/************************************************************************************ PublicHeader: OVR Filename : OVR_List.h Content : Template implementation for doubly-connected linked List Created : September 19, 2012 Notes : Copyright : Copyright 2014 Oculus VR, LLC All Rights reserved. Licensed under the Oculus VR Rift SDK License Version 3.2 (the "License"); you may not use the Oculus VR Rift SDK except in compliance with the License, which is provided at the time of installation or download, or which otherwise accompanies this software in either electronic or hard copy form. You may obtain a copy of the License at http://www.oculusvr.com/licenses/LICENSE-3.2 Unless required by applicable law or agreed to in writing, the Oculus VR SDK distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ************************************************************************************/ #ifndef OVR_List_h #define OVR_List_h #include "OVR_Types.h" namespace OVR { //----------------------------------------------------------------------------------- // ***** ListNode // // Base class for the elements of the intrusive linked list. // To store elements in the List do: // // struct MyData : ListNode // { // . . . // }; template struct ListNode { union { T* pPrev; void* pVoidPrev; }; union { T* pNext; void* pVoidNext; }; ListNode() { pPrev = NULL; pNext = NULL; } void RemoveNode() { pPrev->pNext = pNext; pNext->pPrev = pPrev; } // Removes us from the list and inserts pnew there instead. void ReplaceNodeWith(T* pnew) { pPrev->pNext = pnew; pNext->pPrev = pnew; pnew->pPrev = pPrev; pnew->pNext = pNext; } // Inserts the argument linked list node after us in the list. void InsertNodeAfter(T* p) { p->pPrev = pNext->pPrev; // this p->pNext = pNext; pNext->pPrev = p; pNext = p; } // Inserts the argument linked list node before us in the list. void InsertNodeBefore(T* p) { p->pNext = pNext->pPrev; // this p->pPrev = pPrev; pPrev->pNext = p; pPrev = p; } void Alloc_MoveTo(ListNode* pdest) { pdest->pNext = pNext; pdest->pPrev = pPrev; pPrev->pNext = (T*)pdest; pNext->pPrev = (T*)pdest; } }; //------------------------------------------------------------------------ // ***** List // // Doubly linked intrusive list. // The data type must be derived from ListNode. // // Adding: PushFront(), PushBack(). // Removing: Remove() - the element must be in the list! // Moving: BringToFront(), SendToBack() - the element must be in the list! // // Iterating: // MyData* data = MyList.GetFirst(); // while (!MyList.IsNull(data)) // { // . . . // data = MyList.GetNext(data); // } // // Removing: // MyData* data = MyList.GetFirst(); // while (!MyList.IsNull(data)) // { // MyData* next = MyList.GetNext(data); // if (ToBeRemoved(data)) // MyList.Remove(data); // data = next; // } // // List<> represents a doubly-linked list of T, where each T must derive // from ListNode. B specifies the base class that was directly // derived from ListNode, and is only necessary if there is an intermediate // inheritance chain. template class List { public: typedef T ValueType; List() { Root.pNext = Root.pPrev = (ValueType*)&Root; } void Clear() { Root.pNext = Root.pPrev = (ValueType*)&Root; } const ValueType* GetFirst() const { return (const ValueType*)Root.pNext; } const ValueType* GetLast () const { return (const ValueType*)Root.pPrev; } ValueType* GetFirst() { return (ValueType*)Root.pNext; } ValueType* GetLast () { return (ValueType*)Root.pPrev; } // Determine if list is empty (i.e.) points to itself. // Go through void* access to avoid issues with strict-aliasing optimizing out the // access after RemoveNode(), etc. bool IsEmpty() const { return Root.pVoidNext == (const T*)(const B*)&Root; } bool IsFirst(const ValueType* p) const { return p == Root.pNext; } bool IsLast (const ValueType* p) const { return p == Root.pPrev; } bool IsNull (const ValueType* p) const { return p == (const T*)(const B*)&Root; } inline static const ValueType* GetPrev(const ValueType* p) { return (const ValueType*)p->pPrev; } inline static const ValueType* GetNext(const ValueType* p) { return (const ValueType*)p->pNext; } inline static ValueType* GetPrev( ValueType* p) { return (ValueType*)p->pPrev; } inline static ValueType* GetNext( ValueType* p) { return (ValueType*)p->pNext; } void PushFront(ValueType* p) { p->pNext = Root.pNext; p->pPrev = (ValueType*)&Root; Root.pNext->pPrev = p; Root.pNext = p; } void PushBack(ValueType* p) { p->pPrev = Root.pPrev; p->pNext = (ValueType*)&Root; Root.pPrev->pNext = p; Root.pPrev = p; } static void Remove(ValueType* p) { p->pPrev->pNext = p->pNext; p->pNext->pPrev = p->pPrev; } void BringToFront(ValueType* p) { Remove(p); PushFront(p); } void SendToBack(ValueType* p) { Remove(p); PushBack(p); } // Appends the contents of the argument list to the front of this list; // items are removed from the argument list. void PushListToFront(List& src) { if (!src.IsEmpty()) { ValueType* pfirst = src.GetFirst(); ValueType* plast = src.GetLast(); src.Clear(); plast->pNext = Root.pNext; pfirst->pPrev = (ValueType*)&Root; Root.pNext->pPrev = plast; Root.pNext = pfirst; } } void PushListToBack(List& src) { if (!src.IsEmpty()) { ValueType* pfirst = src.GetFirst(); ValueType* plast = src.GetLast(); src.Clear(); plast->pNext = (ValueType*)&Root; pfirst->pPrev = Root.pPrev; Root.pPrev->pNext = pfirst; Root.pPrev = plast; } } // Removes all source list items after (and including) the 'pfirst' node from the // source list and adds them to out list. void PushFollowingListItemsToFront(List& src, ValueType *pfirst) { if (pfirst != &src.Root) { ValueType *plast = src.Root.pPrev; // Remove list remainder from source. pfirst->pPrev->pNext = (ValueType*)&src.Root; src.Root.pPrev = pfirst->pPrev; // Add the rest of the items to list. plast->pNext = Root.pNext; pfirst->pPrev = (ValueType*)&Root; Root.pNext->pPrev = plast; Root.pNext = pfirst; } } // Removes all source list items up to but NOT including the 'pend' node from the // source list and adds them to out list. void PushPrecedingListItemsToFront(List& src, ValueType *ptail) { if (src.GetFirst() != ptail) { ValueType *pfirst = src.Root.pNext; ValueType *plast = ptail->pPrev; // Remove list remainder from source. ptail->pPrev = (ValueType*)&src.Root; src.Root.pNext = ptail; // Add the rest of the items to list. plast->pNext = Root.pNext; pfirst->pPrev = (ValueType*)&Root; Root.pNext->pPrev = plast; Root.pNext = pfirst; } } // Removes a range of source list items starting at 'pfirst' and up to, but not including 'pend', // and adds them to out list. Note that source items MUST already be in the list. void PushListItemsToFront(ValueType *pfirst, ValueType *pend) { if (pfirst != pend) { ValueType *plast = pend->pPrev; // Remove list remainder from source. pfirst->pPrev->pNext = pend; pend->pPrev = pfirst->pPrev; // Add the rest of the items to list. plast->pNext = Root.pNext; pfirst->pPrev = (ValueType*)&Root; Root.pNext->pPrev = plast; Root.pNext = pfirst; } } void Alloc_MoveTo(List* pdest) { if (IsEmpty()) pdest->Clear(); else { pdest->Root.pNext = Root.pNext; pdest->Root.pPrev = Root.pPrev; Root.pNext->pPrev = (ValueType*)&pdest->Root; Root.pPrev->pNext = (ValueType*)&pdest->Root; } } private: // Copying is prohibited List(const List&); const List& operator = (const List&); ListNode Root; }; //------------------------------------------------------------------------ // ***** FreeListElements // // Remove all elements in the list and free them in the allocator template void FreeListElements(List& list, Allocator& allocator) { typename List::ValueType* self = list.GetFirst(); while(!list.IsNull(self)) { typename List::ValueType* next = list.GetNext(self); allocator.Free(self); self = next; } list.Clear(); } } // OVR #endif