summaryrefslogtreecommitdiffstats
path: root/LibOVR/Src/Kernel/OVR_Math.h
diff options
context:
space:
mode:
Diffstat (limited to 'LibOVR/Src/Kernel/OVR_Math.h')
-rw-r--r--LibOVR/Src/Kernel/OVR_Math.h1070
1 files changed, 1070 insertions, 0 deletions
diff --git a/LibOVR/Src/Kernel/OVR_Math.h b/LibOVR/Src/Kernel/OVR_Math.h
new file mode 100644
index 0000000..8c5a7ba
--- /dev/null
+++ b/LibOVR/Src/Kernel/OVR_Math.h
@@ -0,0 +1,1070 @@
+/************************************************************************************
+
+PublicHeader: OVR.h
+Filename : OVR_Math.h
+Content : Implementation of 3D primitives such as vectors, matrices.
+Created : September 4, 2012
+Authors : Andrew Reisse, Michael Antonov, Steve LaValle, Anna Yershova
+
+Copyright : Copyright 2012 Oculus VR, Inc. All Rights reserved.
+
+Use of this software is subject to the terms of the Oculus license
+agreement provided at the time of installation or download, or which
+otherwise accompanies this software in either electronic or hard copy form.
+
+*************************************************************************************/
+
+#ifndef OVR_Math_h
+#define OVR_Math_h
+
+#include <assert.h>
+#include <stdlib.h>
+#include <math.h>
+
+#include "OVR_Types.h"
+#include "OVR_RefCount.h"
+
+namespace OVR {
+
+//-------------------------------------------------------------------------------------
+// Constants for 3D world/axis definitions.
+
+// Definitions of axes for coordinate and rotation conversions.
+enum Axis
+{
+ Axis_X = 0, Axis_Y = 1, Axis_Z = 2
+};
+
+// RotateDirection describes the rotation direction around an axis, interpreted as follows:
+// CW - Clockwise while looking "down" from positive axis towards the origin.
+// CCW - Counter-clockwise while looking from the positive axis towards the origin,
+// which is in the negative axis direction.
+// CCW is the default for the RHS coordinate system. Oculus standard RHS coordinate
+// system defines Y up, X right, and Z back (pointing out from the screen). In this
+// system Rotate_CCW around Z will specifies counter-clockwise rotation in XY plane.
+enum RotateDirection
+{
+ Rotate_CCW = 1,
+ Rotate_CW = -1
+};
+
+enum HandedSystem
+{
+ Handed_R = 1, Handed_L = -1
+};
+
+// AxisDirection describes which way the axis points. Used by WorldAxes.
+enum AxisDirection
+{
+ Axis_Up = 2,
+ Axis_Down = -2,
+ Axis_Right = 1,
+ Axis_Left = -1,
+ Axis_In = 3,
+ Axis_Out = -3
+};
+
+struct WorldAxes
+{
+ AxisDirection XAxis, YAxis, ZAxis;
+
+ WorldAxes(AxisDirection x, AxisDirection y, AxisDirection z)
+ : XAxis(x), YAxis(y), ZAxis(z)
+ { OVR_ASSERT(abs(x) != abs(y) && abs(y) != abs(z) && abs(z) != abs(x));}
+};
+
+
+//-------------------------------------------------------------------------------------
+// ***** Math
+
+// Math class contains constants and functions. This class is a template specialized
+// per type, with Math<float> and Math<double> being distinct.
+template<class Type>
+class Math
+{
+};
+
+// Single-precision Math constants class.
+template<>
+class Math<float>
+{
+public:
+ static const float Pi;
+ static const float TwoPi;
+ static const float PiOver2;
+ static const float PiOver4;
+ static const float E;
+
+ static const float MaxValue; // Largest positive float Value
+ static const float MinPositiveValue; // Smallest possible positive value
+
+ static const float RadToDegreeFactor;
+ static const float DegreeToRadFactor;
+
+ static const float Tolerance; // 0.00001f;
+ static const float SingularityRadius; //0.00000000001f for Gimbal lock numerical problems
+};
+
+// Double-precision Math constants class.
+template<>
+class Math<double>
+{
+public:
+ static const double Pi;
+ static const double TwoPi;
+ static const double PiOver2;
+ static const double PiOver4;
+ static const double E;
+
+ static const double MaxValue; // Largest positive double Value
+ static const double MinPositiveValue; // Smallest possible positive value
+
+ static const double RadToDegreeFactor;
+ static const double DegreeToRadFactor;
+
+ static const double Tolerance; // 0.00001f;
+ static const double SingularityRadius; //0.00000000001 for Gimbal lock numerical problems
+};
+
+typedef Math<float> Mathf;
+typedef Math<double> Mathd;
+
+// Conversion functions between degrees and radians
+template<class FT>
+FT RadToDegree(FT rads) { return rads * Math<FT>::RadToDegreeFactor; }
+template<class FT>
+FT DegreeToRad(FT rads) { return rads * Math<FT>::DegreeToRadFactor; }
+
+template<class T>
+class Quat;
+
+//-------------------------------------------------------------------------------------
+// ***** Vector2f - 2D Vector2f
+
+// Vector2f represents a 2-dimensional vector or point in space,
+// consisting of coordinates x and y,
+
+template<class T>
+class Vector2
+{
+public:
+ T x, y;
+
+ Vector2() : x(0), y(0) { }
+ Vector2(T x_, T y_) : x(x_), y(y_) { }
+ explicit Vector2(T s) : x(s), y(s) { }
+
+ bool operator== (const Vector2& b) const { return x == b.x && y == b.y; }
+ bool operator!= (const Vector2& b) const { return x != b.x || y != b.y; }
+
+ Vector2 operator+ (const Vector2& b) const { return Vector2(x + b.x, y + b.y); }
+ Vector2& operator+= (const Vector2& b) { x += b.x; y += b.y; return *this; }
+ Vector2 operator- (const Vector2& b) const { return Vector2(x - b.x, y - b.y); }
+ Vector2& operator-= (const Vector2& b) { x -= b.x; y -= b.y; return *this; }
+ Vector2 operator- () const { return Vector2(-x, -y); }
+
+ // Scalar multiplication/division scales vector.
