diff options
author | Brad Davis <[email protected]> | 2013-10-10 23:31:48 -0700 |
---|---|---|
committer | Brad Davis <[email protected]> | 2013-10-10 23:31:48 -0700 |
commit | cf0441a1dc790d6fdca7400a7db7a939c2fa6000 (patch) | |
tree | edaf4e78195d789b1e3b724328951324db085324 /LibOVR/Src/Kernel/OVR_Math.h | |
parent | abfcde20cd83aa36e83186a0745425bcdead6144 (diff) |
Adding Linux 0.2.5 changes
Diffstat (limited to 'LibOVR/Src/Kernel/OVR_Math.h')
-rw-r--r-- | LibOVR/Src/Kernel/OVR_Math.h | 523 |
1 files changed, 403 insertions, 120 deletions
diff --git a/LibOVR/Src/Kernel/OVR_Math.h b/LibOVR/Src/Kernel/OVR_Math.h index 567ea9c..108b9d3 100644 --- a/LibOVR/Src/Kernel/OVR_Math.h +++ b/LibOVR/Src/Kernel/OVR_Math.h @@ -4,7 +4,7 @@ PublicHeader: OVR.h Filename : OVR_Math.h Content : Implementation of 3D primitives such as vectors, matrices. Created : September 4, 2012 -Authors : Andrew Reisse, Michael Antonov, Steve LaValle, Anna Yershova +Authors : Andrew Reisse, Michael Antonov, Steve LaValle, Anna Yershova, Max Katsev Copyright : Copyright 2012 Oculus VR, Inc. All Rights reserved. @@ -23,11 +23,12 @@ otherwise accompanies this software in either electronic or hard copy form. #include "OVR_Types.h" #include "OVR_RefCount.h" +#include "OVR_Std.h" namespace OVR { //------------------------------------------------------------------------------------- -// Constants for 3D world/axis definitions. +// ***** Constants for 3D world/axis definitions. // Definitions of axes for coordinate and rotation conversions. enum Axis @@ -48,12 +49,13 @@ enum RotateDirection Rotate_CW = -1 }; +// Constants for right handed and left handed coordinate systems enum HandedSystem { Handed_R = 1, Handed_L = -1 }; -// AxisDirection describes which way the axis points. Used by WorldAxes. +// AxisDirection describes which way the coordinate axis points. Used by WorldAxes. enum AxisDirection { Axis_Up = 2, @@ -74,9 +76,9 @@ struct WorldAxes }; -//------------------------------------------------------------------------------------- -// ***** Math - +//------------------------------------------------------------------------------------// +// ************************************ Math *****************************************// +// // Math class contains constants and functions. This class is a template specialized // per type, with Math<float> and Math<double> being distinct. template<class Type> @@ -95,14 +97,14 @@ public: static const float PiOver4; static const float E; - static const float MaxValue; // Largest positive float Value - static const float MinPositiveValue; // Smallest possible positive value + static const float MaxValue; // Largest positive float Value + static const float MinPositiveValue; // Smallest possible positive value static const float RadToDegreeFactor; static const float DegreeToRadFactor; - static const float Tolerance; // 0.00001f; - static const float SingularityRadius; //0.00000000001f for Gimbal lock numerical problems + static const float Tolerance; // 0.00001f; + static const float SingularityRadius; // 0.0000001f for Gimbal lock numerical problems }; // Double-precision Math constants class. @@ -116,33 +118,54 @@ public: static const double PiOver4; static const double E; - static const double MaxValue; // Largest positive double Value - static const double MinPositiveValue; // Smallest possible positive value + static const double MaxValue; // Largest positive double Value + static const double MinPositiveValue; // Smallest possible positive value static const double RadToDegreeFactor; static const double DegreeToRadFactor; - static const double Tolerance; // 0.00001f; - static const double SingularityRadius; //0.00000000001 for Gimbal lock numerical problems + static const double Tolerance; // 0.00001; + static