/* * Copyright 2011 Phil Burk, Mobileer Inc * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.softsynth.math; import java.util.ArrayList; /** * Tool for factoring primes and prime ratios. This class contains a static array of primes * generated using the Sieve of Eratosthenes. * * @author Phil Burk (C) 2011 Mobileer Inc */ public class PrimeFactors { private static final int SIEVE_SIZE = 1000; private static int[] primes; private final int[] factors; static { // Use Sieve of Eratosthenes to fill Prime table boolean[] sieve = new boolean[SIEVE_SIZE]; ArrayList primeList = new ArrayList(); int i = 2; while (i < (SIEVE_SIZE / 2)) { if (!sieve[i]) { primeList.add(i); int multiple = 2 * i; while (multiple < SIEVE_SIZE) { sieve[multiple] = true; multiple += i; } } i += 1; } primes = primeListToArray(primeList); } private static int[] primeListToArray(ArrayList primeList) { int[] primes = new int[primeList.size()]; for (int i = 0; i < primes.length; i++) { primes[i] = primeList.get(i); } return primes; } public PrimeFactors(int[] factors) { this.factors = factors; } public PrimeFactors(int numerator, int denominator) { int[] topFactors = factor(numerator); int[] bottomFactors = factor(denominator); factors = subtract(topFactors, bottomFactors); } public PrimeFactors subtract(PrimeFactors pf) { return new PrimeFactors(subtract(factors, pf.factors)); } public PrimeFactors add(PrimeFactors pf) { return new PrimeFactors(add(factors, pf.factors)); } public static int[] subtract(int[] factorsA, int[] factorsB) { int max; int min; if (factorsA.length > factorsB.length) { max = factorsA.length; min = factorsB.length; } else { min = factorsA.length; max = factorsB.length; } ArrayList primeList = new ArrayList(); int i; for (i = 0; i < min; i++) { primeList.add(factorsA[i] - factorsB[i]); } if (factorsA.length > factorsB.length) { for (; i < max; i++) { primeList.add(factorsA[i]); } } else { for (; i < max; i++) { primeList.add(0 - factorsB[i]); } } trimPrimeList(primeList); return primeListToArray(primeList); } public static int[] add(int[] factorsA, int[] factorsB) { int max; int min; if (factorsA.length > factorsB.length) { max = factorsA.length; min = factorsB.length; } else { min = factorsA.length; max = factorsB.length; } ArrayList primeList = new ArrayList(); int i; for (i = 0; i < min; i++) { primeList.add(factorsA[i] + factorsB[i]); } if (factorsA.length > factorsB.length) { for (; i < max; i++) { primeList.add(factorsA[i]); } } else if (factorsB.length > factorsA.length) { for (; i < max; i++) { primeList.add(factorsB[i]); } } trimPrimeList(primeList); return primeListToArray(primeList); } private static void trimPrimeList(ArrayList primeList) { int i; // trim zero factors off end. for (i = primeList.size() - 1; i >= 0; i--) { if (primeList.get(i) == 0) { primeList.remove(i); } else { break; } } } public static int[] factor(int n) { ArrayList primeList = new ArrayList(); int i = 0; int p = primes[i]; int exponent = 0; while (n > 1) { // does the prime number divide evenly into n? int d = n / p; int m = d * p; if (m == n) { n = d; exponent += 1; } else { primeList.add(exponent); exponent = 0; i += 1; p = primes[i]; } } if (exponent > 0) { primeList.add(exponent); } return primeListToArray(primeList); } /** * Get prime from table. * * * @param n Warning: Do not exceed getPrimeCount()-1. * @return Nth prime number, the 0th prime is 2 */ public static int getPrime(int n) { return primes[n]; } /** * @return the number of primes stored in the table */ public static int getPrimeCount() { return primes.length; } public JustRatio getJustRatio() { long n = 1; long d = 1; for (int i = 0; i < factors.length; i++) { int exponent = factors[i]; int p = primes[i]; if (exponent > 0) { for (int k = 0; k < exponent; k++) { n = n * p; } } else if (exponent < 0) { exponent = 0 - exponent; for (int k = 0; k < exponent; k++) { d = d * p; } } } return new JustRatio(n, d); } public int[] getFactors() { return factors.clone(); } @Override public String toString() { StringBuffer buffer = new StringBuffer(); printFactors(buffer, 1); buffer.append("/"); printFactors(buffer, -1); return buffer.toString(); } private void printFactors(StringBuffer buffer, int sign) { boolean gotSome = false; for (int i = 0; i < factors.length; i++) { int pf = factors[i] * sign; if (pf > 0) { if (gotSome) buffer.append('*'); int prime = primes[i]; if (pf == 1) { buffer.append("" + prime); } else if (pf == 2) { buffer.append(prime + "*" + prime); } else if (pf > 2) { buffer.append("(" + prime + "^" + pf + ")"); } gotSome = true; } } if (!gotSome) { buffer.append("1"); } } }