+ Vector2 operator* (T s) const { return Vector2(x*s, y*s); }
+ Vector2& operator*= (T s) { x *= s; y *= s; return *this; }
+
+ Vector2 operator/ (T s) const { T rcp = T(1)/s;
+ return Vector2(x*rcp, y*rcp); }
+ Vector2& operator/= (T s) { T rcp = T(1)/s;
+ x *= rcp; y *= rcp;
+ return *this; }
+
+ // Compare two vectors for equality with tolerance. Returns true if vectors match withing tolerance.
+ bool Compare(const Vector2&b, T tolerance = Mathf::Tolerance)
+ {
+ return (fabs(b.x-x) < tolerance) && (fabs(b.y-y) < tolerance);
+ }
+
+ // Dot product overload.
+ // Used to calculate angle q between two vectors among other things,
+ // as (A dot B) = |a||b|cos(q).
+ T operator* (const Vector2& b) const { return x*b.x + y*b.y; }
+
+ // Returns the angle from this vector to b, in radians.
+ T Angle(const Vector2& b) const { return acos((*this * b)/(Length()*b.Length())); }
+
+ // Return Length of the vector squared.
+ T LengthSq() const { return (x * x + y * y); }
+ // Return vector length.
+ T Length() const { return sqrt(LengthSq()); }
+
+ // Returns distance between two points represented by vectors.
+ T Distance(Vector2& b) const { return (*this - b).Length(); }
+
+ // Determine if this a unit vector.
+ bool IsNormalized() const { return fabs(LengthSq() - T(1)) < Math<T>::Tolerance; }
+ // Normalize, convention vector length to 1.
+ void Normalize() { *this /= Length(); }
+ // Returns normalized (unit) version of the vector without modifying itself.
+ Vector2 Normalized() const { return *this / Length(); }
+
+ // Linearly interpolates from this vector to another.
+ // Factor should be between 0.0 and 1.0, with 0 giving full value to this.
+ Vector2 Lerp(const Vector2& b, T f) const { return *this*(T(1) - f) + b*f; }
+
+ // Projects this vector onto the argument; in other words,
+ // A.Project(B) returns projection of vector A onto B.
+ Vector2 ProjectTo(const Vector2& b) const { return b * ((*this * b) / b.LengthSq()); }
+};
+
+
+typedef Vector2<float> Vector2f;
+typedef Vector2<double> Vector2d;
+
+//-------------------------------------------------------------------------------------
+// ***** Vector3f - 3D Vector3f
+
+// Vector3f represents a 3-dimensional vector or point in space,
+// consisting of coordinates x, y and z.
+
+template<class T>
+class Vector3
+{
+public:
+ T x, y, z;
+
+ Vector3() : x(0), y(0), z(0) { }
+ Vector3(T x_, T y_, T z_ = 0) : x(x_), y(y_), z(z_) { }
+ explicit Vector3(T s) : x(s), y(s), z(s) { }
+
+ bool operator== (const Vector3& b) const { return x == b.x && y == b.y && z == b.z; }
+ bool operator!= (const Vector3& b) const { return x != b.x || y != b.y || z != b.z; }
+
+ Vector3 operator+ (const Vector3& b) const { return Vector3(x + b.x, y + b.y, z + b.z); }
+ Vector3& operator+= (const Vector3& b) { x += b.x; y += b.y; z += b.z; return *this; }
+ Vector3 operator- (const Vector3& b) const { return Vector3(x - b.x, y - b.y, z - b.z); }
+ Vector3& operator-= (const Vector3& b) { x -= b.x; y -= b.y; z -= b.z; return *this; }
+ Vector3 operator- () const { return Vector3(-x, -y, -z); }
+
+ // Scalar multiplication/division scales vector.
+ Vector3 operator* (T s) const { return Vector3(x*s, y*s, z*s); }
+ Vector3& operator*= (T s) { x *= s; y *= s; z *= s; return *this; }
+
+ Vector3 operator/ (T s) const { T rcp = T(1)/s;
+ return Vector3(x*rcp, y*rcp, z*rcp); }
+ Vector3& operator/= (T s) { T rcp = T(1)/s;
+ x *= rcp; y *= rcp; z *= rcp;
+ return *this; }
+
+ // Compare two vectors for equality with tolerance. Returns true if vectors match withing tolerance.
+ bool Compare(const Vector3&b, T tolerance = Mathf::Tolerance)
+ {
+ return (fabs(b.x-x) < tolerance) && (fabs(b.y-y) < tolerance) && (fabs(b.z-z) < tolerance);
+ }
+
+ // Dot product overload.
+ // Used to calculate angle q between two vectors among other things,
+ // as (A dot B) = |a||b|cos(q).
+ T operator* (const Vector3& b) const { return x*b.x + y*b.y + z*b.z; }
+
+ // Compute cross product, which generates a normal vector.
+ // Direction vector can be determined by right-hand rule: Pointing index finder in
+ // direction a and middle finger in direction b, thumb will point in a.Cross(b).
+ Vector3 Cross(const Vector3& b) const { return Vector3(y*b.z - z*b.y,
+ z*b.x - x*b.z,
+ x*b.y - y*b.x); }
+
+ // Returns the angle from this vector to b, in radians.
