summaryrefslogtreecommitdiffstats
path: root/src/test/native/mesa-demos-patched/es2gears.c
blob: 10d3be04fc9d64da1aef9179b098e3e309a73da4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
/*
 * Copyright (C) 1999-2001  Brian Paul   All Rights Reserved.
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

/*
 * Ported to GLES2.
 * Kristian Høgsberg <krh@bitplanet.net>
 * May 3, 2010
 * 
 * Improve GLES2 port:
 *   * Refactor gear drawing.
 *   * Use correct normals for surfaces.
 *   * Improve shader.
 *   * Use perspective projection transformation.
 *   * Add FPS count.
 *   * Add comments.
 * Alexandros Frantzis <alexandros.frantzis@linaro.org>
 * Jul 13, 2010
 */

#define GL_GLEXT_PROTOTYPES
#define EGL_EGLEXT_PROTOTYPES

#define _GNU_SOURCE

#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <unistd.h>
#include <GLES2/gl2.h>
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include "eglut.h"

static int demo_start_duration = 5000; // ms

#define STRIPS_PER_TOOTH 7
#define VERTICES_PER_TOOTH 34
#define GEAR_VERTEX_STRIDE 6

/**
 * Struct describing the vertices in triangle strip
 */
struct vertex_strip {
   /** The first vertex in the strip */
   GLint first;
   /** The number of consecutive vertices in the strip after the first */
   GLint count;
};

/* Each vertex consist of GEAR_VERTEX_STRIDE GLfloat attributes */
typedef GLfloat GearVertex[GEAR_VERTEX_STRIDE];

/**
 * Struct representing a gear.
 */
struct gear {
   /** The array of vertices comprising the gear */
   GearVertex *vertices;
   /** The number of vertices comprising the gear */
   int nvertices;
   /** The array of triangle strips comprising the gear */
   struct vertex_strip *strips;
   /** The number of triangle strips comprising the gear */
   int nstrips;
   /** The Vertex Buffer Object holding the vertices in the graphics card */
   GLuint vbo;
};

/** The view rotation [x, y, z] */
static GLfloat view_rot[3] = { 20.0, 30.0, 0.0 };
/** The gears */
static struct gear *gear1, *gear2, *gear3;
/** The current gear rotation angle */
static GLfloat angle = 0.0;
/** The location of the shader uniforms */
static GLuint ModelViewProjectionMatrix_location,
              NormalMatrix_location,
              LightSourcePosition_location,
              MaterialColor_location;
/** The projection matrix */
static GLfloat ProjectionMatrix[16];
/** The direction of the directional light for the scene */
static const GLfloat LightSourcePosition[4] = { 5.0, 5.0, 10.0, 1.0};

/** 
 * Fills a gear vertex.
 * 
 * @param v the vertex to fill
 * @param x the x coordinate
 * @param y the y coordinate
 * @param z the z coortinate
 * @param n pointer to the normal table 
 * 
 * @return the operation error code
 */
static GearVertex *
vert(GearVertex *v, GLfloat x, GLfloat y, GLfloat z, GLfloat n[3])
{
   v[0][0] = x;
   v[0][1] = y;
   v[0][2] = z;
   v[0][3] = n[0];
   v[0][4] = n[1];
   v[0][5] = n[2];

   return v + 1;
}

/**
 *  Create a gear wheel.
 * 
 *  @param inner_radius radius of hole at center
 *  @param outer_radius radius at center of teeth
 *  @param width width of gear
 *  @param teeth number of teeth
 *  @param tooth_depth depth of tooth
 *  
 *  @return pointer to the constructed struct gear
 */
static struct gear *
create_gear(GLfloat inner_radius, GLfloat outer_radius, GLfloat width,
      GLint teeth, GLfloat tooth_depth)
{
   GLfloat r0, r1, r2;
   GLfloat da;
   GearVertex *v;
   struct gear *gear;
   double s[5], c[5];
   GLfloat normal[3];
   int cur_strip = 0;
   int i;