const double SingularityRadius; // 0.000000000001 for Gimbal lock numerical problems + }; typedef Math<float> Mathf; typedef Math<double> Mathd; // Conversion functions between degrees and radians -template<class FT> -FT RadToDegree(FT rads) { return rads * Math<FT>::RadToDegreeFactor; } -template<class FT> -FT DegreeToRad(FT rads) { return rads * Math<FT>::DegreeToRadFactor; } +template<class T> +T RadToDegree(T rads) { return rads * Math<T>::RadToDegreeFactor; } +template<class T> +T DegreeToRad(T rads) { return rads * Math<T>::DegreeToRadFactor; } + +// Numerically stable acos function +template<class T> +T Acos(T val) { + if (val > T(1)) return T(0); + else if (val < T(-1)) return Math<T>::Pi; + else return acos(val); +}; + +// Numerically stable asin function +template<class T> +T Asin(T val) { + if (val > T(1)) return Math<T>::PiOver2; + else if (val < T(-1)) return Math<T>::PiOver2 * T(3); + else return asin(val); +}; + +#ifdef OVR_CC_MSVC +inline int isnan(double x) { return _isnan(x); }; +#endif template<class T> class Quat; //------------------------------------------------------------------------------------- -// ***** Vector2f - 2D Vector2f +// ***** Vector2<> -// Vector2f represents a 2-dimensional vector or point in space, -// consisting of coordinates x and y, +// Vector2f (Vector2d) represents a 2-dimensional vector or point in space, +// consisting of coordinates x and y template<class T> class Vector2 @@ -174,33 +197,53 @@ public: return *this; } // Compare two vectors for equality with tolerance. Returns true if vectors match withing tolerance. - bool Compare(const Vector2&b, T tolerance = Mathf::Tolerance) + bool Compare(const Vector2&b, T tolerance = Mathf::Tolerance) { return (fabs(b.x-x) < tolerance) && (fabs(b.y-y) < tolerance); } - // Dot product overload. + // Entrywise product of two vectors + Vector2 EntrywiseMultiply(const Vector2& b) const { return Vector2(x * b.x, y * b.y);} + + // Dot product // Used to calculate angle q between two vectors among other things, // as (A dot B) = |a||b|cos(q). - T operator* (const Vector2& b) const { return x*b.x + y*b.y; } + T Dot(const Vector2& b) const { return x*b.x + y*b.y; } // Returns the angle from this vector to b, in radians. - T Angle(const Vector2& b) const { return acos((*this * b)/(Length()*b.Length())); } + T Angle(const Vector2& b) const + { + T div = LengthSq()*b.LengthSq(); + OVR_ASSERT(div != T(0)); + T result = Acos((this->Dot(b))/sqrt(div)); + return result; + } // Return Length of the vector squared. T LengthSq() const { return (x * x + y * y); } // Return vector length. T Length() const { return sqrt(LengthSq()); } - // Returns distance between two points represented by vectors. + // Returns distance between two points represented by vectors. T Distance(Vector2& b) const { return (*this - b).Length(); } - - // Determine if this a unit vector. + + // Determine if this a unit vector. bool IsNormalized() const { return fabs(LengthSq() - T(1)) < Math<T>::Tolerance; } + // Normalize, convention vector length to 1. - void Normalize() { *this /= Length(); } + void Normalize() + { + T l = Length(); + OVR_ASSERT(l != T(0)); + *this /= l; + } // Returns normalized (unit) version of the vector without modifying itself. - Vector2 Normalized() const { return *this / Length(); } + Vector2 Normalized() const + { + T l = Length(); + OVR_ASSERT(l != T(0)); + return *this / l; + } // Linearly interpolates from this vector to another. // Factor should be between 0.0 and 1.0, with 0 giving full value to this. @@ -208,17 +251,24 @@ public: // Projects this vector onto the argument; in other words, // A.Project(B) returns projection of vector A onto B. - Vector2 ProjectTo(const Vector2& b) const { return b * ((*this * b) / b.LengthSq()); } + Vector2 