/************************************************************************************ PublicHeader: OVR_Kernel.h Filename : OVR_Math.h Content : Implementation of 3D primitives such as vectors, matrices. Created : September 4, 2012 Authors : Andrew Reisse, Michael Antonov, Steve LaValle, Anna Yershova, Max Katsev, Dov Katz Copyright : Copyright 2014 Oculus VR, LLC All Rights reserved. Licensed under the Oculus VR Rift SDK License Version 3.2 (the "License"); you may not use the Oculus VR Rift SDK except in compliance with the License, which is provided at the time of installation or download, or which otherwise accompanies this software in either electronic or hard copy form. You may obtain a copy of the License at http://www.oculusvr.com/licenses/LICENSE-3.2 Unless required by applicable law or agreed to in writing, the Oculus VR SDK distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *************************************************************************************/ #ifndef OVR_Math_h #define OVR_Math_h #include #include #include #include "OVR_Types.h" #include "OVR_RefCount.h" #include "OVR_Std.h" #include "OVR_Alg.h" namespace OVR { //------------------------------------------------------------------------------------- // ***** Constants for 3D world/axis definitions. // Definitions of axes for coordinate and rotation conversions. enum Axis { Axis_X = 0, Axis_Y = 1, Axis_Z = 2 }; // RotateDirection describes the rotation direction around an axis, interpreted as follows: // CW - Clockwise while looking "down" from positive axis towards the origin. // CCW - Counter-clockwise while looking from the positive axis towards the origin, // which is in the negative axis direction. // CCW is the default for the RHS coordinate system. Oculus standard RHS coordinate // system defines Y up, X right, and Z back (pointing out from the screen). In this // system Rotate_CCW around Z will specifies counter-clockwise rotation in XY plane. enum RotateDirection { Rotate_CCW = 1, Rotate_CW = -1 }; // Constants for right handed and left handed coordinate systems enum HandedSystem { Handed_R = 1, Handed_L = -1 }; // AxisDirection describes which way the coordinate axis points. Used by WorldAxes. enum AxisDirection { Axis_Up = 2, Axis_Down = -2, Axis_Right = 1, Axis_Left = -1, Axis_In = 3, Axis_Out = -3 }; struct WorldAxes { AxisDirection XAxis, YAxis, ZAxis; WorldAxes(AxisDirection x, AxisDirection y, AxisDirection z) : XAxis(x), YAxis(y), ZAxis(z) { OVR_ASSERT(abs(x) != abs(y) && abs(y) != abs(z) && abs(z) != abs(x));} }; } // namespace OVR //------------------------------------------------------------------------------------// // ***** C Compatibility Types // These declarations are used to support conversion between C types used in // LibOVR C interfaces and their C++ versions. As an example, they allow passing // Vector3f into a function that expects ovrVector3f. typedef struct ovrQuatf_ ovrQuatf; typedef struct ovrQuatd_ ovrQuatd; typedef struct ovrSizei_ ovrSizei; typedef struct ovrSizef_ ovrSizef; typedef struct ovrRecti_ ovrRecti; typedef struct ovrVector2i_ ovrVector2i; typedef struct ovrVector2f_ ovrVector2f; typedef struct ovrVector3f_ ovrVector3f; typedef struct ovrVector3d_ ovrVector3d; typedef struct ovrMatrix3d_ ovrMatrix3d; typedef struct ovrMatrix4f_ ovrMatrix4f; typedef struct ovrPosef_ ovrPosef; typedef struct ovrPosed_ ovrPosed; typedef struct ovrPoseStatef_ ovrPoseStatef; typedef struct ovrPoseStated_ ovrPoseStated; namespace OVR { // Forward-declare our templates. template class Quat; template class Size; template class Rect; template class Vector2; template class Vector3; template class Matrix3; template class Matrix4; template class Pose; template class PoseState; // CompatibleTypes::Type is used to lookup a compatible C-version of a C++ class. template struct CompatibleTypes { // Declaration here seems necessary for MSVC; specializations are // used instead. typedef struct {} Type; }; // Specializations providing CompatibleTypes::Type value. template<> struct CompatibleTypes > { typedef ovrQuatf Type; }; template<> struct CompatibleTypes > { typedef ovrQuatd Type; }; template<> struct CompatibleTypes > { typedef ovrMatrix3d Type; }; template<> struct CompatibleTypes > { typedef ovrMatrix4f Type; }; template<> struct