diff options
author | Phil Burk <[email protected]> | 2014-12-30 16:53:03 -0800 |
---|---|---|
committer | Phil Burk <[email protected]> | 2014-12-30 16:53:03 -0800 |
commit | 534969d42ca5168d645678345cd21242fe41f389 (patch) | |
tree | e8f5d1cba1ec57685e76ceb923d8da25a7846cfb /src/com/softsynth/math/Polynomial.java | |
parent | a4d8ca95178d2e3acfc3299a4b73e84c2646d24e (diff) |
Initial commit of code.
Diffstat (limited to 'src/com/softsynth/math/Polynomial.java')
-rw-r--r-- | src/com/softsynth/math/Polynomial.java | 253 |
1 files changed, 253 insertions, 0 deletions
diff --git a/src/com/softsynth/math/Polynomial.java b/src/com/softsynth/math/Polynomial.java new file mode 100644 index 0000000..8670e97 --- /dev/null +++ b/src/com/softsynth/math/Polynomial.java @@ -0,0 +1,253 @@ +/* + * Copyright 1997 Phil Burk, Mobileer Inc + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package com.softsynth.math; + +import java.util.Vector; + +/** + * Polynomial<br> + * Implement polynomial using Vector as coefficient holder. Element index is power of X, value at a + * given index is coefficient.<br> + * <br> + * + * @author Nick Didkovsky, (C) 1997 Phil Burk and Nick Didkovsky + */ + +public class Polynomial { + + private Vector terms; + + class DoubleHolder { + double value; + + public DoubleHolder(double val) { + value = val; + } + + public double get() { + return value; + } + + public void set(double val) { + value = val; + } + } + + /** create a polynomial with no terms */ + public Polynomial() { + terms = new Vector(); + } + + /** create a polynomial with one term of specified constant */ + public Polynomial(double c0) { + this(); + appendTerm(c0); + } + + /** create a polynomial with two terms with specified coefficients */ + public Polynomial(double c1, double c0) { + this(c0); + appendTerm(c1); + } + + /** create a polynomial with specified coefficients */ + public Polynomial(double c2, double c1, double c0) { + this(c1, c0); + appendTerm(c2); + } + + /** create a polynomial with specified coefficients */ + public Polynomial(double c3, double c2, double c1, double c0) { + this(c2, c1, c0); + appendTerm(c3); + } + + /** create a polynomial with specified coefficients */ + public Polynomial(double c4, double c3, double c2, double c1, double c0) { + this(c3, c2, c1, c0); + appendTerm(c4); + } + + /** + * Append a term with specified coefficient. Power will be next available order (ie if the + * polynomial is of order 2, appendTerm will supply the coefficient for x^3 + */ + public void appendTerm(double coefficient) { + terms.addElement(new DoubleHolder(coefficient)); + } + + /** Set the coefficient of given term */ + public void setTerm(double coefficient, int power) { + // If setting a term greater than the current order of the polynomial, pad with zero terms + int size = terms.size(); + if (power >= size) { + for (int i = 0; i < (power - size + 1); i++) { + appendTerm(0); + } + } + ((DoubleHolder) terms.elementAt(power)).set(coefficient); + } + + /** + * Add the coefficient of given term to the specified coefficient. ex. addTerm(3, 1) add 3x to a + * polynomial, addTerm(4, 3) adds 4x^3 + */ + public void addTerm(double coefficient, int power) { + setTerm(coefficient + get(power), power); + } + + /** @return coefficient of nth term (first term=0) */ + public double get(int power) { + if (power >= terms.size()) + return 0.0; + else + return ((DoubleHolder) terms.elementAt(power)).get(); + } + + /** @ return number