/* * Copyright 2009 Phil Burk, Mobileer Inc * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.softsynth.math; //Simple Fast Fourier Transform. public class FourierMath { static private final int MAX_SIZE_LOG_2 = 16; static BitReverseTable[] reverseTables = new BitReverseTable[MAX_SIZE_LOG_2]; static DoubleSineTable[] sineTables = new DoubleSineTable[MAX_SIZE_LOG_2]; static FloatSineTable[] floatSineTables = new FloatSineTable[MAX_SIZE_LOG_2]; private static class DoubleSineTable { double[] sineValues; DoubleSineTable(int numBits) { int len = 1 << numBits; sineValues = new double[1 << numBits]; for (int i = 0; i < len; i++) { sineValues[i] = Math.sin((i * Math.PI * 2.0) / len); } } } private static double[] getDoubleSineTable(int n) { DoubleSineTable sineTable = sineTables[n]; if (sineTable == null) { sineTable = new DoubleSineTable(n); sineTables[n] = sineTable; } return sineTable.sineValues; } private static class FloatSineTable { float[] sineValues; FloatSineTable(int numBits) { int len = 1 << numBits; sineValues = new float[1 << numBits]; for (int i = 0; i < len; i++) { sineValues[i] = (float) Math.sin((i * Math.PI * 2.0) / len); } } } private static float[] getFloatSineTable(int n) { FloatSineTable sineTable = floatSineTables[n]; if (sineTable == null) { sineTable = new FloatSineTable(n); floatSineTables[n] = sineTable; } return sineTable.sineValues; } private static class BitReverseTable { int[] reversedBits; BitReverseTable(int numBits) { reversedBits = new int[1 << numBits]; for (int i = 0; i < reversedBits.length; i++) { reversedBits[i] = reverseBits(i, numBits); } } static int reverseBits(int index, int numBits) { int i, rev; for (i = rev = 0; i < numBits; i++) { rev = (rev << 1) | (index & 1); index >>= 1; } return rev; } } private static int[] getReverseTable(int n) { BitReverseTable reverseTable = reverseTables[n]; if (reverseTable == null) { reverseTable = new BitReverseTable(n); reverseTables[n] = reverseTable; } return reverseTable.reversedBits; } /** * Calculate the amplitude of the sine wave associated with each bin of a complex FFT result. * * @param ar * @param ai * @param magnitudes */ public static void calculateMagnitudes(double ar[], double ai[], double[] magnitudes) { for (int i = 0; i < magnitudes.length; ++i) { magnitudes[i] = Math.sqrt((ar[i] * ar[i]) + (ai[i] * ai[i])); } } /** * Calculate the amplitude of the sine wave associated with each bin of a complex FFT result. * * @param ar * @param ai * @param magnitudes */ public static void calculateMagnitudes(float ar[], float ai[], float[] magnitudes) { for (int i = 0; i < magnitudes.length; ++i) { magnitudes[i] = (float) Math.sqrt((ar[i] * ar[i]) + (ai[i] * ai[i])); } } public static void transform(int sign, int n, double ar[], double ai[]) { double scale = Math.sqrt(1.0 / n); int numBits = FourierMath.numBits(n); int[] reverseTable = getReverseTable(numBits); double[] sineTable = getDoubleSineTable(numBits); int mask = n - 1; int cosineOffset = n / 4; // phase offset between cos and sin int i, j; for (i = 0; i < n; i++) { j = reverseTable[i]; if (j >= i) { double tempr = ar[j] * scale; double tempi = ai[j] * scale; ar[j] = ar[i] * scale; ai[j] = ai[i] * scale; ar[i] = tempr; ai[i] = tempi; } } int mmax, stride; int numerator = sign * n; for (mmax = 1, stride = 2 * mmax; mmax < n; mmax = stride, stride = 2 * mmax) { int phase = 0; int phaseIncrement = numerator / (2 * mmax); for (int m = 0; m < mmax; ++m) { double wr = sineTable[(phase + cosineOffset) & mask]; double wi = sineTable[phase]; for (i = m; i < n; i += stride) { j = i + mmax; double tr = (wr * ar[j]) - (wi * ai[j]); double ti = (wr * ai[j]) + (wi * ar[j]); ar[j] = ar[i] - tr; ai[j] = ai[i] - ti; ar[i] += tr; ai[i] += ti; } phase = (phase + phaseIncrement) & mask; } mmax = stride; } } public static void transform(int sign, int n, float ar[], float ai[]) { float scale = (float) Math.sqrt(1.0 / n); int numBits = FourierMath.numBits(n); int[] reverseTable = getReverseTable(numBits); float[] sineTable = getFloatSineTable(numBits); int mask = n - 1; int cosineOffset = n / 4; // phase offset between cos and sin int i, j; for (i = 0; i < n; i++) { j = reverseTable[i]; if (j >= i) { float tempr = ar[j] * scale; float tempi = ai[j] * scale; ar[j] = ar[i] * scale; ai[j] = ai[i] * scale; ar[i] = tempr; ai[i] = tempi; } } int mmax, stride; int numerator = sign * n; for (mmax = 1, stride = 2 * mmax; mmax < n; mmax = stride, stride = 2 * mmax) { int phase = 0; int phaseIncrement = numerator / (2 * mmax); for (int m = 0; m < mmax; ++m) { float wr = sineTable[(phase + cosineOffset) & mask]; float wi = sineTable[phase]; for (i = m; i < n; i += stride) { j = i + mmax; float tr = (wr * ar[j]) - (wi * ai[j]); float ti = (wr * ai[j]) + (wi * ar[j]); ar[j] = ar[i] - tr; ai[j] = ai[i] - ti; ar[i] += tr; ai[i] += ti; } phase = (phase + phaseIncrement) & mask; } mmax = stride; } } /** * Calculate log2(n) * * @param powerOf2 must be a power of two, for example 512 or 1024 * @return for example, 9 for an input value of 512 */ public static int numBits(int powerOf2) { int i; assert ((powerOf2 & (powerOf2 - 1)) == 0); // is it a power of 2? for (i = -1; powerOf2 > 0; powerOf2 = powerOf2 >> 1, i++) ; return i; } /** * Calculate an FFT in place, modifying the input arrays. * * @param n * @param ar * @param ai */ public static void fft(int n, double ar[], double ai[]) { transform(1, n, ar, ai); // TODO -1 or 1 } /** * Calculate an inverse FFT in place, modifying the input arrays. * * @param n * @param ar * @param ai */ public static void ifft(int n, double ar[], double ai[]) { transform(-1, n, ar, ai); // TODO -1 or 1 } }