1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
|
/**
* Copyright 2010 JogAmp Community. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are those of the
* authors and should not be interpreted as representing official policies, either expressed
* or implied, of JogAmp Community.
*/
package com.jogamp.opengl.math;
public class Quaternion {
protected float x, y, z, w;
public Quaternion() {
setIdentity();
}
public Quaternion(Quaternion q) {
x = q.x;
y = q.y;
z = q.z;
w = q.w;
}
public Quaternion(float x, float y, float z, float w) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
/**
* Constructor to create a rotation based quaternion from two vectors
*
* @param vector1
* @param vector2
*/
public Quaternion(float[] vector1, float[] vector2) {
final float theta = FloatUtil.acos(VectorUtil.dot(vector1, vector2));
final float[] cross = VectorUtil.cross(vector1, vector2);
fromAxis(cross, theta);
}
/***
* Constructor to create a rotation based quaternion from axis vector and angle
* @param vector axis vector
* @param angle rotation angle (rads)
* @see #fromAxis(float[], float)
*/
public Quaternion(float[] vector, float angle) {
fromAxis(vector, angle);
}
/***
* Initialize this quaternion with given axis vector and rotation angle
*
* @param vector axis vector
* @param angle rotation angle (rads)
*/
public void fromAxis(float[] vector, float angle) {
final float halfangle = angle * 0.5f;
final float sin = FloatUtil.sin(halfangle);
final float[] nv = VectorUtil.normalize(vector);
x = (nv[0] * sin);
y = (nv[1] * sin);
z = (nv[2] * sin);
w = FloatUtil.cos(halfangle);
}
/**
* Transform the rotational quaternion to axis based rotation angles
*
* @return new float[4] with ,theta,Rx,Ry,Rz
*/
public float[] toAxis() {
final float[] vec = new float[4];
final float scale = FloatUtil.sqrt(x * x + y * y + z * z);
vec[0] = FloatUtil.acos(w) * 2.0f;
vec[1] = x / scale;
vec[2] = y / scale;
vec[3] = z / scale;
return vec;
}
public float getW() {
return w;
}
public void setW(float w) {
this.w = w;
}
public float getX() {
return x;
}
public void setX(float x) {
this.x = x;
}
public float getY() {
return y;
}
public void setY(float y) {
this.y = y;
}
public float getZ() {
return z;
}
public void setZ(float z) {
this.z = z;
}
/**
* Add a quaternion
*
* @param q quaternion
*/
public void add(Quaternion q) {
x += q.x;
y += q.y;
z += q.z;
}
/**
* Subtract a quaternion
*
* @param q quaternion
*/
public void subtract(Quaternion q) {
x -= q.x;
y -= q.y;
z -= q.z;
}
/**
* Divide a quaternion by a constant
*
* @param n a float to divide by
*/
public void divide(float n) {
x /= n;
y /= n;
z /= n;
}
/**
* Multiply this quaternion by the param quaternion
*
* @param q a quaternion to multiply with
*/
public void mult(Quaternion q) {
final float w1 = w * q.w - x * q.x - y * q.y - z * q.z;
final float x1 = w * q.x + x * q.w + y * q.z - z * q.y;
final float y1 = w * q.y - x * q.z + y * q.w + z * q.x;
final float z1 = w * q.z + x * q.y - y * q.x + z * q.w;
w = w1;
x = x1;
y = y1;
z = z1;
}
/**
* Multiply a quaternion by a constant
*
* @param n a float constant
*/
public void mult(float n) {
x *= n;
y *= n;
z *= n;
}
/***
* Rotate given vector by this quaternion
*
* @param vector input vector
* @return rotated vector
*/
public float[] mult(float[] vector) {
// TODO : optimize
final float[] res = new float[3];
final Quaternion a = new Quaternion(vector[0], vector[1], vector[2], 0.0f);
final Quaternion b = new Quaternion(this);
final Quaternion c = new Quaternion(this);
b.inverse();
a.mult(b);
c.mult(a);
res[0] = c.x;
res[1] = c.y;
res[2] = c.z;
return res;
}
/**
* Normalize a quaternion required if to be used as a rotational quaternion
*/
public void normalize() {
final float norme = (float) FloatUtil.sqrt(w * w + x * x + y * y + z * z);
if (norme == 0.0f) {
setIdentity();
} else {
final float recip = 1.0f / norme;
w *= recip;
x *= recip;
y *= recip;
z *= recip;
}
}
/**
* Invert the quaternion If rotational, will produce a the inverse rotation
*/
public void inverse() {
final float norm = w * w + x * x + y * y + z * z;
final float recip = 1.0f / norm;
w *= recip;
x = -1 * x * recip;
y = -1 * y * recip;
z = -1 * z * recip;
}
/**
* Transform this quaternion to a 4x4 column matrix representing the
* rotation
*
* @return new float[16] column matrix 4x4
*/
public float[] toMatrix() {
final float[] matrix = new float[16];
matrix[0] = 1.0f - 2 * y * y - 2 * z * z;
matrix[1] = 2 * x * y + 2 * w * z;
matrix[2] = 2 * x * z - 2 * w * y;
matrix[3] = 0;
matrix[4] = 2 * x * y - 2 * w * z;
matrix[5] = 1.0f - 2 * x * x - 2 * z * z;
matrix[6] = 2 * y * z + 2 * w * x;
matrix[7] = 0;
matrix[8] = 2 * x * z + 2 * w * y;
matrix[9] = 2 * y * z - 2 * w * x;
matrix[10] = 1.0f - 2 * x * x - 2 * y * y;
matrix[11] = 0;
matrix[12] = 0;
matrix[13] = 0;
matrix[14] = 0;
matrix[15] = 1;
return matrix;
}
/**
* Set this quaternion from a Sphereical interpolation of two param
* quaternion, used mostly for rotational animation.