ProjectTo(const Vector2& b) const + { + T l2 = b.LengthSq(); + OVR_ASSERT(l2 != T(0)); + return b * ( Dot(b) / l2 ); + } }; typedef Vector2<float> Vector2f; typedef Vector2<double> Vector2d; + //------------------------------------------------------------------------------------- -// ***** Vector3f - 3D Vector3f +// ***** Vector3<> - 3D vector of {x, y, z} -// Vector3f represents a 3-dimensional vector or point in space, +// +// Vector3f (Vector3d) represents a 3-dimensional vector or point in space, // consisting of coordinates x, y and z. template<class T> @@ -253,13 +303,20 @@ public: // Compare two vectors for equality with tolerance. Returns true if vectors match withing tolerance. bool Compare(const Vector3&b, T tolerance = Mathf::Tolerance) { - return (fabs(b.x-x) < tolerance) && (fabs(b.y-y) < tolerance) && (fabs(b.z-z) < tolerance); + return (fabs(b.x-x) < tolerance) && + (fabs(b.y-y) < tolerance) && + (fabs(b.z-z) < tolerance); } - // Dot product overload. + // Entrywise product of two vectors + Vector3 EntrywiseMultiply(const Vector3& b) const { return Vector3(x * b.x, + y * b.y, + z * b.z);} + + // Dot product // Used to calculate angle q between two vectors among other things, // as (A dot B) = |a||b|cos(q). - T operator* (const Vector3& b) const { return x*b.x + y*b.y + z*b.z; } + T Dot(const Vector3& b) const { return x*b.x + y*b.y + z*b.z; } // Compute cross product, which generates a normal vector. // Direction vector can be determined by right-hand rule: Pointing index finder in @@ -269,7 +326,13 @@ public: x*b.y - y*b.x); } // Returns the angle from this vector to b, in radians. - T Angle(const Vector3& b) const { return acos((*this * b)/(Length()*b.Length())); } + T Angle(const Vector3& b) const + { + T div = LengthSq()*b.LengthSq(); + OVR_ASSERT(div != T(0)); + T result = Acos((this->Dot(b))/sqrt(div)); + return result; + } // Return Length of the vector squared. T LengthSq() const { return (x * x + y * y + z * z); } @@ -281,10 +344,22 @@ public: // Determine if this a unit vector. bool IsNormalized() const { return fabs(LengthSq() - T(1)) < Math<T>::Tolerance; } + // Normalize, convention vector length to 1. - void Normalize() { *this /= Length(); } + void Normalize() + { + T l = Length(); + OVR_ASSERT(l != T(0)); + *this /= l; + } + // Returns normalized (unit) version of the vector without modifying itself. - Vector3 Normalized() const { return *this / Length(); } + Vector3 Normalized() const + { + T l = Length(); + OVR_ASSERT(l != T(0)); + return *this / l; + } // Linearly interpolates from this vector to another. // Factor should be between 0.0 and 1.0, with 0 giving full value to this. @@ -292,7 +367,15 @@ public: // Projects this vector onto the argument; in other words, // A.Project(B) returns projection of vector A onto B. - Vector3 ProjectTo(const Vector3& b) const { return b * ((*this * b) / b.LengthSq()); } + Vector3 ProjectTo(const Vector3& b) const + { + T l2 = b.LengthSq(); + OVR_ASSERT(l2 != T(0)); + return b * ( Dot(b) / l2 ); + } + + // Projects this vector onto a plane defined by a normal vector + Vector3 ProjectToPlane(const Vector3& normal) const { return *this - this->ProjectTo(normal); } }; @@ -301,8 +384,55 @@ typedef Vector3<double> Vector3d; //------------------------------------------------------------------------------------- -// ***** Matrix4f +// ***** Size + +// Size class represents 2D size with Width, Height components. +// Used to describe distentions of render targets, etc. + +template<class T> +class Size +{ +public: + T Width, Height; + + Size() : Width(0), Height(0) { } + Size(T w_, T h_) : Width(w_), Height(h_) { } + explicit Size(T s) : Width(s), Height(s) { } + + bool operator== (const Size& b) const { return Width == b.Width && Height == b.Height; } + bool operator!