   /* Allocate memory for the gear */
   gear = malloc(sizeof *gear);
   if (gear == NULL)
      return NULL;

   /* Calculate the radii used in the gear */
   r0 = inner_radius;
   r1 = outer_radius - tooth_depth / 2.0;
   r2 = outer_radius + tooth_depth / 2.0;

   da = 2.0 * M_PI / teeth / 4.0;

   /* Allocate memory for the triangle strip information */
   gear->nstrips = STRIPS_PER_TOOTH * teeth;
   gear->strips = calloc(gear->nstrips, sizeof (*gear->strips));

   /* Allocate memory for the vertices */
   gear->vertices = calloc(VERTICES_PER_TOOTH * teeth, sizeof(*gear->vertices));
   v = gear->vertices;

   for (i = 0; i < teeth; i++) {
      /* Calculate needed sin/cos for varius angles */
      sincos(i * 2.0 * M_PI / teeth, &s[0], &c[0]);
      sincos(i * 2.0 * M_PI / teeth + da, &s[1], &c[1]);
      sincos(i * 2.0 * M_PI / teeth + da * 2, &s[2], &c[2]);
      sincos(i * 2.0 * M_PI / teeth + da * 3, &s[3], &c[3]);
      sincos(i * 2.0 * M_PI / teeth + da * 4, &s[4], &c[4]);

      /* A set of macros for making the creation of the gears easier */
#define  GEAR_POINT(r, da) { (r) * c[(da)], (r) * s[(da)] }
#define  SET_NORMAL(x, y, z) do { \
   normal[0] = (x); normal[1] = (y); normal[2] = (z); \
} while(0)

#define  GEAR_VERT(v, point, sign) vert((v), p[(point)].x, p[(point)].y, (sign) * width * 0.5, normal)

#define START_STRIP do { \
   gear->strips[cur_strip].first = v - gear->vertices; \
} while(0);

#define END_STRIP do { \
   int _tmp = (v - gear->vertices); \
   gear->strips[cur_strip].count = _tmp - gear->strips[cur_strip].first; \
   cur_strip++; \
} while (0)

#define QUAD_WITH_NORMAL(p1, p2) do { \
   SET_NORMAL((p[(p1)].y - p[(p2)].y), -(p[(p1)].x - p[(p2)].x), 0); \
   v = GEAR_VERT(v, (p1), -1); \
   v = GEAR_VERT(v, (p1), 1); \
   v = GEAR_VERT(v, (p2), -1); \
   v = GEAR_VERT(v, (p2), 1); \
} while(0)

      struct point {
         GLfloat x;
         GLfloat y;
      };

      /* Create the 7 points (only x,y coords) used to draw a tooth */
      struct point p[7] = {
         GEAR_POINT(r2, 1), // 0
         GEAR_POINT(r2, 2), // 1
         GEAR_POINT(r1, 0), // 2
         GEAR_POINT(r1, 3), // 3
         GEAR_POINT(r0, 0), // 4
         GEAR_POINT(r1, 4), // 5
         GEAR_POINT(r0, 4), // 6
      };

      /* Front face */
      START_STRIP;
      SET_NORMAL(0, 0, 1.0);
      v = GEAR_VERT(v, 0, +1);
      v = GEAR_VERT(v, 1, +1);
      v = GEAR_VERT(v, 2, +1);
      v = GEAR_VERT(v, 3, +1);
      v = GEAR_VERT(v, 4, +1);
      v = GEAR_VERT(v, 5, +1);
      v = GEAR_VERT(v, 6, +1);
      END_STRIP;

      /* Inner face */
      START_STRIP;
      QUAD_WITH_NORMAL(4, 6);
      END_STRIP;

      /* Back face */
      START_STRIP;
      SET_NORMAL(0, 0, -1.0);
      v = GEAR_VERT(v, 6, -1);
      v = GEAR_VERT(v, 5, -1);
      v = GEAR_VERT(v, 4, -1);
      v = GEAR_VERT(v, 3, -1);
      v = GEAR_VERT(v, 2, -1);
      v = GEAR_VERT(v, 1, -1);
      v = GEAR_VERT(v, 0, -1);
      END_STRIP;