+ T Angle(const Vector3& b) const { return acos((*this * b)/(Length()*b.Length())); }
+
+ // Return Length of the vector squared.
+ T LengthSq() const { return (x * x + y * y + z * z); }
+ // Return vector length.
+ T Length() const { return sqrt(LengthSq()); }
+
+ // Returns distance between two points represented by vectors.
+ T Distance(Vector3& b) const { return (*this - b).Length(); }
+
+ // Determine if this a unit vector.
+ bool IsNormalized() const { return fabs(LengthSq() - T(1)) < Math<T>::Tolerance; }
+ // Normalize, convention vector length to 1.
+ void Normalize() { *this /= Length(); }
+ // Returns normalized (unit) version of the vector without modifying itself.
+ Vector3 Normalized() const { return *this / Length(); }
+
+ // Linearly interpolates from this vector to another.
+ // Factor should be between 0.0 and 1.0, with 0 giving full value to this.
+ Vector3 Lerp(const Vector3& b, T f) const { return *this*(T(1) - f) + b*f; }
+
+ // Projects this vector onto the argument; in other words,
+ // A.Project(B) returns projection of vector A onto B.
+ Vector3 ProjectTo(const Vector3& b) const { return b * ((*this * b) / b.LengthSq()); }
+};
+
+
+typedef Vector3<float> Vector3f;
+typedef Vector3<double> Vector3d;
+
+
+//-------------------------------------------------------------------------------------
+// ***** Matrix4f
+
+// Matrix4f is a 4x4 matrix used for 3d transformations and projections.
+// Translation stored in the last column.
+// The matrix is stored in row-major order in memory, meaning that values
+// of the first row are stored before the next one.
+//
+// The arrangement of the matrix is chosen to be in Right-Handed
+// coordinate system and counterclockwise rotations when looking down
+// the axis
+//
+// Transformation Order:
+// - Transformations are applied from right to left, so the expression
+// M1 * M2 * M3 * V means that the vector V is transformed by M3 first,
+// followed by M2 and M1.
+//
+// Coordinate system: Right Handed
+//
+// Rotations: Counterclockwise when looking down the axis. All angles are in radians.
+//
+// | sx 01 02 tx | // First column (sx, 10, 20): Axis X basis vector.
+// | 10 sy 12 ty | // Second column (01, sy, 21): Axis Y basis vector.
+// | 20 21 sz tz | // Third columnt (02, 12, sz): Axis Z basis vector.
+// | 30 31 32 33 |
+//
+// The basis vectors are first three columns.
+
+class Matrix4f
+{
+ static Matrix4f IdentityValue;
+
+public:
+ float M[4][4];
+
+ enum NoInitType { NoInit };
+
+ // Construct with no memory initialization.
+ Matrix4f(NoInitType) { }
+
+ // By default, we construct identity matrix.
+ Matrix4f()
+ {
+ SetIdentity();
+ }
+
+ Matrix4f(float m11, float m12, float m13, float m14,
+ float m21, float m22, float m23, float m24,
+ float m31, float m32, float m33, float m34,
+ float m41, float m42, float m43, float m44)
+ {
+ M[0][0] = m11; M[0][1] = m12; M[0][2] = m13; M[0][3] = m14;
+ M[1][0] = m21; M[1][1] = m22; M[1][2] = m23; M[1][3] = m24;
+ M[2][0] = m31; M[2][1] = m32; M[2][2] = m33; M[2][3] = m34;
+ M[3][0] = m41; M[3][1] = m42; M[3][2] = m43; M[3][3] = m44;
+ }
+
+ Matrix4f(float m11, float m12, float m13,
+ float m21, float m22, float m23,
+ float m31, float m32, float m33)
+ {
+ M[0][0] = m11; M[0][1] = m12; M[0][2] = m13; M[0][3] = 0;
+ M[1][0] = m21; M[1][1] = m22; M[1][2] = m23; M[1][3] = 0;
+ M[2][0] = m31; M[2][1] = m32; M[2][2] = m33; M[2][3] = 0;
+ M[3][0] = 0; M[3][1] = 0; M[3][2] = 0; M[3][3] = 1;
+ }
+
+ static const Matrix4f& Identity() { return IdentityValue; }
+
+ void SetIdentity()
+ {
+ M[0][0] = M[1][1] = M[2][2] = M[3][3] = 1;
+ M[0][1] = M[1][0] = M[2][3] = M[3][1] = 0;
+ M[0][2] = M[1][2] = M[2][0] = M[3][2] = 0;
+ M[0][3] = M[1][3] = M[2][1] = M[3][0] = 0;
+ }
+
+ // Multiplies two matrices into destination with minimum copying.
