aboutsummaryrefslogtreecommitdiffstats
path: root/src/com/softsynth/math/PrimeFactors.java
blob: 06c0d55518ca9c8232838978e05c8691bddb5398 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/*
 * Copyright 2011 Phil Burk, Mobileer Inc
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.softsynth.math;

import java.util.ArrayList;

/**
 * Tool for factoring primes and prime ratios. This class contains a static array of primes
 * generated using the Sieve of Eratosthenes.
 *
 * @author Phil Burk (C) 2011 Mobileer Inc
 */
public class PrimeFactors {
    private static final int SIEVE_SIZE = 1000;
    private static int[] primes;
    private final int[] factors;

    static {
        // Use Sieve of Eratosthenes to fill Prime table
        boolean[] sieve = new boolean[SIEVE_SIZE];
        ArrayList<Integer> primeList = new ArrayList<Integer>();
        int i = 2;
        while (i < (SIEVE_SIZE / 2)) {
            if (!sieve[i]) {
                primeList.add(i);
                int multiple = 2 * i;
                while (multiple < SIEVE_SIZE) {
                    sieve[multiple] = true;
                    multiple += i;
                }
            }
            i += 1;
        }
        primes = primeListToArray(primeList);
    }

    private static int[] primeListToArray(ArrayList<Integer> primeList) {
        int[] primes = new int[primeList.size()];
        for (int i = 0; i < primes.length; i++) {
            primes[i] = primeList.get(i);
        }
        return primes;
    }

    public PrimeFactors(int[] factors) {
        this.factors = factors;
    }

    public PrimeFactors(int numerator, int denominator) {
        int[] topFactors = factor(numerator);
        int[] bottomFactors = factor(denominator);
        factors = subtract(topFactors, bottomFactors);
    }

    public PrimeFactors subtract(PrimeFactors pf) {
        return new PrimeFactors(subtract(factors, pf.factors));
    }

    public PrimeFactors add(PrimeFactors pf) {
        return new PrimeFactors(add(factors, pf.factors));
    }

    public static int[] subtract(int[] factorsA, int[] factorsB) {
        int max;
        int min;
        if (factorsA.length > factorsB.length) {
            max = factorsA.length;
            min = factorsB.length;
        } else {

            min = factorsA.length;
            max = factorsB.length;
        }
        ArrayList<Integer> primeList = new ArrayList<Integer>();
        int i;
        for (i = 0; i < min; i++) {
            primeList.add(factorsA[i] - factorsB[i]);
        }
        if (factorsA.length > factorsB.length) {
            for (; i < max; i++) {
                primeList.add(factorsA[i]);
            }
        } else {
            for (; i < max; i++) {
                primeList.add(0 - factorsB[i]);
            }
        }
        trimPrimeList(primeList);
        return primeListToArray(primeList);
    }

    public static int[] add(int[] factorsA, int[] factorsB) {
        int max;
        int min;
        if (factorsA.length > factorsB.length) {
            max = factorsA.length;
            min = factorsB.length;
        } else {
            min = factorsA.length;
            max = factorsB.length;
        }
        ArrayList<Integer> primeList = new ArrayList<Integer>();
        int i;
        for (i = 0; i < min; i++) {
            primeList.add(factorsA[i] + factorsB[i]);
        }
        if (factorsA.length > factorsB.length) {
            for (; i < max; i++) {
                primeList.add(factorsA[i]);
            }
        } else if (factorsB.length > factorsA.length) {
            for (; i < max; i++) {
                primeList.add(factorsB[i]);
            }
        }
        trimPrimeList(primeList);
        return primeListToArray(primeList);
    }

    private static void trimPrimeList(ArrayList<Integer> primeList) {
        int i;
        // trim zero factors off end.
        for (i = primeList.size() - 1; i >= 0; i--) {
            if (primeList.get(i) == 0) {
                primeList.remove(i);
            } else {
                break;
            }
        }
    }

    public static int[] factor(int n) {
        ArrayList<Integer> primeList = new ArrayList<Integer>();
        int i = 0;
        int p = primes[i];
        int exponent = 0;
        while (n > 1) {
            // does the prime number divide evenly into n?
            int d = n / p;
            int m = d * p;
            if (m == n) {
                n = d;
                exponent += 1;
            } else {
                primeList.add(exponent);
                exponent = 0;
                i += 1;
                p = primes[i];
            }
        }
        if (exponent > 0) {
            primeList.add(exponent);
        }
        return primeListToArray(primeList);
    }

    /**
     * Get prime from table.
     *
     *
     * @param n Warning: Do not exceed getPrimeCount()-1.
     * @return Nth prime number, the 0th prime is 2
     */
    public static int getPrime(int n) {
        return primes[n];
    }

    /**
     * @return the number of primes stored in the table
     */
    public static int getPrimeCount() {
        return primes.length;
    }

    public JustRatio getJustRatio() {
        long n = 1;
        long d = 1;
        for (int i = 0; i < factors.length; i++) {
            int exponent = factors[i];
            int p = primes[i];
            if (exponent > 0) {
                for (int k = 0; k < exponent; k++) {
                    n = n * p;
                }
            } else if (exponent < 0) {
                exponent = 0 - exponent;
                for (int k = 0; k < exponent; k++) {
                    d = d * p;
                }
            }
        }
        return new JustRatio(n, d);
    }

    public int[] getFactors() {
        return factors.clone();
    }

    @Override
    public String toString() {
        StringBuffer buffer = new StringBuffer();
        printFactors(buffer, 1);
        buffer.append("/");
        printFactors(buffer, -1);
        return buffer.toString();
    }

    private void printFactors(StringBuffer buffer, int sign) {
        boolean gotSome = false;
        for (int i = 0; i < factors.length; i++) {
            int pf = factors[i] * sign;
            if (pf > 0) {
                if (gotSome)
                    buffer.append('*');
                int prime = primes[i];
                if (pf == 1) {
                    buffer.append("" + prime);
                } else if (pf == 2) {
                    buffer.append(prime + "*" + prime);
                } else if (pf > 2) {
                    buffer.append("(" + prime + "^" + pf + ")");
                }
                gotSome = true;
            }
        }
        if (!gotSome) {
            buffer.append("1");
        }
    }
}