      /* Outer face */
      START_STRIP;
      QUAD_WITH_NORMAL(0, 2);
      END_STRIP;

      START_STRIP;
      QUAD_WITH_NORMAL(1, 0);
      END_STRIP;

      START_STRIP;
      QUAD_WITH_NORMAL(3, 1);
      END_STRIP;

      START_STRIP;
      QUAD_WITH_NORMAL(5, 3);
      END_STRIP;
   }

   gear->nvertices = (v - gear->vertices);

   /* Store the vertices in a vertex buffer object (VBO) */
   glGenBuffers(1, &gear->vbo);
   glBindBuffer(GL_ARRAY_BUFFER, gear->vbo);
   glBufferData(GL_ARRAY_BUFFER, gear->nvertices * sizeof(GearVertex),
         gear->vertices, GL_STATIC_DRAW);

   return gear;
}

/** 
 * Multiplies two 4x4 matrices.
 * 
 * The result is stored in matrix m.
 * 
 * @param m the first matrix to multiply
 * @param n the second matrix to multiply
 */
static void
multiply(GLfloat *m, const GLfloat *n)
{
   GLfloat tmp[16];
   const GLfloat *row, *column;
   div_t d;
   int i, j;

   for (i = 0; i < 16; i++) {
      tmp[i] = 0;
      d = div(i, 4);
      row = n + d.quot * 4;
      column = m + d.rem;
      for (j = 0; j < 4; j++)
         tmp[i] += row[j] * column[j * 4];
   }
   memcpy(m, &tmp, sizeof tmp);
}

/** 
 * Rotates a 4x4 matrix.
 * 
 * @param[in,out] m the matrix to rotate
 * @param angle the angle to rotate
 * @param x the x component of the direction to rotate to
 * @param y the y component of the direction to rotate to
 * @param z the z component of the direction to rotate to
 */
static void
rotate(GLfloat *m, GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
{
   double s, c;

   sincos(angle, &s, &c);
   GLfloat r[16] = {
      x * x * (1 - c) + c,     y * x * (1 - c) + z * s, x * z * (1 - c) - y * s, 0,
      x * y * (1 - c) - z * s, y * y * (1 - c) + c,     y * z * (1 - c) + x * s, 0, 
      x * z * (1 - c) + y * s, y * z * (1 - c) - x * s, z * z * (1 - c) + c,     0,
      0, 0, 0, 1
   };

   multiply(m, r);
}


/** 
 * Translates a 4x4 matrix.
 * 
 * @param[in,out] m the matrix to translate
 * @param x the x component of the direction to translate to
 * @param y the y component of the direction to translate to
 * @param z the z component of the direction to translate to
 */
static void
translate(GLfloat *m, GLfloat x, GLfloat y, GLfloat z)
{
   GLfloat t[16] = { 1, 0, 0, 0,  0, 1, 0, 0,  0, 0, 1, 0,  x, y, z, 1 };

   multiply(m, t);
}

/** 
 * Creates an identity 4x4 matrix.
 * 
 * @param m the matrix make an identity matrix
 */
static void
identity(GLfloat *m)
{
   GLfloat t[16] = {
      1.0, 0.0, 0.0, 0.0,
      0.0, 1.0, 0.0, 0.0,
      0.0, 0.0, 1.0, 0.0,
      0.0, 0.0, 0.0, 1.0,
   };

   memcpy(m, t, sizeof(t));
}

/** 
 * Transposes a 4x4 matrix.
 *
 * @param m the matrix to transpose
 */
static void 
transpose(GLfloat *m)
{
   GLfloat t[16] = {
      m[0], m[4], m[8],  m[12],
      m[1], m[5], m[9],  m[13],
      m[2], m[6], m[10], m[14],
      m[3], m[7], m[11], m[15]};

   memcpy(m, t, sizeof(t));
}

/**
 * Inverts a 4x4 matrix.
 *
 * This function can currently handle only pure translation-rotation matrices.
 * Read http://www.gamedev.net/community/forums/topic.asp?topic_id=425118
 * for an explanation.
 */
static void
invert(GLfloat *m)
{
   GLfloat t[16];
   identity(t);