= (const Size& b) const { return Width != b.Width || Height != b.Height; } + + Size operator+ (const Size& b) const { return Size(Width + b.Width, Height + b.Height); } + Size& operator+= (const Size& b) { Width += b.Width; Height += b.Height; return *this; } + Size operator- (const Size& b) const { return Size(Width - b.Width, Height - b.Height); } + Size& operator-= (const Size& b) { Width -= b.Width; Height -= b.Height; return *this; } + Size operator- () const { return Size(-Width, -Height); } + Size operator* (const Size& b) const { return Size(Width * b.Width, Height * b.Height); } + Size& operator*= (const Size& b) { Width *= b.Width; Height *= b.Height; return *this; } + Size operator/ (const Size& b) const { return Size(Width / b.Width, Height / b.Height); } + Size& operator/= (const Size& b) { Width /= b.Width; Height /= b.Height; return *this; } + + // Scalar multiplication/division scales both components. + Size operator* (T s) const { return Size(Width*s, Height*s); } + Size& operator*= (T s) { Width *= s; Height *= s; return *this; } + Size operator/ (T s) const { return Size(Width/s, Height/s); } + Size& operator/= (T s) { Width /= s; Height /= s; return *this; } + + T Area() const { return Width * Height; } + + inline Vector2<T> ToVector() const { return Vector2<T>(Width, Height); } +}; + +typedef Size<int> Sizei; +typedef Size<unsigned> Sizeu; +typedef Size<float> Sizef; +typedef Size<double> Sized; + + +//------------------------------------------------------------------------------------- +// ***** Matrix4f +// // Matrix4f is a 4x4 matrix used for 3d transformations and projections. // Translation stored in the last column. // The matrix is stored in row-major order in memory, meaning that values @@ -367,6 +497,29 @@ public: M[3][0] = 0; M[3][1] = 0; M[3][2] = 0; M[3][3] = 1; } + void ToString(char* dest, UPInt destsize) + { + UPInt pos = 0; + for (int r=0; r<4; r++) + for (int c=0; c<4; c++) + pos += OVR_sprintf(dest+pos, destsize-pos, "%g ", M[r][c]); + } + + static Matrix4f FromString(const char* src) + { + Matrix4f result; + for (int r=0; r<4; r++) + for (int c=0; c<4; c++) + { + result.M[r][c] = (float)atof(src); + while (src && *src != ' ') + src++; + while (src && *src == ' ') + src++; + } + return result; + } + static const Matrix4f& Identity() { return IdentityValue; } void SetIdentity() @@ -377,6 +530,36 @@ public: M[0][3] = M[1][3] = M[2][1] = M[3][0] = 0; } + Matrix4f operator+ (const Matrix4f& b) const + { + Matrix4f result(*this); + result += b; + return result; + } + + Matrix4f& operator+= (const Matrix4f& b) + { + for (int i = 0; i < 4; i++) + for (int j = 0; j < 4; j++) + M[i][j] += b.M[i][j]; + return *this; + } + + Matrix4f operator- (const Matrix4f& b) const + { + Matrix4f result(*this); + result -= b; + return result; + } + + Matrix4f& operator-= (const Matrix4f& b) + { + for (int i = 0; i < 4; i++) + for (int j = 0; j < 4; j++) + M[i][j] -= b.M[i][j]; + return *this; + } + // Multiplies two matrices into destination with minimum copying. static Matrix4f& Multiply(Matrix4f* d, const Matrix4f& a, const Matrix4f& b) { @@ -406,18 +589,32 @@ public: Matrix4f operator* (float s) const { - return Matrix4f(M[0][0] * s, M[0][1] * s, M[0][2] * s, M[0][3] * s, - M[1][0] * s, M[1][1] * s, M[1][2] * s, M[1][3] * s, - M[2][0] * s, M[2][1] * s, M[2][2] * s, M[2][3] * s, - M[3][0] * s, M[3][1] * s, M[3][2] * s, M[3][3] * s); + Matrix4f result(*this); + result *= s; + return result; } Matrix4f& operator*= (float s) { - M[0][0] *= s; M[0][1] *= s; M[0][2] *= s; M[0][3] *= s; - M[1][0] *= s; M[1][1] *= s; M[1][2] *= s; M[1][3] *= s; - M[2][0] *= s; M[2][1] *= s; M[2][2] *= s; M[2][3] *= s; - M[3][0] *= s; M[3][1] *= s; M[3][2] *= s; M[3][3] *= s; + for (int i = 0; i < 4; i++) + for (int j = 0; j < 4; j++) + M[i][j] *= s; + return *this; + } + + + Matrix4f operator/ (float s) const + { + Matrix4f result(*this); + result /= s; + return result; + } + + Matrix4f& operator/= (float s) + { + for (int i = 0; i < 4; i++) + for (int j = 0; j < 4; j++) + M[i][j] /= s; return *this; } @@ -442,16 +639,16 @@ public: } - float SubDet (const int* rows, const int* cols) const + float SubDet (const UPInt* rows, const UPInt* cols) const { return M[rows[0]][cols[0]] * (M[rows[1]][cols[1]] * M[rows[2]][cols[2]] - M[rows[1]][cols[2]] * M[rows[2]][cols[1]]) - M[rows[0]][cols[1]] * (M[rows[1]][cols[0]] * M[rows[2]][cols[2]] - M[rows[1]][cols[2]] * M[rows[2]][cols[0]]) + M[rows[0]][cols[2]] * (M[rows[1]][cols[0]] * M[rows[2]][cols[1]] - M[rows[1]][cols[1]] * M[rows[2]][cols[0]]); } - float Cofactor(int I, int J) const + float Cofactor(UPInt I, UPInt J) const { - const int indices[4][3] = {{1,2,3},{0,2,3},{0,1,3},{0,1,2}}; + const UPInt indices[4][3] = {{1,2,3},{0,2,3},{0,1,3},{0,1,2}}; return ((I+J)&1) ? -SubDet(indices[I],indices[J]) : SubDet(indices[I],indices[J]); } @@ -480,7 +677,27 @@ public: *this = Inverted(); } - //AnnaSteve: + // This is more efficient than general inverse, but ONLY works + // correctly if it is a homogeneous transform matrix (rot + trans) + Matrix4f InvertedHomogeneousTransform() const + { + // Make the inverse rotation matrix + Matrix4f rinv = this->Transposed(); + rinv.M[3][0] = rinv.M[3][1] = rinv.M[3][2] = 0.0f; + // Make the inverse translation matrix + Vector3f tvinv = Vector3f(-M[0][3],-M[1][3],-M[2][3]); + Matrix4f tinv = Matrix4f::Translation(tvinv); + return rinv * tinv; // "untranslate", then "unrotate" + } + + // This is more efficient than general inverse, but ONLY works + // correctly if it is a homogeneous transform matrix (rot + trans) + void InvertHomogeneousTransform() + { + *this = InvertedHomogeneousTransform(); + } + + // Matrix to Euler Angles conversion // a,b,c, are the YawPitchRoll angles to be returned // rotation a around axis A1 // is followed by rotation b around axis A2 @@ -502,7 +719,7 @@ public: *b = -S*D*Math<float>::PiOver2; *c = S*D*atan2( psign*M[A2][A1], M[A2][A2] ); } - else if (pm > 1.0 - Math<float>::SingularityRadius) + else if (pm > 1.0f - Math<float>::SingularityRadius) { // North pole singularity *a = 0.0f; *b = S*D*Math<float>::PiOver2; @@ -518,7 +735,7 @@ public: return; } - //AnnaSteve: + // Matrix to Euler Angles conversion // a,b,c, are the YawPitchRoll angles to be returned // rotation a around axis A1 // is followed by rotation b around axis A2 @@ -537,13 +754,13 @@ public: psign = 1.0f; float c2 = M[A1][A1]; - if (c2 < -1.0 + Math<float>::SingularityRadius) + if (c2 < -1.0f + Math<float>::SingularityRadius) { // South pole singularity *a = 0.0f; *b = S*D*Math<float>::Pi; *c = S*D*atan2( -psign*M[A2][m],M[A2][A2]); } - else if (c2 > 1.0 - Math<float>::SingularityRadius) + else if (c2 > 1.0f - Math<float>::SingularityRadius) { // North pole singularity *a = 0.0f; *b = 0.0f; @@ -560,7 +777,6 @@ public: // Creates a matrix that converts the vertices from one coordinate system // to another. - // static Matrix4f AxisConversion(const WorldAxes& to, const WorldAxes& from) { // Holds axis values from the 'to' structure @@ -584,7 +800,7 @@ public: } - + // Creates a matrix for translation by vector static Matrix4f Translation(const Vector3f& v) { Matrix4f t; @@ -594,6 +810,7 @@ public: return t; } + // Creates a matrix for translation by vector static Matrix4f Translation(float x, float y, float z = 0.0f) { Matrix4f t; @@ -603,6 +820,7 @@ public: return t; } + // Creates a matrix for scaling by vector static Matrix4f Scaling(const Vector3f& v) { Matrix4f t; @@ -612,6 +830,7 @@ public: return t; } + // Creates a matrix