diff options
author | Phil Burk <[email protected]> | 2014-12-30 16:53:03 -0800 |
---|---|---|
committer | Phil Burk <[email protected]> | 2014-12-30 16:53:03 -0800 |
commit | 534969d42ca5168d645678345cd21242fe41f389 (patch) | |
tree | e8f5d1cba1ec57685e76ceb923d8da25a7846cfb /src/com/jsyn/engine/MultiTable.java | |
parent | a4d8ca95178d2e3acfc3299a4b73e84c2646d24e (diff) |
Initial commit of code.
Diffstat (limited to 'src/com/jsyn/engine/MultiTable.java')
-rw-r--r-- | src/com/jsyn/engine/MultiTable.java | 230 |
1 files changed, 230 insertions, 0 deletions
diff --git a/src/com/jsyn/engine/MultiTable.java b/src/com/jsyn/engine/MultiTable.java new file mode 100644 index 0000000..48b03cd --- /dev/null +++ b/src/com/jsyn/engine/MultiTable.java @@ -0,0 +1,230 @@ +/* + * Copyright 2009 Phil Burk, Mobileer Inc + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package com.jsyn.engine; + +/* + * Multiple tables of sawtooth data. + * organized by octaves below the Nyquist Rate. + * used to generate band-limited Sawtooth, Impulse, Pulse, Square and Triangle BL waveforms + * + <pre> + Analysis of octave requirements for tables. + + OctavesIndex Frequency Partials + 0 N/2 11025 1 + 1 N/4 5512 2 + 2 N/8 2756 4 + 3 N/16 1378 8 + 4 N/32 689 16 + 5 N/64 344 32 + 6 N/128 172 64 + 7 N/256 86 128 + </pre> + * + * @author Phil Burk (C) 2009 Mobileer Inc + */ +public class MultiTable { + + public final static int NUM_TABLES = 8; + public final static int CYCLE_SIZE = (1 << 10); + + private static MultiTable instance = new MultiTable(NUM_TABLES, CYCLE_SIZE); + private double phaseScalar; + private float[][] tables; // array of array of tables + + /************************************************************************** + * Initialize sawtooth wavetables. Table[0] should contain a pure sine wave. Succeeding tables + * should have increasing numbers of partials. + */ + public MultiTable(int numTables, int cycleSize) { + int tableSize = cycleSize + 1; + + // Allocate array of arrays. + tables = new float[numTables][tableSize]; + + float[] sineTable = tables[0]; + + phaseScalar = (float) (cycleSize * 0.5); + + /* Fill initial sine table with values for -PI to PI. */ + for (int j = 0; j < tableSize; j++) { + sineTable[j] = (float) Math.sin(((((double) j) / (double) cycleSize) * Math.PI * 2.0) + - Math.PI); + } + + /* + * Build each table from scratch and scale partials by raised cosine* to eliminate Gibbs + * effect. + */ + for (int i = 1; i < numTables; i++) { + int numPartials; + double kGibbs; + float[] table = tables[i]; + + /* Add together partials for this table. */ + numPartials = 1 << i; + kGibbs = Math.PI / (2 * numPartials); + for (int k = 0; k < numPartials; k++) { + double ampl, cGibbs; + int sineIndex = 0; + int partial = k + 1; + cGibbs = Math.cos(k * kGibbs); + /* Calculate amplitude for Nth partial */ + ampl = cGibbs * cGibbs / partial; + + for (int j = 0; j < tableSize; j++) { + table[j] += (float) ampl * sineTable[sineIndex]; + sineIndex += partial; + /* Wrap index at end of table.. */ + if (sineIndex >= cycleSize) { + sineIndex -= cycleSize; + } + } + } + } + + /* Normalize after */ + for (int i = 1; i < numTables; i++) { + normalizeArray(tables[i]); + } + } + + /**************************************************************************/ + public static float normalizeArray(float[] fdata) { + float max, val, gain; + int i; + + // determine maximum value. + max = 0.0f; + for (i = 0; i < fdata.length; i++) { + val = Math.abs(fdata[i]); + if (val > max) + max = val; + } + if (max < 0.0000001f) + max = 0.0000001f; + // scale