/************************************************************************************ Filename : CAPI_GL_HSWDisplay.cpp Content : Implements Health and Safety Warning system. Created : July 7, 2014 Authors : Paul Pedriana Copyright : Copyright 2014 Oculus VR, LLC All Rights reserved. Licensed under the Oculus VR Rift SDK License Version 3.2 (the "License"); you may not use the Oculus VR Rift SDK except in compliance with the License, which is provided at the time of installation or download, or which otherwise accompanies this software in either electronic or hard copy form. You may obtain a copy of the License at http://www.oculusvr.com/licenses/LICENSE-3.2 Unless required by applicable law or agreed to in writing, the Oculus VR SDK distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ************************************************************************************/ #include "CAPI_GL_HSWDisplay.h" #include "CAPI_GL_DistortionShaders.h" #include "OVR_CAPI_GL.h" #include "Kernel/OVR_File.h" #include "Kernel/OVR_Allocator.h" #include "Kernel/OVR_Color.h" #include "Extras/OVR_Math.h" OVR_DISABLE_MSVC_WARNING(4996) // "This function or variable may be unsafe..." namespace OVR { namespace CAPI { // Loads the TGA data from the File as an array of width * height 32 bit Texture_RGBA values. // Returned pointer must be freed with OVR_FREE. uint8_t* LoadTextureTgaData(OVR::File* f, uint8_t alpha, int& width, int& height) { // See http://www.fileformat.info/format/tga/egff.htm for format details. // TGA files are stored with little-endian data. uint8_t* pRGBA = NULL; f->SeekToBegin(); const int desclen = f->ReadUByte(); const int palette = f->ReadUByte(); OVR_UNUSED(palette); const int imgtype = f->ReadUByte(); f->ReadUInt16(); // Skip bytes int palCount = f->ReadUInt16(); int palSize = f->ReadUByte(); f->ReadUInt16(); f->ReadUInt16(); width = f->ReadUInt16(); height = f->ReadUInt16(); int bpp = f->ReadUByte(); f->ReadUByte(); const int ImgTypeBGRAUncompressed = 2; const int ImgTypeBGRARLECompressed = 10; OVR_ASSERT(((imgtype == ImgTypeBGRAUncompressed) || (imgtype == ImgTypeBGRARLECompressed)) && ((bpp == 24) || (bpp == 32))); // imgType 2 is uncompressed true-color image. // imgType 10 is run-length encoded true-color image. // WARNING - this loader is potentially incorrect. The default TGA origin is bottom-left. // You can change the origin, but that is non-standard, and this loader ignores that bit in the header. // So just be aware that this texture will have the UV origin at the bottom lef of the image, even in DirectX // (I fixed the other TGA loader, but I'm not "fixing" this one because the thing works, so leave it alone!) if(((imgtype == ImgTypeBGRAUncompressed) || (imgtype == ImgTypeBGRARLECompressed)) && ((bpp == 24) || (bpp == 32))) { int imgsize = width * height * 4; pRGBA = (uint8_t*) OVR_ALLOC(imgsize); f->Skip(desclen); f->Skip(palCount * (palSize + 7) >> 3); int strideBytes = width * 4; // This is the number of bytes between successive rows. unsigned char buf[4] = { 0, 0, 0, alpha }; // If bpp is 24 then this alpha will be unmodified below. switch (imgtype) { case ImgTypeBGRAUncompressed: switch (bpp) { case 24: case 32: for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { f->Read(buf, bpp / 8); // Data is stored as B, G, R pRGBA[y*strideBytes + x*4 + 0] = buf[2]; pRGBA[y*strideBytes + x*4 + 1] = buf[1]; pRGBA[y*strideBytes + x*4 + 2] = buf[0]; pRGBA[y*strideBytes + x*4 + 3] = buf[3]; } } break; } break; case ImgTypeBGRARLECompressed: switch (bpp) { case 24: case 32: for (int y = 0; y < height; y++) // RLE spans don't cross successive rows. { int x = 0; while(x < width) { uint8_t rleByte; f->Read(&rleByte, 1); if(rleByte & 0x80) // If the high byte is set then what follows are RLE bytes. { size_t