for scaling by vector static Matrix4f Scaling(float x, float y, float z) { Matrix4f t; @@ -621,6 +840,7 @@ public: return t; } + // Creates a matrix for scaling by constant static Matrix4f Scaling(float s) { Matrix4f t; @@ -632,7 +852,8 @@ public: - //AnnaSteve : Just for quick testing. Not for final API. Need to remove case. + // Creates a rotation matrix rotating around the X axis by 'angle' radians. + // Just for quick testing. Not for final API. Need to remove case. static Matrix4f RotationAxis(Axis A, float angle, RotateDirection d, HandedSystem s) { float sina = s * d *sin(angle); @@ -658,10 +879,10 @@ public: // Creates a rotation matrix rotating around the X axis by 'angle' radians. // Rotation direction is depends on the coordinate system: - // RHS (Oculus default): Positive angle values rotate Counter-clockwise (CCW), + // RHS (Oculus default): Positive angle values rotate Counter-clockwise (CCW), // while looking in the negative axis direction. This is the // same as looking down from positive axis values towards origin. - // LHS: Positive angle values rotate clock-wise (CW), while looking in the + // LHS: Positive angle values rotate clock-wise (CW), while looking in the // negative axis direction. static Matrix4f RotationX(float angle) { @@ -743,9 +964,9 @@ public: }; -//------------------------------------------------------------------------------------- -// ***** Quat - +//-------------------------------------------------------------------------------------// +// **************************************** Quat **************************************// +// // Quatf represents a quaternion class used for rotations. // // Quaternion multiplications are done in right-to-left order, to match the @@ -763,7 +984,7 @@ public: Quat(T x_, T y_, T z_, T w_) : x(x_), y(y_), z(z_), w(w_) {} - // Constructs rotation quaternion around the axis. + // Constructs quaternion for rotation around the axis by an angle. Quat(const Vector3<T>& axis, T angle) { Vector3<T> unitAxis = axis.Normalized(); @@ -775,33 +996,33 @@ public: z = unitAxis.z * sinHalfAngle; } - //AnnaSteve: + // Constructs quaternion for rotation around one of the coordinate axis by an angle. void AxisAngle(Axis A, T angle, RotateDirection d, HandedSystem s) { - T sinHalfAngle = s * d *sin(angle * (T)0.5); + T sinHalfAngle = s * d *sin(angle * T(0.5)); T v[3]; - v[0] = v[1] = v[2] = (T)0; + v[0] = v[1] = v[2] = T(0); v[A] = sinHalfAngle; - //return Quat(v[0], v[1], v[2], cos(angle * (T)0.5)); - w = cos(angle * (T)0.5); + + w = cos(angle * T(0.5)); x = v[0]; y = v[1]; z = v[2]; } - void GetAxisAngle(Vector3<T>* axis, T* angle) const + // Compute axis and angle from quaternion + void GetAxisAngle(Vector3<T>* axis, T* angle) const { - if (LengthSq() > Math<T>::Tolerance * Math<T>::Tolerance) - { - *axis = Vector3<T>(x, y, z).Normalized(); - *angle = 2 * acos(w); - } - else - { - *axis = Vector3<T>(1, 0, 0); - *angle= 0; - } + if ( x*x + y*y + z*z > Math<T>::Tolerance * Math<T>::Tolerance ) { + *axis = Vector3<T>(x, y, z).Normalized(); + *angle = T(2) * Acos(w); + } + else + { + *axis = Vector3<T>(1, 0, 0); + *angle= 0; + } } bool operator== (const Quat& b) const { return x == b.x && y == b.y && z == b.z && w == b.w; } @@ -817,6 +1038,7 @@ public: Quat operator/ (T s) const { T rcp = T(1)/s; return Quat(x * rcp, y * rcp, z * rcp, w *rcp); } Quat& operator/= (T s) { T rcp = T(1)/s; w *= rcp; x *= rcp; y *= rcp; z *= rcp; return *this; } + // Get Imaginary part vector Vector3<T> Imag() const { return Vector3<T>(x,y,z); } @@ -824,29 +1046,42 @@ public: T Length() const { return sqrt(x * x + y * y + z * z + w * w); } // Get quaternion length squared. T LengthSq() const { return (x * x + y * y + z * z + w * w); } + // Simple Eulidean distance in R^4 (not SLERP