+ static Matrix4f& Multiply(Matrix4f* d, const Matrix4f& a, const Matrix4f& b)
+ {
+ OVR_ASSERT((d != &a) && (d != &b));
+ int i = 0;
+ do {
+ d->M[i][0] = a.M[i][0] * b.M[0][0] + a.M[i][1] * b.M[1][0] + a.M[i][2] * b.M[2][0] + a.M[i][3] * b.M[3][0];
+ d->M[i][1] = a.M[i][0] * b.M[0][1] + a.M[i][1] * b.M[1][1] + a.M[i][2] * b.M[2][1] + a.M[i][3] * b.M[3][1];
+ d->M[i][2] = a.M[i][0] * b.M[0][2] + a.M[i][1] * b.M[1][2] + a.M[i][2] * b.M[2][2] + a.M[i][3] * b.M[3][2];
+ d->M[i][3] = a.M[i][0] * b.M[0][3] + a.M[i][1] * b.M[1][3] + a.M[i][2] * b.M[2][3] + a.M[i][3] * b.M[3][3];
+ } while((++i) < 4);
+
+ return *d;
+ }
+
+ Matrix4f operator* (const Matrix4f& b) const
+ {
+ Matrix4f result(Matrix4f::NoInit);
+ Multiply(&result, *this, b);
+ return result;
+ }
+
+ Matrix4f& operator*= (const Matrix4f& b)
+ {
+ return Multiply(this, Matrix4f(*this), b);
+ }
+
+ Matrix4f operator* (float s) const
+ {
+ return Matrix4f(M[0][0] * s, M[0][1] * s, M[0][2] * s, M[0][3] * s,
+ M[1][0] * s, M[1][1] * s, M[1][2] * s, M[1][3] * s,
+ M[2][0] * s, M[2][1] * s, M[2][2] * s, M[2][3] * s,
+ M[3][0] * s, M[3][1] * s, M[3][2] * s, M[3][3] * s);
+ }
+
+ Matrix4f& operator*= (float s)
+ {
+ M[0][0] *= s; M[0][1] *= s; M[0][2] *= s; M[0][3] *= s;
+ M[1][0] *= s; M[1][1] *= s; M[1][2] *= s; M[1][3] *= s;
+ M[2][0] *= s; M[2][1] *= s; M[2][2] *= s; M[2][3] *= s;
+ M[3][0] *= s; M[3][1] *= s; M[3][2] *= s; M[3][3] *= s;
+ return *this;
+ }
+
+ Vector3f Transform(const Vector3f& v) const
+ {
+ return Vector3f(M[0][0] * v.x + M[0][1] * v.y + M[0][2] * v.z + M[0][3],
+ M[1][0] * v.x + M[1][1] * v.y + M[1][2] * v.z + M[1][3],
+ M[2][0] * v.x + M[2][1] * v.y + M[2][2] * v.z + M[2][3]);
+ }
+
+ Matrix4f Transposed() const
+ {
+ return Matrix4f(M[0][0], M[1][0], M[2][0], M[3][0],
+ M[0][1], M[1][1], M[2][1], M[3][1],
+ M[0][2], M[1][2], M[2][2], M[3][2],
+ M[0][3], M[1][3], M[2][3], M[3][3]);
+ }
+
+ void Transpose()
+ {
+ *this = Transposed();
+ }
+
+
+ float SubDet (const int* rows, const int* cols) const
+ {
+ return M[rows[0]][cols[0]] * (M[rows[1]][cols[1]] * M[rows[2]][cols[2]] - M[rows[1]][cols[2]] * M[rows[2]][cols[1]])
+ - M[rows[0]][cols[1]] * (M[rows[1]][cols[0]] * M[rows[2]][cols[2]] - M[rows[1]][cols[2]] * M[rows[2]][cols[0]])
+ + M[rows[0]][cols[2]] * (M[rows[1]][cols[0]] * M[rows[2]][cols[1]] - M[rows[1]][cols[1]] * M[rows[2]][cols[0]]);
+ }
+
+ float Cofactor(int I, int J) const
+ {
+ const int indices[4][3] = {{1,2,3},{0,2,3},{0,1,3},{0,1,2}};
+ return ((I+J)&1) ? -SubDet(indices[I],indices[J]) : SubDet(indices[I],indices[J]);
+ }
+
+ float Determinant() const
+ {
+ return M[0][0] * Cofactor(0,0) + M[0][1] * Cofactor(0,1) + M[0][2] * Cofactor(0,2) + M[0][3] * Cofactor(0,3);
+ }
+
+ Matrix4f Adjugated() const
+ {
+ return Matrix4f(Cofactor(0,0), Cofactor(1,0), Cofactor(2,0), Cofactor(3,0),
+ Cofactor(0,1), Cofactor(1,1), Cofactor(2,1), Cofactor(3,1),
+ Cofactor(0,2), Cofactor(1,2), Cofactor(2,2), Cofactor(3,2),
+ Cofactor(0,3), Cofactor(1,3), Cofactor(2,3), Cofactor(3,3));
+ }
+
+ Matrix4f Inverted() const
+ {
+ float det = Determinant();
+ assert(det != 0);
+ return Adjugated() * (1.0f/det);
+ }
+
+ void Invert()
+ {
+ *this = Inverted();
+ }
+
+ //AnnaSteve:
+ // a,b,c, are the YawPitchRoll angles to be returned
+ // rotation a around axis A1
+ // is followed by rotation b around axis A2
+ // is followed by rotation c around axis A3
+ // rotations are CCW or CW (D) in LH or RH coordinate system (S)
+ template <Axis A1, Axis A2, Axis A3, RotateDirection D, HandedSystem S>
+ void ToEulerAngles(float *a, float *b, float *c)
+ {
+ OVR_COMPILER_ASSERT((A1 != A2) && (A2 != A3) && (A1 != A3));
+
+ float psign = -1.0f;
+ if (((A1 + 1) % 3 == A2) && ((A2 + 1) % 3 == A3)) // Determine whether even permutation
+ psign = 1.0f;
+
+ float pm = psign*M[A1][A3];
+ if (pm < -1.0f + Math<float>::SingularityRadius)
+ { // South pole singularity
+ *a = 0.0f;
+ *b = -S*D*Math<float>::PiOver2;
+ *c = S*D*atan2( psign*M[A2][A1], M[A2][A2] );
