aboutsummaryrefslogtreecommitdiffstats
path: root/src/net/java/games/jogl/impl/tesselator/Geom.java
blob: 9693b3a48fa7a76411ca8a36b45d7dc32b30a684 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*
* Portions Copyright (C) 2003 Sun Microsystems, Inc.
* All rights reserved.
*/

/*
** License Applicability. Except to the extent portions of this file are
** made subject to an alternative license as permitted in the SGI Free
** Software License B, Version 1.1 (the "License"), the contents of this
** file are subject only to the provisions of the License. You may not use
** this file except in compliance with the License. You may obtain a copy
** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
**
** http://oss.sgi.com/projects/FreeB
**
** Note that, as provided in the License, the Software is distributed on an
** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
**
** Original Code. The Original Code is: OpenGL Sample Implementation,
** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
** Copyright in any portions created by third parties is as indicated
** elsewhere herein. All Rights Reserved.
**
** Additional Notice Provisions: The application programming interfaces
** established by SGI in conjunction with the Original Code are The
** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
** Window System(R) (Version 1.3), released October 19, 1998. This software
** was created using the OpenGL(R) version 1.2.1 Sample Implementation
** published by SGI, but has not been independently verified as being
** compliant with the OpenGL(R) version 1.2.1 Specification.
**
** Author: Eric Veach, July 1994
** Java Port: Pepijn Van Eeckhoudt, July 2003
** Java Port: Nathan Parker Burg, August 2003
*/
package net.java.games.jogl.impl.tesselator;

class Geom {
    private Geom() {
    }

    /* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
     * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
     * Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
     * If uw is vertical (and thus passes thru v), the result is zero.
     *
     * The calculation is extremely accurate and stable, even when v
     * is very close to u or w.  In particular if we set v->t = 0 and
     * let r be the negated result (this evaluates (uw)(v->s)), then
     * r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
     */
    static double EdgeEval(GLUvertex u, GLUvertex v, GLUvertex w) {
        double gapL, gapR;

        assert (VertLeq(u, v) && VertLeq(v, w));

        gapL = v.s - u.s;
        gapR = w.s - v.s;

        if (gapL + gapR > 0) {
            if (gapL < gapR) {
                return (v.t - u.t) + (u.t - w.t) * (gapL / (gapL + gapR));
            } else {
                return (v.t - w.t) + (w.t - u.t) * (gapR / (gapL + gapR));
            }
        }
        /* vertical line */
        return 0;
    }

    static double EdgeSign(GLUvertex u, GLUvertex v, GLUvertex w) {
        double gapL, gapR;

        assert (VertLeq(u, v) && VertLeq(v, w));

        gapL = v.s - u.s;
        gapR = w.s - v.s;

        if (gapL + gapR > 0) {
            return (v.t - w.t) * gapL + (v.t - u.t) * gapR;
        }
        /* vertical line */
        return 0;
    }


    /***********************************************************************
     * Define versions of EdgeSign, EdgeEval with s and t transposed.
     */

    static double TransEval(GLUvertex u, GLUvertex v, GLUvertex w) {
        /* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w),
         * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
         * Returns v->s - (uw)(v->t), ie. the signed distance from uw to v.
         * If uw is vertical (and thus passes thru v), the result is zero.
         *
         * The calculation is extremely accurate and stable, even when v
         * is very close to u or w.  In particular if we set v->s = 0 and
         * let r be the negated result (this evaluates (uw)(v->t)), then
         * r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s).
         */
        double gapL, gapR;

        assert (TransLeq(u, v) && TransLeq(v, w));

        gapL = v.t - u.t;
        gapR = w.t - v.t;

        if (gapL + gapR > 0) {
            if (gapL < gapR) {
                return (v.s - u.s) + (u.s - w.s) * (gapL / (gapL + gapR));
            } else {
                return (v.s - w.s) + (w.s - u.s) * (gapR / (gapL + gapR));
            }
        }
        /* vertical line */
        return 0;
    }

    static double TransSign(GLUvertex u, GLUvertex v, GLUvertex w) {
        /* Returns a number whose sign matches TransEval(u,v,w) but which
         * is cheaper to evaluate.  Returns > 0, == 0 , or < 0
         * as v is above, on, or below the edge uw.
         */
        double gapL, gapR;

        assert (TransLeq(u, v) && TransLeq(v, w));

        gapL = v.t - u.t;
        gapR = w.t - v.t;

        if (gapL + gapR > 0) {
            return (v.s - w.s) * gapL + (v.s - u.s) * gapR;
        }
        /* vertical line */
        return 0;
    }


    static boolean VertCCW(GLUvertex u, GLUvertex v, GLUvertex w) {
        /* For almost-degenerate situations, the results are not reliable.
         * Unless the floating-point arithmetic can be performed without
         * rounding errors, *any* implementation will give incorrect results
         * on some degenerate inputs, so the client must have some way to
         * handle this situation.
         */
        return (u.s * (v.t - w.t) + v.s * (w.t - u.t) + w.s * (u.t - v.t)) >= 0;
    }

/* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b),
 * or (x+y)/2 if a==b==0.  It requires that a,b >= 0, and enforces
 * this in the rare case that one argument is slightly negative.
 * The implementation is extremely stable numerically.
 * In particular it guarantees that the result r satisfies
 * MIN(x,y) <= r <= MAX(x,y), and the results are very accurate
 * even when a and b differ greatly in magnitude.
 */
    static double Interpolate(double a, double x, double b, double y) {
        a = (a < 0) ? 0 : a;
        b = (b < 0) ? 0 : b;
        if (a <= b) {
            if (b == 0) {
                return (x + y) / 2.0;
            } else {
                return (x + (y - x) * (a / (a + b)));
            }
        } else {
            return (y + (x - y) * (b / (a + b)));
        }
    }

    static void EdgeIntersect(GLUvertex o1, GLUvertex d1,
                              GLUvertex o2, GLUvertex d2,
                              GLUvertex v)
/* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
 * The computed point is guaranteed to lie in the intersection of the
 * bounding rectangles defined by each edge.
 */ {
        double z1, z2;

        /* This is certainly not the most efficient way to find the intersection
         * of two line segments, but it is very numerically stable.
         *
         * Strategy: find the two middle vertices in the VertLeq ordering,
         * and interpolate the intersection s-value from these.  Then repeat
         * using the TransLeq ordering to find the intersection t-value.
         */

        if (!VertLeq(o1, d1)) {
            GLUvertex temp = o1;
            o1 = d1;
            d1 = temp;
        }
        if (!VertLeq(o2, d2)) {
            GLUvertex temp = o2;
            o2 = d2;
            d2 = temp;
        }
        if (!VertLeq(o1, o2)) {
            GLUvertex temp = o1;
            o1 = o2;
            o2 = temp;
            temp = d1;
            d1 = d2;
            d2 = temp;
        }

        if (!VertLeq(o2, d1)) {
            /* Technically, no intersection -- do our best */
            v.s = (o2.s + d1.s) / 2.0;
        } else if (VertLeq(d1, d2)) {
            /* Interpolate between o2 and d1 */
            z1 = EdgeEval(o1, o2, d1);
            z2 = EdgeEval(o2, d1, d2);
            if (z1 + z2 < 0) {
                z1 = -z1;
                z2 = -z2;
            }
            v.s = Interpolate(z1, o2.s, z2, d1.s);
        } else {
            /* Interpolate between o2 and d2 */
            z1 = EdgeSign(o1, o2, d1);
            z2 = -EdgeSign(o1, d2, d1);
            if (z1 + z2 < 0) {
                z1 = -z1;
                z2 = -z2;
            }
            v.s = Interpolate(z1, o2.s, z2, d2.s);
        }

        /* Now repeat the process for t */

        if (!TransLeq(o1, d1)) {
            GLUvertex temp = o1;
            o1 = d1;
            d1 = temp;
        }
        if (!TransLeq(o2, d2)) {
            GLUvertex temp = o2;
            o2 = d2;
            d2 = temp;
        }
        if (!TransLeq(o1, o2)) {
            GLUvertex temp = o2;
            o2 = o1;
            o1 = temp;
            temp = d2;
            d2 = d1;
            d1 = temp;
        }

        if (!TransLeq(o2, d1)) {
            /* Technically, no intersection -- do our best */
            v.t = (o2.t + d1.t) / 2.0;
        } else if (TransLeq(d1, d2)) {
            /* Interpolate between o2 and d1 */
            z1 = TransEval(o1, o2, d1);
            z2 = TransEval(o2, d1, d2);
            if (z1 + z2 < 0) {
                z1 = -z1;
                z2 = -z2;
            }
            v.t = Interpolate(z1, o2.t, z2, d1.t);
        } else {
            /* Interpolate between o2 and d2 */
            z1 = TransSign(o1, o2, d1);
            z2 = -TransSign(o1, d2, d1);
            if (z1 + z2 < 0) {
                z1 = -z1;
                z2 = -z2;
            }
            v.t = Interpolate(z1, o2.t, z2, d2.t);
        }
    }

    static boolean VertEq(GLUvertex u, GLUvertex v) {
        return u.s == v.s && u.t == v.t;
    }

    static boolean VertLeq(GLUvertex u, GLUvertex v) {
        return u.s < v.s || (u.s == v.s && u.t <= v.t);
    }

/* Versions of VertLeq, EdgeSign, EdgeEval with s and t transposed. */

    static boolean TransLeq(GLUvertex u, GLUvertex v) {
        return u.t < v.t || (u.t == v.t && u.s <= v.s);
    }

    static boolean EdgeGoesLeft(GLUhalfEdge e) {
        return VertLeq(e.Sym.Org, e.Org);
    }

    static boolean EdgeGoesRight(GLUhalfEdge e) {
        return VertLeq(e.Org, e.Sym.Org);
    }

    static double VertL1dist(GLUvertex u, GLUvertex v) {
        return Math.abs(u.s - v.s) + Math.abs(u.t - v.t);
    }
}