* <p>
* Note: Method does not normalize this quaternion!
* </p>
* <p>
* See http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/
* quaternions/slerp/
* </p>
*
* @param a initial quaternion
* @param b target quaternion
* @param t float between 0 and 1 representing interp.
*/
public void slerp(Quaternion a, Quaternion b, float t) {
final float cosom = a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
final float t1 = 1.0f - t;
// if the two quaternions are close, just use linear interpolation
if (cosom >= 0.95f) {
x = a.x * t1 + b.x * t;
y = a.y * t1 + b.y * t;
z = a.z * t1 + b.z * t;
w = a.w * t1 + b.w * t;
return;
}
// the quaternions are nearly opposite, we can pick any axis normal to
// a,b
// to do the rotation
if (cosom <= -0.99f) {
x = 0.5f * (a.x + b.x);
y = 0.5f * (a.y + b.y);
z = 0.5f * (a.z + b.z);
w = 0.5f * (a.w + b.w);
return;
}
// cosom is now withion range of acos, do a SLERP
final float sinom = FloatUtil.sqrt(1.0f - cosom * cosom);
final float omega = FloatUtil.acos(cosom);
final float scla = FloatUtil.sin(t1 * omega) / sinom;
final float sclb = FloatUtil.sin(t * omega) / sinom;
x = a.x * scla + b.x * sclb;
y = a.y * scla + b.y * sclb;
z = a.z * scla + b.z * sclb;
w = a.w * scla + b.w * sclb;
}
/**
* Check if this quaternion represents an identity matrix for rotation,
* , ie (0,0,0,1).
*
* @return true if it is an identity rep., false otherwise
*/
public boolean isIdentity() {
return w == 1 && x == 0 && y == 0 && z == 0;
}
/***
* Set this quaternion to identity (x=0,y=0,z=0,w=1)
*/
public void setIdentity() {
x = y = z = 0;
w = 1;
}
/**
* compute the quaternion from a 3x3 column matrix
*
* @param m 3x3 column matrix
*/
public void setFromMatrix(float[] m) {
final float T = m[0] + m[4] + m[8] + 1;
if (T > 0) {
final float S = 0.5f / (float) FloatUtil.sqrt(T);
w = 0.25f / S;
x = (m[5] - m[7]) * S;
y = (m[6] - m[2]) * S;
z = (m[1] - m[3]) * S;
} else {
if ((m[0] > m[4]) & (m[0] > m[8])) {
final float S = FloatUtil.sqrt(1.0f + m[0] - m[4] - m[8]) * 2f; // S=4*qx
w = (m[7] - m[5]) / S;
x = 0.25f * S;
y = (m[3] + m[1]) / S;
z = (m[6] + m[2]) / S;
} else if (m[4] > m[8]) {
final float S = FloatUtil.sqrt(1.0f + m[4] - m[0] - m[8]) * 2f; // S=4*qy
w = (m[6] - m[2]) / S;
x = (m[3] + m[1]) / S;
y = 0.25f * S;
z = (m[7] + m[5]) / S;
} else {
final float S = FloatUtil.sqrt(1.0f + m[8] - m[0] - m[4]) * 2f; // S=4*qz
w = (m[3] - m[1]) / S;
x = (m[6] + m[2]) / S;
y = (m[7] + m[5]) / S;
z = 0.25f * S;
}
}
}
/**
* Check if the the 3x3 matrix (param) is in fact an affine rotational
* matrix
*
* @param m 3x3 column matrix
* @return true if representing a rotational matrix, false otherwise
*/
public boolean isRotationMatrix(float[] m) {
final float epsilon = 0.01f; // margin to allow for rounding errors
if (FloatUtil.abs(m[0] * m[3] + m[3] * m[4] + m[6] * m[7]) > epsilon)
return false;
if (FloatUtil.abs(m[0] * m[2] + m[3] * m[5] + m[6] * m[8]) > epsilon)
return false;
if (FloatUtil.abs(m[1] * m[2] + m[4] * m[5] + m[7] * m[8]) > epsilon)
return false;
if (FloatUtil.abs(m[0] * m[0] + m[3] * m[3] + m[6] * m[6] - 1) > epsilon)
return false;
if (FloatUtil.abs(m[1] * m[1] + m[4] * m[4] + m[7] * m[7] - 1) > epsilon)
return false;
if (FloatUtil.abs(m[2] * m[2] + m[5] * m[5] + m[8] * m[8] - 1) > epsilon)
return false;
return (FloatUtil.abs(determinant(m) - 1) < epsilon);
}
private float determinant(float[] m) {
return m[0] * m[4] * m[8] + m[3] * m[7] * m[2] + m[6] * m[1] * m[5]
- m[0] * m[7] * m[5] - m[3] * m[1] * m[8] - m[6] * m[4] * m[2];
}
}
|