+ }
+ else if (pm > 1.0 - Math<float>::SingularityRadius)
+ { // North pole singularity
+ *a = 0.0f;
+ *b = S*D*Math<float>::PiOver2;
+ *c = S*D*atan2( psign*M[A2][A1], M[A2][A2] );
+ }
+ else
+ { // Normal case (nonsingular)
+ *a = S*D*atan2( -psign*M[A2][A3], M[A3][A3] );
+ *b = S*D*asin(pm);
+ *c = S*D*atan2( -psign*M[A1][A2], M[A1][A1] );
+ }
+
+ return;
+ }
+
+ //AnnaSteve:
+ // a,b,c, are the YawPitchRoll angles to be returned
+ // rotation a around axis A1
+ // is followed by rotation b around axis A2
+ // is followed by rotation c around axis A1
+ // rotations are CCW or CW (D) in LH or RH coordinate system (S)
+ template <Axis A1, Axis A2, RotateDirection D, HandedSystem S>
+ void ToEulerAnglesABA(float *a, float *b, float *c)
+ {
+ OVR_COMPILER_ASSERT(A1 != A2);
+
+ // Determine the axis that was not supplied
+ int m = 3 - A1 - A2;
+
+ float psign = -1.0f;
+ if ((A1 + 1) % 3 == A2) // Determine whether even permutation
+ psign = 1.0f;
+
+ float c2 = M[A1][A1];
+ if (c2 < -1.0 + Math<float>::SingularityRadius)
+ { // South pole singularity
+ *a = 0.0f;
+ *b = S*D*Math<float>::Pi;
+ *c = S*D*atan2( -psign*M[A2][m],M[A2][A2]);
+ }
+ else if (c2 > 1.0 - Math<float>::SingularityRadius)
+ { // North pole singularity
+ *a = 0.0f;
+ *b = 0.0f;
+ *c = S*D*atan2( -psign*M[A2][m],M[A2][A2]);
+ }
+ else
+ { // Normal case (nonsingular)
+ *a = S*D*atan2( M[A2][A1],-psign*M[m][A1]);
+ *b = S*D*acos(c2);
+ *c = S*D*atan2( M[A1][A2],psign*M[A1][m]);
+ }
+ return;
+ }
+
+ // Creates a matrix that converts the vertices from one coordinate system
+ // to another.
+ //
+ static Matrix4f AxisConversion(const WorldAxes& to, const WorldAxes& from)
+ {
+ // Holds axis values from the 'to' structure
+ int toArray[3] = { to.XAxis, to.YAxis, to.ZAxis };
+
+ // The inverse of the toArray
+ int inv[4];
+ inv[0] = inv[abs(to.XAxis)] = 0;
+ inv[abs(to.YAxis)] = 1;
+ inv[abs(to.ZAxis)] = 2;
+
+ Matrix4f m(0, 0, 0,
+ 0, 0, 0,
+ 0, 0, 0);
+
+ // Only three values in the matrix need to be changed to 1 or -1.
+ m.M[inv[abs(from.XAxis)]][0] = float(from.XAxis/toArray[inv[abs(from.XAxis)]]);
+ m.M[inv[abs(from.YAxis)]][1] = float(from.YAxis/toArray[inv[abs(from.YAxis)]]);
+ m.M[inv[abs(from.ZAxis)]][2] = float(from.ZAxis/toArray[inv[abs(from.ZAxis)]]);
+ return m;
+ }
+
+
+
+ static Matrix4f Translation(const Vector3f& v)
+ {
+ Matrix4f t;
+ t.M[0][3] = v.x;
+ t.M[1][3] = v.y;
+ t.M[2][3] = v.z;
+ return t;
+ }
+
+ static Matrix4f Translation(float x, float y, float z = 0.0f)
+ {
+ Matrix4f t;
+ t.M[0][3] = x;
+ t.M[1][3] = y;
+ t.M[2][3] = z;
+ return t;
+ }
+
+ static Matrix4f Scaling(const Vector3f& v)
+ {
+ Matrix4f t;
+ t.M[0][0] = v.x;
+ t.M[1][1] = v.y;
+ t.M[2][2] = v.z;
+ return t;
+ }
+
+ static Matrix4f Scaling(float x, float y, float z)
+ {
+ Matrix4f t;
+ t.M[0][0] = x;
+ t.M[1][1] = y;
+ t.M[2][2] = z;
+ return t;
+ }
+
+ static Matrix4f Scaling(float s)
+ {
+ Matrix4f t;
+ t.M[0][0] = s;
+ t.M[1][1] = s;
+ t.M[2][2] = s;
+ return t;
+ }
+
+
+
+ //AnnaSteve : Just for quick testing. Not for final API. Need to remove case.
+ static Matrix4f RotationAxis(Axis A, float angle, RotateDirection d, HandedSystem s)
+ {
+ float sina = s * d *sin(angle);
+ float cosa = cos(angle);
+
+ switch(A)
+ {
+ case Axis_X:
+ return Matrix4f(1, 0, 0,
+ 0, cosa, -sina,
+ 0, sina, cosa);
+ case Axis_Y:
+ return Matrix4f(cosa, 0, sina,
+ 0, 1, 0,
+ -sina, 0, cosa);
+ case Axis_Z:
+ return Matrix4f(cosa, -sina, 0,
+ sina, cosa, 0,
+ 0, 0, 1);
+ }
+ }
+
+
+ // Creates a rotation matrix rotating around the X axis by 'angle' radians.
+ // Rotation direction is depends on the coordinate system:
+ // RHS (Oculus default): Positive angle values rotate Counter-clockwise (CCW),
+ // while looking in the negative axis direction. This is the
+ // same as looking down from positive axis values towards origin.
+ // LHS: Positive angle values rotate clock-wise (CW), while looking in the
+ // negative axis direction.