   // Extract and invert the translation part 't'. The inverse of a
   // translation matrix can be calculated by negating the translation
   // coordinates.
   t[12] = -m[12]; t[13] = -m[13]; t[14] = -m[14];

   // Invert the rotation part 'r'. The inverse of a rotation matrix is
   // equal to its transpose.
   m[12] = m[13] = m[14] = 0;
   transpose(m);

   // inv(m) = inv(r) * inv(t)
   multiply(m, t);
}

/** 
 * Calculate a perspective projection transformation.
 * 
 * @param m the matrix to save the transformation in
 * @param fovy the field of view in the y direction
 * @param aspect the view aspect ratio
 * @param zNear the near clipping plane
 * @param zFar the far clipping plane
 */
void perspective(GLfloat *m, GLfloat fovy, GLfloat aspect, GLfloat zNear, GLfloat zFar)
{
   GLfloat tmp[16];
   identity(tmp);

   double sine, cosine, cotangent, deltaZ;
   GLfloat radians = fovy / 2 * M_PI / 180;

   deltaZ = zFar - zNear;
   sincos(radians, &sine, &cosine);

   if ((deltaZ == 0) || (sine == 0) || (aspect == 0))
      return;

   cotangent = cosine / sine;

   tmp[0] = cotangent / aspect;
   tmp[5] = cotangent;
   tmp[10] = -(zFar + zNear) / deltaZ;
   tmp[11] = -1;
   tmp[14] = -2 * zNear * zFar / deltaZ;
   tmp[15] = 0;

   memcpy(m, tmp, sizeof(tmp));
}

/**
 * Draws a gear.
 *
 * @param gear the gear to draw
 * @param transform the current transformation matrix
 * @param x the x position to draw the gear at
 * @param y the y position to draw the gear at
 * @param angle the rotation angle of the gear
 * @param color the color of the gear
 */
static void
draw_gear(struct gear *gear, GLfloat *transform,
      GLfloat x, GLfloat y, GLfloat angle, const GLfloat color[4])
{
   GLfloat model_view[16];
   GLfloat normal_matrix[16];
   GLfloat model_view_projection[16];

   /* Translate and rotate the gear */
   memcpy(model_view, transform, sizeof (model_view));
   translate(model_view, x, y, 0);
   rotate(model_view, 2 * M_PI * angle / 360.0, 0, 0, 1);

   /* Create and set the ModelViewProjectionMatrix */
   memcpy(model_view_projection, ProjectionMatrix, sizeof(model_view_projection));
   multiply(model_view_projection, model_view);

   glUniformMatrix4fv(ModelViewProjectionMatrix_location, 1, GL_FALSE,
                      model_view_projection);

   /* 
    * Create and set the NormalMatrix. It's the inverse transpose of the
    * ModelView matrix.
    */
   memcpy(normal_matrix, model_view, sizeof (normal_matrix));
   invert(normal_matrix);
   transpose(normal_matrix);
   glUniformMatrix4fv(NormalMatrix_location, 1, GL_FALSE, normal_matrix);

   /* Set the gear color */
   glUniform4fv(MaterialColor_location, 1, color);

   /* Set the vertex buffer object to use */
   glBindBuffer(GL_ARRAY_BUFFER, gear->vbo);

   /* Set up the position of the attributes in the vertex buffer object */
   glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE,
         6 * sizeof(GLfloat), NULL);
   glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE,
         6 * sizeof(GLfloat), (GLfloat *) 0 + 3);

   /* Enable the attributes */
   glEnableVertexAttribArray(0);
   glEnableVertexAttribArray(1);

   /* Draw the triangle strips that comprise the gear */
   int n;
   for (n = 0; n < gear->nstrips; n++)
      glDrawArrays(GL_TRIANGLE_STRIP, gear->strips[n].first, gear->strips[n].count);