rleCount = ((rleByte & 0x7f) + 1); f->Read(buf, bpp / 8); // Data is stored as B, G, R, A for (; rleCount; --rleCount, ++x) { pRGBA[y*strideBytes + x*4 + 0] = buf[2]; pRGBA[y*strideBytes + x*4 + 1] = buf[1]; pRGBA[y*strideBytes + x*4 + 2] = buf[0]; pRGBA[y*strideBytes + x*4 + 3] = buf[3]; } } else // Else what follows are regular bytes of a count indicated by rleByte { for (size_t rleCount = (rleByte + 1); rleCount; --rleCount, ++x) { f->Read(buf, bpp / 8); // Data is stored as B, G, R, A pRGBA[y*strideBytes + x*4 + 0] = buf[2]; pRGBA[y*strideBytes + x*4 + 1] = buf[1]; pRGBA[y*strideBytes + x*4 + 2] = buf[0]; pRGBA[y*strideBytes + x*4 + 3] = buf[3]; } } } } break; } break; } } return pRGBA; } // LoadTextureTgaData namespace GL { // To do: This needs to be promoted to a central version, possibly in CAPI_HSWDisplay.h struct HASWVertex { Vector3f Pos; Color C; float U, V; HASWVertex(const Vector3f& p, const Color& c = Color(64,0,0,255), float u = 0, float v = 0) : Pos(p), C(c), U(u), V(v) {} HASWVertex(float x, float y, float z, const Color& c = Color(64,0,0,255), float u = 0, float v = 0) : Pos(x,y,z), C(c), U(u), V(v) {} bool operator==(const HASWVertex& b) const { return (Pos == b.Pos) && (C == b.C) && (U == b.U) && (V == b.V); } }; // This is a temporary function implementation, and it functionality needs to be implemented in a more generic way. Texture* LoadTextureTga(RenderParams& rParams, int samplerMode, OVR::File* f, uint8_t alpha) { OVR::CAPI::GL::Texture* pTexture = NULL; int width, height; const uint8_t* pRGBA = LoadTextureTgaData(f, alpha, width, height); if (pRGBA) { pTexture = new OVR::CAPI::GL::Texture(&rParams, width, height); // SetSampleMode forces the use of mipmaps through GL_LINEAR_MIPMAP_LINEAR. pTexture->SetSampleMode(samplerMode); // Calls glBindTexture internally. // We are intentionally not using mipmaps. We need to use this because Texture::SetSampleMode unilaterally uses GL_LINEAR_MIPMAP_LINEAR. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0); OVR_ASSERT(glGetError() == 0); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, pRGBA); OVR_ASSERT(glGetError() == 0); // With OpenGL 4.2+ we can use this instead of glTexImage2D: // glTexStorage2D(GL_TEXTURE_2D, 1, GL_RGBA8, width, height); // glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pRGBA); OVR_FREE(const_cast(pRGBA)); } return pTexture; } // Loads a texture from a memory image of a TGA file. Texture* LoadTextureTga(RenderParams& rParams, int samplerMode, const uint8_t* pData, int dataSize, uint8_t alpha) { MemoryFile memoryFile("", pData, dataSize); return LoadTextureTga(rParams, samplerMode, &memoryFile, alpha); } // The texture below may conceivably be shared between HSWDisplay instances. However, // beware that sharing may not be possible if two HMDs are using different locales // simultaneously. As of this writing it's not clear if that can occur in practice. HSWDisplay::HSWDisplay(ovrRenderAPIType api, ovrHmd hmd, const HMDRenderState& renderState) : OVR::CAPI::HSWDisplay(api, hmd, renderState) , RenderParams() , GLContext() , FrameBuffer(0) , pTexture() , pShaderSet() , pVertexShader() , pFragmentShader() , pVB() , VAO(0) , VAOInitialized(false) , OrthoProjection() { } bool HSWDisplay::Initialize(const ovrRenderAPIConfig* apiConfig) { const ovrGLConfig* config = (const ovrGLConfig*)apiConfig; if(config) { // The following is essentially copied from CAPI_GL_DistortionRender.cpp's // Initialize function. To do: Merge this to a central location. RenderParams.Multisample = config->OGL.Header.Multisample; RenderParams.BackBufferSize = config->OGL.Header.BackBufferSize; #if defined(OVR_OS_WIN32) RenderParams.Window = (config->OGL.Window) ? config->OGL.Window : GetActiveWindow(); RenderParams.DC = config->OGL.DC; #elif