+ static Matrix4f RotationX(float angle)
+ {
+ float sina = sin(angle);
+ float cosa = cos(angle);
+ return Matrix4f(1, 0, 0,
+ 0, cosa, -sina,
+ 0, sina, cosa);
+ }
+
+ // Creates a rotation matrix rotating around the Y axis by 'angle' radians.
+ // Rotation direction is depends on the coordinate system:
+ // RHS (Oculus default): Positive angle values rotate Counter-clockwise (CCW),
+ // while looking in the negative axis direction. This is the
+ // same as looking down from positive axis values towards origin.
+ // LHS: Positive angle values rotate clock-wise (CW), while looking in the
+ // negative axis direction.
+ static Matrix4f RotationY(float angle)
+ {
+ float sina = sin(angle);
+ float cosa = cos(angle);
+ return Matrix4f(cosa, 0, sina,
+ 0, 1, 0,
+ -sina, 0, cosa);
+ }
+
+ // Creates a rotation matrix rotating around the Z axis by 'angle' radians.
+ // Rotation direction is depends on the coordinate system:
+ // RHS (Oculus default): Positive angle values rotate Counter-clockwise (CCW),
+ // while looking in the negative axis direction. This is the
+ // same as looking down from positive axis values towards origin.
+ // LHS: Positive angle values rotate clock-wise (CW), while looking in the
+ // negative axis direction.
+ static Matrix4f RotationZ(float angle)
+ {
+ float sina = sin(angle);
+ float cosa = cos(angle);
+ return Matrix4f(cosa, -sina, 0,
+ sina, cosa, 0,
+ 0, 0, 1);
+ }
+
+
+ // LookAtRH creates a View transformation matrix for right-handed coordinate system.
+ // The resulting matrix points camera from 'eye' towards 'at' direction, with 'up'
+ // specifying the up vector. The resulting matrix should be used with PerspectiveRH
+ // projection.
+ static Matrix4f LookAtRH(const Vector3f& eye, const Vector3f& at, const Vector3f& up);
+
+ // LookAtLH creates a View transformation matrix for left-handed coordinate system.
+ // The resulting matrix points camera from 'eye' towards 'at' direction, with 'up'
+ // specifying the up vector.
+ static Matrix4f LookAtLH(const Vector3f& eye, const Vector3f& at, const Vector3f& up);
+
+
+ // PerspectiveRH creates a right-handed perspective projection matrix that can be
+ // used with the Oculus sample renderer.
+ // yfov - Specifies vertical field of view in radians.
+ // aspect - Screen aspect ration, which is usually width/height for square pixels.
+ // Note that xfov = yfov * aspect.
+ // znear - Absolute value of near Z clipping clipping range.
+ // zfar - Absolute value of far Z clipping clipping range (larger then near).
+ // Even though RHS usually looks in the direction of negative Z, positive values
+ // are expected for znear and zfar.
+ static Matrix4f PerspectiveRH(float yfov, float aspect, float znear, float zfar);
+
+
+ // PerspectiveRH creates a left-handed perspective projection matrix that can be
+ // used with the Oculus sample renderer.
+ // yfov - Specifies vertical field of view in radians.
+ // aspect - Screen aspect ration, which is usually width/height for square pixels.
+ // Note that xfov = yfov * aspect.
+ // znear - Absolute value of near Z clipping clipping range.
+ // zfar - Absolute value of far Z clipping clipping range (larger then near).
+ static Matrix4f PerspectiveLH(float yfov, float aspect, float znear, float zfar);
+
+
+ static Matrix4f Ortho2D(float w, float h);
+};
+
+
+//-------------------------------------------------------------------------------------
+// ***** Quat
+
+// Quatf represents a quaternion class used for rotations.
+//
+// Quaternion multiplications are done in right-to-left order, to match the
+// behavior of matrices.
+
+
+template<class T>
+class Quat
+{
+public:
+ // w + Xi + Yj + Zk
+ T x, y, z, w;
+
+ Quat() : x(0), y(0), z(0), w(1) {}
+ Quat(T x_, T y_, T z_, T w_) : x(x_), y(y_), z(z_), w(w_) {}
+
+
+ // Constructs rotation quaternion around the axis.
+ Quat(const Vector3<T>& axis, T angle)
+ {
+ Vector3<T> unitAxis = axis.Normalized();
+ T sinHalfAngle = sin(angle * T(0.5));
+
+ w = cos(angle * T(0.5));
+ x = unitAxis.x * sinHalfAngle;
+ y = unitAxis.y * sinHalfAngle;
+ z = unitAxis.z * sinHalfAngle;
+ }
+
+ //AnnaSteve:
+ void AxisAngle(Axis A, T angle, RotateDirection d, HandedSystem s)
+ {
+ T sinHalfAngle = s * d *sin(angle * (T)0.5);
+ T v[3];
+ v[0] = v[1] = v[2] = (T)0;
+ v[A] = sinHalfAngle;
+ //return Quat(v[0], v[1], v[2], cos(angle * (T)0.5));
+ w = cos(angle * (T)0.5);
+ x = v[0];
+ y = v[1];
+ z = v[2];
+ }
+
+
+ void GetAxisAngle(Vector3<T>* axis, T* angle) const
+ {
+ if (LengthSq() > Math<T>::Tolerance * Math<T>::Tolerance)
+ {
+ *axis = Vector3<T>(x, y, z).Normalized();
+ *angle = 2 * acos(w);
+ }
+ else
+ {
+ *axis = Vector3<T>(1, 0, 0);
+ *angle= 0;
+ }
+ }
+
+ bool operator== (const Quat& b) const { return x == b.x && y == b.y && z == b.z && w == b.w; }
+ bool operator!= (const Quat& b) const { return x != b.x || y != b.y || z != b.z || w != b.w; }
+
+ Quat operator+ (const Quat& b) const { return Quat(x + b.x, y + b.y, z + b.z, w + b.w); }
+ Quat& operator+= (const Quat& b) { w += b.w; x += b.x; y += b.y; z += b.z; return *this; }
+ Quat operator- (const Quat& b) const { return Quat(x - b.x, y - b.y, z - b.z, w - b.w); }
+ Quat& operator-= (const Quat& b) { w -= b.w; x -= b.x; y -= b.y; z -= b.z; return *this; }
+
+ Quat operator* (T s) const { return Quat(x * s, y * s, z * s, w * s); }
+ Quat& operator*= (T s) { w *= s; x *= s; y *= s; z *= s; return *this; }
+ Quat operator/ (T s) const { T rcp = T(1)/s; return Quat(x * rcp, y * rcp, z * rcp, w *rcp); }
+ Quat& operator/= (T s) { T rcp = T(1)/s; w *= rcp; x *= rcp; y *= rcp; z *= rcp; return *this; }
+
+ // Get Imaginary part vector
+ Vector3<T> Imag() const { return Vector3<T>(x,y,z); }
+
+ // Get quaternion length.