of terms in this polynomial */ + public int size() { + return terms.size(); + } + + /** + * Add two polynomials together + * + * @return new Polynomial that is the sum of p1 and p2 + */ + public static Polynomial plus(Polynomial p1, Polynomial p2) { + Polynomial sum = new Polynomial(); + for (int i = 0; i < Math.max(p1.size(), p2.size()); i++) { + sum.appendTerm(p1.get(i) + p2.get(i)); + } + return sum; + } + + /** + * Subtract polynomial from another. (First arg - Second arg) + * + * @return new Polynomial p1 - p2 + */ + public static Polynomial minus(Polynomial p1, Polynomial p2) { + Polynomial sum = new Polynomial(); + for (int i = 0; i < Math.max(p1.size(), p2.size()); i++) { + sum.appendTerm(p1.get(i) - p2.get(i)); + } + return sum; + } + + /** + * Multiply two Polynomials + * + * @return new Polynomial that is the product p1 * p2 + */ + + public static Polynomial mult(Polynomial p1, Polynomial p2) { + Polynomial product = new Polynomial(); + for (int i = 0; i < p1.size(); i++) { + for (int j = 0; j < p2.size(); j++) { + product.addTerm(p1.get(i) * p2.get(j), i + j); + } + } + return product; + } + + /** + * Multiply a Polynomial by a scaler + * + * @return new Polynomial that is the product p1 * p2 + */ + + public static Polynomial mult(double scaler, Polynomial p1) { + Polynomial product = new Polynomial(); + for (int i = 0; i < p1.size(); i++) { + product.appendTerm(p1.get(i) * scaler); + } + return product; + } + + /** Evaluate this polynomial for x */ + public double evaluate(double x) { + double result = 0.0; + for (int i = 0; i < terms.size(); i++) { + result += get(i) * Math.pow(x, i); + } + return result; + } + + @Override + public String toString() { + String s = ""; + if (size() == 0) + s = "empty polynomial"; + boolean somethingPrinted = false; + for (int i = size() - 1; i >= 0; i--) { + if (get(i) != 0.0) { + if (somethingPrinted) + s += " + "; + String coeff = ""; + // if (get(i) == (int)(get(i))) + // coeff = (int)(get(i)) + ""; + if ((get(i) != 1.0) || (i == 0)) + coeff += get(i); + if (i == 0) + s += coeff; + else { + String power = ""; + if (i != 1) + power = "^" + i; + s += coeff + "x" + power; + } + somethingPrinted = true; + } + } + return s; + } + + public static void main(String args[]) { + Polynomial p1 = new Polynomial(); + System.out.println("p1=" + p1); + Polynomial p2 = new Polynomial(3); + System.out.println("p2=" + p2); + Polynomial p3 = new Polynomial(2, 3); + System.out.println("p3=" + p3); + Polynomial p4 = new Polynomial(1, 2, 3); + System.out.println("p4=" + p4); + System.out.println("p4*5=" + Polynomial.mult(5.0, p4)); + + System.out.println(p4.evaluate(10)); + + System.out.println(Polynomial.plus(p4, p1)); + System.out.println(Polynomial.minus(p4, p3)); + p4.setTerm(12.2, 5); + System.out.println(p4); + p4.addTerm(0.8, 5); + System.out.println(p4); + p4.addTerm(0.8, 7); + System.out.println(p4); + System.out.println(Polynomial.mult(p3, p2)); + System.out.println(Polynomial.mult(p3, p3)); + System.out.println(Polynomial.mult(p2, p2)); + + Polynomial t2 = new Polynomial(2, 0, -1); // 2x^2-1, Chebyshev Polynomial of order 2 + Polynomial t3 = new Polynomial(4, 0, -3, 0); // 4x^3-3x, Chebyshev Polynomial of order 3 + // Calculate Chebyshev Polynomial of order 4 from relation Tk+1(x) = 2xTk(x) - Tk-1(x) + Polynomial t4 = Polynomial.minus(Polynomial.mult(t3, (new Polynomial(2, 0))), t2); + System.out.println(t2 + "\n" + t3 + "\n" + t4); + // com.softsynth.jmsl.util + + } +} |