defined(OVR_OS_LINUX) if (config->OGL.Disp) { RenderParams.Disp = config->OGL.Disp; } if (!RenderParams.Disp) { RenderParams.Disp = glXGetCurrentDisplay(); } if (!RenderParams.Disp) { OVR_DEBUG_LOG(("glXGetCurrentDisplay failed.")); return false; } #endif } else { UnloadGraphics(); } return true; } void HSWDisplay::Shutdown() { UnloadGraphics(); } void HSWDisplay::DisplayInternal() { HSWDISPLAY_LOG(("[HSWDisplay GL] DisplayInternal()")); // We may want to call LoadGraphics here instead of within Render. } void HSWDisplay::DismissInternal() { HSWDISPLAY_LOG(("[HSWDisplay GL] DismissInternal()")); UnloadGraphicsRequested = true; // We don't directly call UnloadGraphics here because this may be executed within a different thread. } void HSWDisplay::UnloadGraphics() { if(pTexture) // If initialized... { Context currentGLContext; currentGLContext.InitFromCurrent(); GLContext.Bind(); // RenderParams: No need to clear. if(FrameBuffer != 0) { glDeleteFramebuffers(1, &FrameBuffer); FrameBuffer = 0; } pTexture.Clear(); pShaderSet.Clear(); pVertexShader.Clear(); pFragmentShader.Clear(); pVB.Clear(); if(VAO) { glDeleteVertexArrays(1, &VAO); } currentGLContext.Bind(); GLContext.Destroy(); } } void HSWDisplay::LoadGraphics() { // We assume here that the current GL context is the one our resources will be associated with. if (FrameBuffer == 0) { glGenFramebuffers(1, &FrameBuffer); } if (!pTexture) // To do: Add support for .dds files, which would be significantly smaller than the size of the tga. { size_t textureSize; const uint8_t* TextureData = GetDefaultTexture(textureSize); pTexture = *LoadTextureTga(RenderParams, Sample_Linear | Sample_Clamp, TextureData, (int)textureSize, 255); } if (!pShaderSet) { pShaderSet = *new ShaderSet(); } if(!pVertexShader) { OVR::String strShader((GLEContext::GetCurrentContext()->WholeVersion >= 302) ? glsl3Prefix : glsl2Prefix); strShader += SimpleTexturedQuad_vs; pVertexShader = *new VertexShader(&RenderParams, const_cast(strShader.ToCStr()), strShader.GetLength(), SimpleTexturedQuad_vs_refl, OVR_ARRAY_COUNT(SimpleTexturedQuad_vs_refl)); pShaderSet->SetShader(pVertexShader); } if(!pFragmentShader) { OVR::String strShader((GLEContext::GetCurrentContext()->WholeVersion >= 302) ? glsl3Prefix : glsl2Prefix); strShader += SimpleTexturedQuad_ps; pFragmentShader = *new FragmentShader(&RenderParams, const_cast(strShader.ToCStr()), strShader.GetLength(), SimpleTexturedQuad_ps_refl, OVR_ARRAY_COUNT(SimpleTexturedQuad_ps_refl)); pShaderSet->SetShader(pFragmentShader); } if(!pVB) { pVB = *new Buffer(&RenderParams); pVB->Data(Buffer_Vertex, NULL, 4 * sizeof(HASWVertex)); HASWVertex* pVertices = (HASWVertex*)pVB->Map(0, 4 * sizeof(HASWVertex), Map_Discard); OVR_ASSERT(pVertices); if(pVertices) { const bool flip = ((RenderState.DistortionCaps & ovrDistortionCap_FlipInput) != 0); const float left = -1.0f; // We currently draw this in normalized device coordinates with an stereo translation const float top = -1.1f; // applied as a vertex shader uniform. In the future when we have a more formal graphics const float right = 1.0f; // API abstraction we may move this draw to an overlay layer or to a more formal const float bottom = 0.9f; // model/mesh scheme with a perspective projection. // See warning in LoadTextureTgaData() about this TGA being loaded "upside down", i.e. UV origin is at bottom-left. pVertices[0] = HASWVertex(left, top, 0.f, Color(255, 255, 255, 255), 0.f, flip ? 1.f : 0.f); pVertices[1] = HASWVertex(left, bottom, 0.f, Color(255, 255, 255, 255), 0.f, flip ? 0.f : 1.f); pVertices[2] = HASWVertex(right, top, 0.f, Color(255, 255, 255, 255), 1.f, flip ? 1.f : 0.f); pVertices[3] = HASWVertex(right, bottom, 0.f, Color(255, 255, 255, 255), 1.f, flip ? 