+ T Length() const { return sqrt(x * x + y * y + z * z + w * w); }
+ // Get quaternion length squared.
+ T LengthSq() const { return (x * x + y * y + z * z + w * w); }
+ // Simple Eulidean distance in R^4 (not SLERP distance, but at least respects Haar measure)
+ T Distance(const Quat& q) const
+ {
+ T d1 = (*this - q).Length();
+ T d2 = (*this + q).Length(); // Antipoldal point check
+ return (d1 < d2) ? d1 : d2;
+ }
+ T DistanceSq(const Quat& q) const
+ {
+ T d1 = (*this - q).LengthSq();
+ T d2 = (*this + q).LengthSq(); // Antipoldal point check
+ return (d1 < d2) ? d1 : d2;
+ }
+
+ // Normalize
+ bool IsNormalized() const { return fabs(LengthSq() - 1) < Math<T>::Tolerance; }
+ void Normalize() { *this /= Length(); }
+ Quat Normalized() const { return *this / Length(); }
+
+ // Returns conjugate of the quaternion. Produces inverse rotation if quaternion is normalized.
+ Quat Conj() const { return Quat(-x, -y, -z, w); }
+
+ // AnnaSteve fixed: order of quaternion multiplication
+ // Quaternion multiplication. Combines quaternion rotations, performing the one on the
+ // right hand side first.
+ Quat operator* (const Quat& b) const { return Quat(w * b.x + x * b.w + y * b.z - z * b.y,
+ w * b.y - x * b.z + y * b.w + z * b.x,
+ w * b.z + x * b.y - y * b.x + z * b.w,
+ w * b.w - x * b.x - y * b.y - z * b.z); }
+
+ //
+ // this^p normalized; same as rotating by this p times.
+ Quat PowNormalized(T p) const
+ {
+ Vector3<T> v;
+ T a;
+ GetAxisAngle(&v, &a);
+ return Quat(v, a * p);
+ }
+
+ // Rotate transforms vector in a manner that matches Matrix rotations (counter-clockwise,
+ // assuming negative direction of the axis). Standard formula: q(t) * V * q(t)^-1.
+ Vector3<T> Rotate(const Vector3<T>& v) const
+ {
+ return ((*this * Quat<T>(v.x, v.y, v.z, 0)) * Inverted()).Imag();
+ }
+
+
+ // Inversed quaternion rotates in the opposite direction.
+ Quat Inverted() const
+ {
+ return Quat(-x, -y, -z, w);
+ }
+
+ // Sets this quaternion to the one rotates in the opposite direction.
+ void Invert() const
+ {
+ *this = Quat(-x, -y, -z, w);
+ }
+
+ // Converting quaternion to matrix.
+ operator Matrix4f() const
+ {
+ T ww = w*w;
+ T xx = x*x;
+ T yy = y*y;
+ T zz = z*z;
+
+ return Matrix4f(float(ww + xx - yy - zz), float(T(2) * (x*y - w*z)), float(T(2) * (x*z + w*y)),
+ float(T(2) * (x*y + w*z)), float(ww - xx + yy - zz), float(T(2) * (y*z - w*x)),
+ float(T(2) * (x*z - w*y)), float(T(2) * (y*z + w*x)), float(ww - xx - yy + zz) );
+ }
+
+
+ // GetEulerAngles extracts Euler angles from the quaternion, in the specified order of
+ // axis rotations and the specified coordinate system. Right-handed coordinate system
+ // is the default, with CCW rotations while looking in the negative axis direction.
+ // Here a,b,c, are the Yaw/Pitch/Roll angles to be returned.