   /* Disable the attributes */
   glDisableVertexAttribArray(1);
   glDisableVertexAttribArray(0);
}

/** 
 * Draws the gears.
 */
static void
gears_draw(void)
{
   const static GLfloat red[4] = { 0.8, 0.1, 0.0, 1.0 };
   const static GLfloat green[4] = { 0.0, 0.8, 0.2, 1.0 };
   const static GLfloat blue[4] = { 0.2, 0.2, 1.0, 1.0 };
   GLfloat transform[16];
   identity(transform);

   glClearColor(0.0, 0.0, 0.0, 0.0);
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

   /* Translate and rotate the view */
   translate(transform, 0, 0, -20);
   rotate(transform, 2 * M_PI * view_rot[0] / 360.0, 1, 0, 0);
   rotate(transform, 2 * M_PI * view_rot[1] / 360.0, 0, 1, 0);
   rotate(transform, 2 * M_PI * view_rot[2] / 360.0, 0, 0, 1);

   /* Draw the gears */
   draw_gear(gear1, transform, -3.0, -2.0, angle, red);
   draw_gear(gear2, transform, 3.1, -2.0, -2 * angle - 9.0, green);
   draw_gear(gear3, transform, -3.1, 4.2, -2 * angle - 25.0, blue);
}

/** 
 * Handles a new window size or exposure.
 * 
 * @param width the window width
 * @param height the window height
 */
static void
gears_reshape(int width, int height)
{
   /* Update the projection matrix */
   perspective(ProjectionMatrix, 60.0, width / (float)height, 1.0, 1024.0);

   /* Set the viewport */
   glViewport(0, 0, (GLint) width, (GLint) height);
}

/** 
 * Handles special eglut events.
 * 
 * @param special the event to handle.
 */
static void
gears_special(int special)
{
   switch (special) {
      case EGLUT_KEY_LEFT:
         view_rot[1] += 5.0;
         break;
      case EGLUT_KEY_RIGHT:
         view_rot[1] -= 5.0;
         break;
      case EGLUT_KEY_UP:
         view_rot[0] += 5.0;
         break;
      case EGLUT_KEY_DOWN:
         view_rot[0] -= 5.0;
         break;
   }
}

static void
gears_idle(void)
{
   static int frames = 0;
   static double tRot0 = -1.0, tRate0 = -1.0;
   int tms = eglutGet(EGLUT_ELAPSED_TIME);
   double dt, t = tms / 1000.0;


   if(tms>demo_start_duration) {
        eglutStopMainLoop();
        return;
   }

   if (tRot0 < 0.0)
      tRot0 = t;
   dt = t - tRot0;
   tRot0 = t;

   /* advance rotation for next frame */
   angle += 70.0 * dt;  /* 70 degrees per second */
   if (angle > 3600.0)
      angle -= 3600.0;

   eglutPostRedisplay();
   frames++;

   if (tRate0 < 0.0)
      tRate0 = t;
   if (t - tRate0 >= 5.0) {
      GLfloat seconds = t - tRate0;
      GLfloat fps = frames / seconds;
      printf("%d frames in %3.1f seconds = %6.3f FPS\n", frames, seconds,
            fps);
      tRate0 = t;
      frames = 0;
   }
}

static const char vertex_shader[] =
"attribute vec3 position;\n"
"attribute vec3 normal;\n"
"\n"
"uniform mat4 ModelViewProjectionMatrix;\n"
"uniform mat4 NormalMatrix;\n"
"uniform vec4 LightSourcePosition;\n"
"uniform vec4 MaterialColor;\n"
"\n"
"varying vec4 Color;\n"
"\n"
"void main(void)\n"
"{\n"
"    // Transform the normal to eye coordinates\n"
"    vec3 N = normalize(vec3(NormalMatrix * vec4(normal, 1.0)));\n"
"\n"
"    // The LightSourcePosition is actually its direction for directional light\n"
"    vec3 L = normalize(LightSourcePosition.xyz);\n"
"\n"
"    // Multiply the diffuse value by the vertex color (which is fixed in this case)\n"
"    // to get the actual color that we will use to draw this vertex with\n"
"    float diffuse = max(dot(N, L), 0.0);\n"
"    Color = diffuse * MaterialColor;\n"
"\n"
"    // Transform the position to clip coordinates\n"
"    gl_Position = ModelViewProjectionMatrix * vec4(position, 1.0);\n"
"}";