array + gain = 1.0f / max; + for (i = 0; i < fdata.length; i++) + fdata[i] *= gain; + return gain; + } + + /***************************************************************************** + * When the phaseInc maps to the highest level table, then we start interpolating between the + * highest table and the raw sawtooth value (phase). When phaseInc points to highest table: + * flevel = NUM_TABLES - 1 = -1 - log2(pInc); log2(pInc) = - NUM_TABLES pInc = 2**(-NUM_TABLES) + */ + private final static double LOWEST_PHASE_INC_INV = (1 << NUM_TABLES); + + /**************************************************************************/ + /* Phase ranges from -1.0 to +1.0 */ + public double calculateSawtooth(double currentPhase, double positivePhaseIncrement, + double flevel) { + float[] tableBase; + double val; + double hiSam; /* Use when verticalFraction is 1.0 */ + double loSam; /* Use when verticalFraction is 0.0 */ + double sam1, sam2; + + /* Use Phase to determine sampleIndex into table. */ + double findex = ((phaseScalar * currentPhase) + phaseScalar); + // findex is > 0 so we do not need to call floor(). + int sampleIndex = (int) findex; + double horizontalFraction = findex - sampleIndex; + int tableIndex = (int) flevel; + + if (tableIndex > (NUM_TABLES - 2)) { + /* + * Just use top table and mix with arithmetic sawtooth if below lowest frequency. + * Generate new fraction for interpolating between 0.0 and lowest table frequency. + */ + double fraction = positivePhaseIncrement * LOWEST_PHASE_INC_INV; + tableBase = tables[(NUM_TABLES - 1)]; + + /* Get adjacent samples. Assume guard point present. */ + sam1 = tableBase[sampleIndex]; + sam2 = tableBase[sampleIndex + 1]; + /* Interpolate between adjacent samples. */ + loSam = sam1 + (horizontalFraction * (sam2 - sam1)); + + /* Use arithmetic version for low frequencies. */ + /* fraction is 0.0 at 0 Hz */ + val = currentPhase + (fraction * (loSam - currentPhase)); + } else { + + double verticalFraction = flevel - tableIndex; + + if (tableIndex < 0) { + if (tableIndex < -1) // above Nyquist! + { + val = 0.0; + } else { + /* + * At top of supported range, interpolate between 0.0 and first partial. + */ + tableBase = tables[0]; /* Sine wave table. */ + + /* Get adjacent samples. Assume guard point present. */ + sam1 = tableBase[sampleIndex]; + sam2 = tableBase[sampleIndex + 1]; + + /* Interpolate between adjacent samples. */ + hiSam = sam1 + (horizontalFraction * (sam2 - sam1)); + /* loSam = 0.0 */ + // verticalFraction is 0.0 at Nyquist + val = verticalFraction * hiSam; + } + } else { + /* + * Interpolate between adjacent levels to prevent harmonics from popping. + */ + tableBase = tables[tableIndex + 1]; + + /* Get adjacent samples. Assume guard point present. */ + sam1 = tableBase[sampleIndex]; + sam2 = tableBase[sampleIndex + 1]; + + /* Interpolate between adjacent samples. */ + hiSam = sam1 + (horizontalFraction * (sam2 - sam1)); + + /* Get adjacent samples. Assume guard point present. */ + tableBase = tables[tableIndex]; + sam1 = tableBase[sampleIndex]; + sam2 = tableBase[sampleIndex + 1]; + + /* Interpolate between adjacent samples. */ + loSam = sam1 + (horizontalFraction * (sam2 - sam1)); + + val = loSam + (verticalFraction * (hiSam - loSam)); + } + } + return val; + } + + public double convertPhaseIncrementToLevel(double positivePhaseIncrement) { + if (positivePhaseIncrement < 1.0e-30) { + positivePhaseIncrement = 1.0e-30; + } + return -1.0 - (Math.log(positivePhaseIncrement) / Math.log(2.0)); + } + + public static MultiTable getInstance() { + return instance; + } + +} |