsilon()} on an AMD-64 CPU.
   * <p>
   * Definition of machine epsilon guarantees that:
   * <pre>
   *        1.0f + EPSILON != 1.0f
   * </pre>
   * In other words: <i>machEps</i> is the maximum relative error of the chosen rounding procedure.
   * </p>
   * <p>
   * A number can be considered zero if it is in the range (or in the set):
   * <pre>
   *    <b>MaybeZeroSet</b> e ]-<i>machEps</i> .. <i>machEps</i>[  <i>(exclusive)</i>
   * </pre>
   * While comparing floating point values, <i>machEps</i> allows to clip the relative error:
   * <pre>
   *    boolean isZero    = afloat < EPSILON;
   *    boolean isNotZero = afloat >= EPSILON;
   *
   *    boolean isEqual    = abs(bfloat - afloat) < EPSILON;
   *    boolean isNotEqual = abs(bfloat - afloat) >= EPSILON;
   * </pre>
   * </p>
   * @see #isEqual(float, float, float)
   * @see #isZero(float, float)
   */
  public static final float EPSILON = 1.1920929E-7f; // Float.MIN_VALUE == 1.4e-45f ; double EPSILON 2.220446049250313E-16d

  /**
   * Return true if both values are equal w/o regarding an epsilon.
   * <p>
   * Implementation considers following corner cases:
   * <ul>
   *    <li>NaN == NaN</li>
   *    <li>+Inf == +Inf</li>
   *    <li>-Inf == -Inf</li>
   * </ul>
   * </p>
   * @see #isEqual(float, float, float)
   */
  public static boolean isEqual(final float a, final float b) {
      // Values are equal (Inf, Nan .. )
      return Float.floatToIntBits(a) == Float.floatToIntBits(b);
  }

  /**
   * Return true if both values are equal, i.e. their absolute delta < <code>epsilon</code>.
   * <p>
   * Implementation considers following corner cases:
   * <ul>
   *    <li>NaN == NaN</li>
   *    <li>+Inf == +Inf</li>
   *    <li>-Inf == -Inf</li>
   * </ul>
   * </p>
   * @see #EPSILON
   */
  public static boolean isEqual(final float a, final float b, final float epsilon) {
      if ( Math.abs(a - b) < epsilon ) {
          return true;
      } else {
          // Values are equal (Inf, Nan .. )
          return Float.floatToIntBits(a) == Float.floatToIntBits(b);
      }
  }

  /**
   * Return true if both values are equal w/o regarding an epsilon.
   * <p>
   * Implementation considers following corner cases:
   * <ul>
   *    <li>NaN == NaN</li>
   *    <li>+Inf == +Inf</li>
   *    <li>-Inf == -Inf</li>
   *    <li>NaN > 0</li>
   *    <li>+Inf > -Inf</li>
   * </ul>
   * </p>
   * @see #compare(float, float, float)
   */
  public static int compare(final float a, final float b) {
      if (a < b) {
          return -1; // Neither is NaN, a is smaller
      }
      if (a > b) {
          return 1;  // Neither is NaN, a is larger
      }
      final int aBits = Float.floatToIntBits(a);
      final int bBits = Float.floatToIntBits(b);
      if( aBits == bBits ) {
          return 0;  // Values are equal (Inf, Nan .. )
      } else if( aBits < bBits ) {
          return -1; // (-0.0,  0.0) or (!NaN,  NaN)
      } else {
          return 1;  // ( 0.0, -0.0) or ( NaN, !NaN)
      }
  }

  /**
   * Return true if both values are equal, i.e. their absolute delta < <code>epsilon</code>.
   * <p>
   * Implementation considers following corner cases:
   * <ul>
   *    <li>NaN == NaN</li>
   *    <li>+Inf == +Inf</li>
   *    <li>-Inf == -Inf</li>
   *    <li>NaN > 0</li>
   *    <li>+Inf > -Inf</li>
   * </ul>
   * </p>
   * @see #EPSILON
   */
  public static int compare(final float a, final float b, final float epsilon) {
      if ( Math.abs(a - b) < epsilon ) {
          return 0;
      } else {
          return compare(a, b);
      }
  }

  /**
   * Return true if value is zero, i.e. it's absolute value < <code>epsilon</code>.
   * @see #EPSILON
   */
  public static boolean isZero(final float a, final float epsilon) {
      return Math.abs(a) < epsilon;
  }

  public static float abs(final float a) { return java.lang.Math.abs(a);  }

  public static float pow(final float a, final float b) { return (float) java.lang.Math.pow(a, b);  }

  public static float sin(final float a) { return (float) java.lang.Math.sin(a);  }

  public static float asin(final float a) { return (float) java.lang.Math.asin(a);  }

  public static float cos(final float a) { return (float) java.lang.Math.cos(a);  }

  public static float acos(final float a) { return (float) java.lang.Math.acos(a);  }

  public static float tan(final float a) { return (float) java.lang.Math.tan(a); }

  public static float atan(final float a) { return (float) java.lang.Math.atan(a); }

  public static float atan2(final float y, final float x) { return (float) java.lang.Math.atan2(y, x); }

  public static float sqrt(final float a) { return (float) java.lang.Math.sqrt(a);  }

  /**
   * Returns resolution of Z buffer of given parameter,
   * see <a href="http://www.sjbaker.org/steve/omniv/love_your_z_buffer.html">Love Your Z-Buffer</a>.
   * <pre>
   *  return z * z / ( zNear * (1&lt;&lt;zBits) - z )
   * </pre>
   * @param zBits number of bits of Z precision, i.e. z-buffer depth
   * @param z distance from the eye to the object
   * @param zNear distance from eye to near clip plane
   * @return smallest resolvable Z separation at this range.
   */
  public static float getZBufferEpsilon(final int zBits, final float z, final float zNear) {
      return z * z / ( zNear * ( 1 << zBits ) - z );
  }
  
  /**
   * Returns Z buffer value of given parameter,
   * see <a href="http://www.sjbaker.org/steve/omniv/love_your_z_buffer.html">Love Your Z-Buffer</a>.
   * <pre>
   *  float a = zFar / ( zFar - zNear )
   *  float b = zFar * zNear / ( zNear - zFar )
   *  return (int) ( (1&lt;&lt;zBits) * ( a + b / z ) )
   * </pre>
   * @param zBits number of bits of Z precision, i.e. z-buffer depth
   * @param z distance from the eye to the object
   * @param zNear distance from eye to near clip plane
   * @param zFar distance from eye to far clip plane
   * @return z buffer value
   */
  public static int getZBufferValue(final int zBits, final float z, final float zNear, final float zFar) {
      final float a = zFar / ( zFar - zNear );
      final float b = zFar * zNear / ( zNear - zFar );
      return (int) ( (1<<zBits) * ( a + b / z ) );
  }

  /**
   * Returns orthogonal distance
   * (1f/zNear-1f/orthoDist)/(1f/zNear-1f/zFar);
   */
  public static float getOrthoWinZ(final float orthoZ, final float zNear, final float zFar) {
      return (1f/zNear-1f/orthoZ)/(1f/zNear-1f/zFar);
  }

}