0.f : 1.f); pVB->Unmap(pVertices); } } // We don't bind or initialize the vertex arrays here. if (!VAO && GLE_ARB_vertex_array_object) { OVR_ASSERT(!VAOInitialized); glGenVertexArrays(1, &VAO); } } void HSWDisplay::RenderInternal(ovrEyeType eye, const ovrTexture* eyeTexture) { if(RenderEnabled && eyeTexture) { // We need to render to the eyeTexture with the texture viewport. // Setup rendering to the texture. ovrGLTexture* eyeTextureGL = const_cast(reinterpret_cast(eyeTexture)); OVR_ASSERT(eyeTextureGL->Texture.Header.API == ovrRenderAPI_OpenGL); GL::AutoContext autoGLContext(GLContext); // Saves the current GL context, binds our GLContext, then at the end of scope re-binds the current GL context. // Load the graphics if not loaded already. if (!pTexture) LoadGraphics(); // Calculate ortho projection. GetOrthoProjection(RenderState, OrthoProjection); // Set the rendering to be to the eye texture. glBindFramebuffer(GL_FRAMEBUFFER, FrameBuffer); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, eyeTextureGL->OGL.TexId, 0); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, 0); // We aren't using depth, as we currently want this to overwrite everything. GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); OVR_ASSERT(status == GL_FRAMEBUFFER_COMPLETE); OVR_UNUSED(status); // Set up the viewport const GLint x = (GLint)eyeTextureGL->Texture.Header.RenderViewport.Pos.x; const GLint y = (GLint)eyeTextureGL->Texture.Header.RenderViewport.Pos.y; // Note that GL uses bottom-up coordinates. const GLsizei w = (GLsizei)eyeTextureGL->Texture.Header.RenderViewport.Size.w; const GLsizei h = (GLsizei)eyeTextureGL->Texture.Header.RenderViewport.Size.h; glViewport(x, y, w, h); // Set fixed-function render states. //glDepthRange(0.0, 1.0); // This is the default glDepthMask(GL_FALSE); glDisable(GL_DEPTH_TEST); glFrontFace(GL_CW); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Enable the buffer and shaders we use. ShaderFill fill(pShaderSet); if (pTexture) fill.SetTexture(0, pTexture); // Set shader uniforms. const float scale = HSWDISPLAY_SCALE * ((RenderState.OurHMDInfo.HmdType == HmdType_DK1) ? 0.70f : 1.f); pShaderSet->SetUniform2f("Scale", scale, scale / 2.f); // X and Y scale. Y is a fixed proportion to X in order to give a certain aspect ratio. pShaderSet->SetUniform2f("PositionOffset", OrthoProjection[eye].GetTranslation().x, 0.0f); // Set vertex attributes if (GLE_ARB_vertex_array_object) { OVR_ASSERT(VAO != 0); glBindVertexArray(VAO); } if(!VAOInitialized) // This executes for the case that VAO isn't supported. { glBindBuffer(GL_ARRAY_BUFFER, pVB->GLBuffer); // This must be called before glVertexAttribPointer is called below. const GLuint shaderProgram = pShaderSet->Prog; GLint attributeLocationArray[3]; attributeLocationArray[0] = glGetAttribLocation(shaderProgram, "Position"); glVertexAttribPointer(attributeLocationArray[0], sizeof(Vector3f)/sizeof(float), GL_FLOAT, false, sizeof(HASWVertex), reinterpret_cast(offsetof(HASWVertex, Pos))); attributeLocationArray[1] = glGetAttribLocation(shaderProgram, "Color"); glVertexAttribPointer(attributeLocationArray[1], sizeof(Color)/sizeof(uint8_t), GL_UNSIGNED_BYTE, true, sizeof(HASWVertex), reinterpret_cast(offsetof(HASWVertex, C))); // True because we want it to convert [0,255] to [0,1] for us. attributeLocationArray[2] = glGetAttribLocation(shaderProgram, "TexCoord"); glVertexAttribPointer(attributeLocationArray[2], sizeof(float[2])/sizeof(float), GL_FLOAT, false, sizeof(HASWVertex), reinterpret_cast(offsetof(HASWVertex, U))); for (size_t i = 0; i < OVR_ARRAY_COUNT(attributeLocationArray); i++) glEnableVertexAttribArray((GLuint)i); } fill.Set(Prim_TriangleStrip); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); if (GLE_ARB_vertex_array_object) { VAOInitialized = true; glBindVertexArray(0); } } } }}} // namespace OVR::CAPI::GL