+ // rotation a around axis A1
+ // is followed by rotation b around axis A2
+ // is followed by rotation c around axis A3
+ // rotations are CCW or CW (D) in LH or RH coordinate system (S)
+ template <Axis A1, Axis A2, Axis A3, RotateDirection D, HandedSystem S>
+ void GetEulerAngles(T *a, T *b, T *c)
+ {
+ OVR_COMPILER_ASSERT((A1 != A2) && (A2 != A3) && (A1 != A3));
+
+ T Q[3] = { x, y, z }; //Quaternion components x,y,z
+
+ T ww = w*w;
+ T Q11 = Q[A1]*Q[A1];
+ T Q22 = Q[A2]*Q[A2];
+ T Q33 = Q[A3]*Q[A3];
+
+ T psign = T(-1.0);
+ // Determine whether even permutation
+ if (((A1 + 1) % 3 == A2) && ((A2 + 1) % 3 == A3))
+ psign = T(1.0);
+
+ T s2 = psign * T(2.0) * (psign*w*Q[A2] + Q[A1]*Q[A3]);
+
+ if (s2 < (T)-1.0 + Math<T>::SingularityRadius)
+ { // South pole singularity
+ *a = T(0.0);
+ *b = -S*D*Math<T>::PiOver2;
+ *c = S*D*atan2((T)2.0*(psign*Q[A1]*Q[A2] + w*Q[A3]),
+ ww + Q22 - Q11 - Q33 );
+ }
+ else if (s2 > (T)1.0 - Math<T>::SingularityRadius)
+ { // North pole singularity
+ *a = (T)0.0;
+ *b = S*D*Math<T>::PiOver2;
+ *c = S*D*atan2((T)2.0*(psign*Q[A1]*Q[A2] + w*Q[A3]),
+ ww + Q22 - Q11 - Q33);
+ }
+ else
+ {
+ *a = -S*D*atan2((T)-2.0*(w*Q[A1] - psign*Q[A2]*Q[A3]),
+ ww + Q33 - Q11 - Q22);
+ *b = S*D*asin(s2);
+ *c = S*D*atan2((T)2.0*(w*Q[A3] - psign*Q[A1]*Q[A2]),
+ ww + Q11 - Q22 - Q33);
+ }
+ return;
+ }
+
+ template <Axis A1, Axis A2, Axis A3, RotateDirection D>
+ void GetEulerAngles(T *a, T *b, T *c)
+ { GetEulerAngles<A1, A2, A3, D, Handed_R>(a, b, c); }
+
+ template <Axis A1, Axis A2, Axis A3>
+ void GetEulerAngles(T *a, T *b, T *c)
+ { GetEulerAngles<A1, A2, A3, Rotate_CCW, Handed_R>(a, b, c); }
+
+
+ // GetEulerAnglesABA extracts Euler angles from the quaternion, in the specified order of
+ // axis rotations and the specified coordinate system. Right-handed coordinate system
+ // is the default, with CCW rotations while looking in the negative axis direction.
+ // Here a,b,c, are the Yaw/Pitch/Roll angles to be returned.
+ // rotation a around axis A1
+ // is followed by rotation b around axis A2
+ // is followed by rotation c around axis A1
+ // Rotations are CCW or CW (D) in LH or RH coordinate system (S)
+ template <Axis A1, Axis A2, RotateDirection D, HandedSystem S>
+ void GetEulerAnglesABA(T *a, T *b, T *c)
+ {
+ OVR_COMPILER_ASSERT(A1 != A2);
+
+ T Q[3] = {x, y, z}; // Quaternion components
+
+ // Determine the missing axis that was not supplied
+ int m = 3 - A1 - A2;
+
+ T ww = w*w;
+ T Q11 = Q[A1]*Q[A1];
+ T Q22 = Q[A2]*Q[A2];
+ T Qmm = Q[m]*Q[m];
+
+ T psign = T(-1.0);
+ if ((A1 + 1) % 3 == A2) // Determine whether even permutation
+ {
+ psign = (T)1.0;
+ }
+
+ T c2 = ww + Q11 - Q22 - Qmm;
+ if (c2 < (T)-1.0 + Math<T>::SingularityRadius)
+ { // South pole singularity
+ *a = (T)0.0;
+ *b = S*D*Math<T>::Pi;
+ *c = S*D*atan2( (T)2.0*(w*Q[A1] - psign*Q[A2]*Q[m]),
+ ww + Q22 - Q11 - Qmm);
+ }
+ else if (c2 > (T)1.0 - Math<T>::SingularityRadius)
+ { // North pole singularity
+ *a = (T)0.0;
+ *b = (T)0.0;
+ *c = S*D*atan2( (T)2.0*(w*Q[A1] - psign*Q[A2]*Q[m]),
+ ww + Q22 - Q11 - Qmm);
+ }
+ else
+ {
+ *a = S*D*atan2( psign*w*Q[m] + Q[A1]*Q[A2],
+ w*Q[A2] -psign*Q[A1]*Q[m]);
+ *b = S*D*acos(c2);
+ *c = S*D*atan2( -psign*w*Q[m] + Q[A1]*Q[A2],
+ w*Q[A2] + psign*Q[A1]*Q[m]);
+ }
+ return;
+ }
+};
+
+
+typedef Quat<float> Quatf;
+typedef Quat<double> Quatd;
+
+//-------------------------------------------------------------------------------------
+// ***** Plane
+
+// Consists of a normal vector and distance from the origin where the plane is located.
+
+template<class T>
+class Plane : public RefCountBase<Plane<T> >
+{
+public:
+ Vector3<T> N;
+ T D;
+
+ Plane() : D(0) {}
+
+ // Normals must already be normalized
+ Plane(const Vector3<T>& n, T d) : N(n), D(d) {}
+ Plane(T x, T y, T z, T d) : N(x,y,z), D(d) {}
+
+ // construct from a point on the plane and the normal
+ Plane(const Vector3<T>& p, const Vector3<T>& n) : N(n), D(-(p * n)) {}
+
+ // Find the point to plane distance. The sign indicates what side of the plane the point is on (0 = point on plane).
+ T TestSide(const Vector3<T>& p) const
+ {
+ return (N * p) + D;
+ }
+
+ Plane<T> Flipped() const
+ {
+ return Plane(-N, -D);
+ }
+
+ void Flip()
+ {
+ N = -N;
+ D = -D;
+ }
+
+ bool operator==(const Plane<T>& rhs) const
+ {
+ return (this->D == rhs.D && this->N == rhs.N);
+ }
+};
+
+typedef Plane<float> Planef;
+
+}
+
+#endif