distance, but at least respects Haar measure) - T Distance(const Quat& q) const - { + T Distance(const Quat& q) const + { T d1 = (*this - q).Length(); - T d2 = (*this + q).Length(); // Antipoldal point check + T d2 = (*this + q).Length(); // Antipodal point check return (d1 < d2) ? d1 : d2; - } + } + T DistanceSq(const Quat& q) const { T d1 = (*this - q).LengthSq(); - T d2 = (*this + q).LengthSq(); // Antipoldal point check + T d2 = (*this + q).LengthSq(); // Antipodal point check return (d1 < d2) ? d1 : d2; } // Normalize - bool IsNormalized() const { return fabs(LengthSq() - 1) < Math<T>::Tolerance; } - void Normalize() { *this /= Length(); } - Quat Normalized() const { return *this / Length(); } + bool IsNormalized() const { return fabs(LengthSq() - T(1)) < Math<T>::Tolerance; } + + void Normalize() + { + T l = Length(); + OVR_ASSERT(l != T(0)); + *this /= l; + } + + Quat Normalized() const + { + T l = Length(); + OVR_ASSERT(l != T(0)); + return *this / l; + } // Returns conjugate of the quaternion. Produces inverse rotation if quaternion is normalized. Quat Conj() const { return Quat(-x, -y, -z, w); } - // AnnaSteve fixed: order of quaternion multiplication // Quaternion multiplication. Combines quaternion rotations, performing the one on the // right hand side first. Quat operator* (const Quat& b) const { return Quat(w * b.x + x * b.w + y * b.z - z * b.y, @@ -868,7 +1103,7 @@ public: // assuming negative direction of the axis). Standard formula: q(t) * V * q(t)^-1. Vector3<T> Rotate(const Vector3<T>& v) const { - return ((*this * Quat<T>(v.x, v.y, v.z, 0)) * Inverted()).Imag(); + return ((*this * Quat<T>(v.x, v.y, v.z, T(0))) * Inverted()).Imag(); } @@ -897,6 +1132,52 @@ public: float(T(2) * (x*z - w*y)), float(T(2) * (y*z + w*x)), float(ww - xx - yy + zz) ); } + + // Converting matrix to quaternion + static Quat<T> Matrix4fToQuat(const Matrix4f& m) + { + T trace = m.M[0][0] + m.M[1][1] + m.M[2][2]; + Quat<T> q; + + // In almost all cases, the first part is executed. + // However, if the trace is not positive, the other + // cases arise. + if (trace > T(0)) + { + T s = sqrt(trace + T(1)) * T(2); // s=4*qw + q.w = T(0.25) * s; + q.x = (m.M[2][1] - m.M[1][2]) / s; + q.y = (m.M[0][2] - m.M[2][0]) / s; + q.z = (m.M[1][0] - m.M[0][1]) / s; + } + else if ((m.M[0][0] > m.M[1][1])&&(m.M[0][0] > m.M[2][2])) + { + T s = sqrt(T(1) + m.M[0][0] - m.M[1][1] - m.M[2][2]) * T(2); + q.w = (m.M[2][1] - m.M[1][2]) / s; + q.x = T(0.25) * s; + q.y = (m.M[0][1] + m.M[1][0]) / s; + q.z = (m.M[2][0] + m.M[0][2]) / s; + } + else if (m.M[1][1] > m.M[2][2]) + { + T s = sqrt(T(1) + m.M[1][1] - m.M[0][0] - m.M[2][2]) * T(2); // S=4*qy + q.w = (m.M[0][2] - m.M[2][0]) / s; + q.x = (m.M[0][1] + m.M[1][0]) / s; + q.y = T(0.25) * s; + q.z = (m.M[1][2] + m.M[2][1]) / s; + } + else + { + T s = sqrt(T(1) + m.M[2][2] - m.M[0][0] - m.M[1][1]) * T(2); // S=4*qz + q.w = (m.M[1][0] - m.M[0][1]) / s; + q.x = (m.M[0][2] + m.M[2][0]) / s; + q.y = (m.M[1][2] + m.M[2][1]) / s; + q.z = T(0.25) * s; + } + return q; + } + + // GetEulerAngles extracts Euler angles from the quaternion, in the specified order of // axis rotations and the specified coordinate system. Right-handed coordinate system @@ -918,33 +1199,33 @@ public: T Q22 = Q[A2]*Q[A2]; T Q33 = Q[A3]*Q[A3]; - T psign = T(-1.0); + T psign = T(-1); // Determine whether even permutation if (((A1 + 1) % 3 == A2) && ((A2 + 1) % 3 == A3)) - psign = T(1.0); + psign = T(1); - T s2 = psign * T(2.0) * (psign*w*Q[A2] + Q[A1]*Q[A3]); + T s2 = psign * T(2) * (psign*w*Q[A2] + Q[A1]*Q[A3]); - if (s2 < (T)-1.0 + Math<T>::SingularityRadius) + if (s2 < T(-1) + Math<T>::SingularityRadius) { // South pole singularity - *a = T(0.0); + *a = T(0); *b = -S*D*Math<T>::PiOver2; - *c = S*D*atan2((T)2.0*(psign*Q[A1]*Q[A2] + w*Q[A3]), + *c = S*D*atan2(T(2)*(psign*Q[A1]*Q[A2] + w*Q[A3]), ww + Q22 - Q11 - Q33 ); } - else if (s2 > (T)1.0 - Math<T>::SingularityRadius) + else if (s2 > T(1) - Math<T>::SingularityRadius) { // North pole singularity - *a = (T)0.0; + *a = T(0); *b = S*D*Math<T>::PiOver2; - *c = S*D*atan2((T)2.0*(psign*Q[A1]*Q[A2] + w*Q[A3]), + *c = S*D*atan2(T(2)*(psign*Q[A1]*Q[A2] + w*Q[A3]), ww + Q22 - Q11 - Q33); } else { - *a = -S*D*atan2((T)-2.0*(w*Q[A1] - psign*Q[A2]*Q[A3]), + *a = -S*D*atan2(T(-2)*(w*Q[A1] - psign*Q[A2]*Q[A3]), ww + Q33 - Q11 - Q22); *b = S*D*asin(s2); - *c = S*D*atan2((T)2.0*(w*Q[A3] - psign*Q[A1]*Q[A2]), + *c = S*D*atan2(T(2)*(w*Q[A3] - psign*Q[A1]*Q[A2]), ww + Q11 - Q22 - Q33); } return; @@ -982,25 +1263,25 @@ public: T Q22 = Q[A2]*Q[A2]; T Qmm = Q[m]*Q[m]; - T psign = T(-1.0); + T psign = T(-1); if ((A1 + 1) % 3 == A2) // Determine whether even permutation { - psign = (T)1.0; + psign = T(1); } T c2 = ww + Q11 - Q22 - Qmm; - if (c2 < (T)-1.0 + Math<T>::SingularityRadius) + if (c2 < T(-1) + Math<T>::SingularityRadius) { // South pole singularity - *a = (T)0.0; + *a = T(0); *b = S*D*Math<T>::Pi; - *c = S*D*atan2( (T)2.0*(w*Q[A1] - psign*Q[A2]*Q[m]), + *c = S*D*atan2( T(2)*(w*Q[A1] - psign*Q[A2]*Q[m]), ww + Q22 - Q11 - Qmm); } - else if (c2 > (T)1.0 - Math<T>::SingularityRadius) + else if (c2 > T(1) - Math<T>::SingularityRadius) { // North pole singularity - *a = (T)0.0; - *b = (T)0.0; - *c = S*D*atan2( (T)2.0*(w*Q[A1] - psign*Q[A2]*Q[m]), + *a = T(0); + *b = T(0); + *c = S*D*atan2( T(2)*(w*Q[A1] - psign*Q[A2]*Q[m]), ww + Q22 - Q11 - Qmm); } else @@ -1013,8 +1294,8 @@ public: } return; } -}; +}; typedef Quat<float> Quatf; typedef Quat<double> Quatd; @@ -1026,7 +1307,6 @@ typedef Quat<double> Quatd; // Cleanly representing the algebra of 2D rotations. // The operations maintain the angle between -Pi and Pi, the same range as atan2. -// template<class T> class Angle @@ -1057,14 +1337,14 @@ public: // bool operator= (const T& x) { a = x; FixRange(); } // These operations assume a is already between -Pi and Pi. - Angle operator+ (const Angle& b) const { return Angle(a + b.a); } - Angle operator+ (const T& x) const { return Angle(a + x); } Angle& operator+= (const Angle& b) { a = a + b.a; FastFixRange(); return *this; } Angle& operator+= (const T& x) { a = a + x; FixRange(); return *this; } - Angle operator- (const Angle& b) const { return Angle(a - b.a); } - Angle operator- (const T& x) const { return Angle(a - x); } + Angle operator+ (const Angle& b) const { Angle res = *this; res += b; return res; } + Angle operator+ (const T& x) const { Angle res = *this; res += x; return res; } Angle& operator-= (const Angle& b) { a = a - b.a; FastFixRange(); return *this; } Angle& operator-= (const T& x) { a = a - x; FixRange(); return *this; } + Angle operator- (const Angle& b) const { Angle res = *this; res -= b; return res; } + Angle operator- (const T& x) const { Angle res = *this; res -= x; return res; } T Distance(const Angle& b) { T c = fabs(a - b.a); return (c <= Math<T>::Pi) ? c : Math<T>::TwoPi - c; } @@ -1085,6 +1365,9 @@ private: // Fixes the angle range to [-Pi,Pi] for any given range, but slower then the fast method inline void FixRange() { + // do nothing if the value is already in the correct range, since fmod call is expensive + if (a >= -Math<T>::Pi && a <= Math<T>::Pi) + return; a = fmod(a,Math<T>::TwoPi); if (a < -Math<T>::Pi) a += Math<T>::TwoPi; @@ -1122,7 +1405,7 @@ public: // Find the point to plane distance. The sign indicates what side of the plane the point is on (0 = point on plane). T TestSide(const Vector3<T>& p) const { - return (N * p) + D; + return (N.Dot(p)) + D; } Plane<T> Flipped() const @@ -1144,6 +1427,6 @@ public: typedef Plane<float> Planef; -} +} // Namespace OVR #endif |