static const char fragment_shader[] =
"precision mediump float;\n"
"varying vec4 Color;\n"
"\n"
"void main(void)\n"
"{\n"
"    gl_FragColor = Color;\n"
"}";

static void
gears_init(void)
{
   GLuint v, f, program;
   const char *p;
   char msg[512];

   glEnable(GL_CULL_FACE);
   glEnable(GL_DEPTH_TEST);

   /* Compile the vertex shader */
   p = vertex_shader;
   v = glCreateShader(GL_VERTEX_SHADER);
   glShaderSource(v, 1, &p, NULL);
   glCompileShader(v);
   glGetShaderInfoLog(v, sizeof msg, NULL, msg);
   printf("vertex shader info: %s\n", msg);

   /* Compile the fragment shader */
   p = fragment_shader;
   f = glCreateShader(GL_FRAGMENT_SHADER);
   glShaderSource(f, 1, &p, NULL);
   glCompileShader(f);
   glGetShaderInfoLog(f, sizeof msg, NULL, msg);
   printf("fragment shader info: %s\n", msg);

   /* Create and link the shader program */
   program = glCreateProgram();
   glAttachShader(program, v);
   glAttachShader(program, f);
   glBindAttribLocation(program, 0, "position");
   glBindAttribLocation(program, 1, "normal");

   glLinkProgram(program);
   glGetProgramInfoLog(program, sizeof msg, NULL, msg);
   printf("info: %s\n", msg);

   /* Enable the shaders */
   glUseProgram(program);

   /* Get the locations of the uniforms so we can access them */
   ModelViewProjectionMatrix_location = glGetUniformLocation(program, "ModelViewProjectionMatrix");
   NormalMatrix_location = glGetUniformLocation(program, "NormalMatrix");
   LightSourcePosition_location = glGetUniformLocation(program, "LightSourcePosition");
   MaterialColor_location = glGetUniformLocation(program, "MaterialColor");

   /* Set the LightSourcePosition uniform which is constant throught the program */
   glUniform4fv(LightSourcePosition_location, 1, LightSourcePosition);

   /* make the gears */
   gear1 = create_gear(1.0, 4.0, 1.0, 20, 0.7);
   gear2 = create_gear(0.5, 2.0, 2.0, 10, 0.7);
   gear3 = create_gear(1.3, 2.0, 0.5, 10, 0.7);
}

int
main(int argc, char *argv[])
{
   int demo_loops = 1;
   int i;
   for (i = 1; i < argc; i++) {
      if (strcmp(argv[i], "-time") == 0) {
         demo_start_duration = atoi(argv[++i]);
      } else if (strcmp(argv[i], "-loops") == 0) {
         demo_loops = atoi(argv[++i]);
      }
   }
   fprintf(stderr, "duration: %d\n", demo_start_duration);
   fprintf(stderr, "loops: %d\n", demo_loops);

   for(i=0; i<demo_loops; i++) {
       fprintf(stderr, "Loop: %d/%d\n", i, demo_loops);

       /* Initialize the window */
       eglutInitWindowSize(300, 300);
       eglutInitAPIMask(EGLUT_OPENGL_ES2_BIT);
       eglutInit(argc, argv);

       int winid = eglutCreateWindow("es2gears");

       /* Set up eglut callback functions */
       eglutIdleFunc(gears_idle);
       eglutReshapeFunc(gears_reshape);
       eglutDisplayFunc(gears_draw);
       eglutSpecialFunc(gears_special);

       /* Initialize the gears */
       gears_init();

       eglutMainLoop();

       eglutDestroyWindow(winid);
       eglutTerminate();
   }

   return 0;
}