CompatibleTypes > { typedef ovrSizei Type; }; template<> struct CompatibleTypes > { typedef ovrSizef Type; }; template<> struct CompatibleTypes > { typedef ovrRecti Type; }; template<> struct CompatibleTypes > { typedef ovrVector2i Type; }; template<> struct CompatibleTypes > { typedef ovrVector2f Type; }; template<> struct CompatibleTypes > { typedef ovrVector3f Type; }; template<> struct CompatibleTypes > { typedef ovrVector3d Type; }; template<> struct CompatibleTypes > { typedef ovrPosef Type; }; template<> struct CompatibleTypes > { typedef ovrPosed Type; }; //------------------------------------------------------------------------------------// // ***** Math // // Math class contains constants and functions. This class is a template specialized // per type, with Math and Math being distinct. template class Math { public: // By default, support explicit conversion to float. This allows Vector2 to // compile, for example. typedef float OtherFloatType; }; #define MATH_FLOAT_PI (3.1415926f) #define MATH_FLOAT_TWOPI (2.0f *MATH_FLOAT_PI) #define MATH_FLOAT_PIOVER2 (0.5f *MATH_FLOAT_PI) #define MATH_FLOAT_PIOVER4 (0.25f*MATH_FLOAT_PI) #define MATH_FLOAT_E (2.7182818f) #define MATH_FLOAT_MAXVALUE (FLT_MAX) #define MATH_FLOAT MINPOSITIVEVALUE (FLT_MIN) #define MATH_FLOAT_RADTODEGREEFACTOR (360.0f / MATH_FLOAT_TWOPI) #define MATH_FLOAT_DEGREETORADFACTOR (MATH_FLOAT_TWOPI / 360.0f) #define MATH_FLOAT_TOLERANCE (0.00001f) #define MATH_FLOAT_SINGULARITYRADIUS (0.0000001f) // Use for Gimbal lock numerical problems #define MATH_DOUBLE_PI (3.14159265358979) #define MATH_DOUBLE_TWOPI (2.0f *MATH_DOUBLE_PI) #define MATH_DOUBLE_PIOVER2 (0.5f *MATH_DOUBLE_PI) #define MATH_DOUBLE_PIOVER4 (0.25f*MATH_DOUBLE_PI) #define MATH_DOUBLE_E (2.71828182845905) #define MATH_DOUBLE_MAXVALUE (DBL_MAX) #define MATH_DOUBLE MINPOSITIVEVALUE (DBL_MIN) #define MATH_DOUBLE_RADTODEGREEFACTOR (360.0f / MATH_DOUBLE_TWOPI) #define MATH_DOUBLE_DEGREETORADFACTOR (MATH_DOUBLE_TWOPI / 360.0f) #define MATH_DOUBLE_TOLERANCE (0.00001) #define MATH_DOUBLE_SINGULARITYRADIUS (0.000000000001) // Use for Gimbal lock numerical problems // Single-precision Math constants class. template<> class Math { public: typedef double OtherFloatType; }; // Double-precision Math constants class. template<> class Math { public: typedef float OtherFloatType; }; typedef Math Mathf; typedef Math Mathd; // Conversion functions between degrees and radians template T RadToDegree(T rads) { return rads * ((T)MATH_DOUBLE_RADTODEGREEFACTOR); } template T DegreeToRad(T rads) { return rads * ((T)MATH_DOUBLE_DEGREETORADFACTOR); } // Numerically stable acos function template T Acos(T val) { if (val > T(1)) return T(0); else if (val < T(-1)) return ((T)MATH_DOUBLE_PI); else return acos(val); }; // Numerically stable asin function template T Asin(T val) { if (val > T(1)) return ((T)MATH_DOUBLE_PIOVER2); else if (val < T(-1)) return ((T)MATH_DOUBLE_PIOVER2) * T(3); else return asin(val); }; #ifdef OVR_CC_MSVC inline int isnan(double x) { return _isnan(x); }; #endif template class Quat; //------------------------------------------------------------------------------------- // ***** Vector2<> // Vector2f (Vector2d) represents a 2-dimensional vector or point in space, // consisting of coordinates x and y template class Vector2 { public: T x, y; Vector2() : x(0), y(0) { } Vector2(T x_, T y_) : x(x_), y(y_) { } explicit Vector2(T s) : x(s), y(s) { } explicit Vector2(const Vector2::OtherFloatType> &src) : x((T)src.x), y((T)src.y) { } // C-interop support. typedef typename CompatibleTypes >::Type CompatibleType; Vector2(const CompatibleType& s) : x(s.x), y(s.y) { } operator const CompatibleType& () const { static_assert(sizeof(Vector2) == sizeof(CompatibleType), "sizeof(Vector2) failure"); return reinterpret_cast(*this); } bool operator== (const Vector2& b) const { return x == b.x && y == b.y; } bool operator!= (const Vector2& b) const { return x != b.x || y != b.y; } Vector2 operator+ (const Vector2& b) const { return Vector2(x + b.x, y + b.y); } Vector2& operator+= (const Vector2& b) { x += b.x; y += b.y; return *this; } Vector2 operator- (const Vector2& b) const { return Vector2(x - b.x, y - b.y); } Vector2& operator-= (const Vector2& b) { x -= b.x; y -= b.y; return *this; } Vector2 operator- () const { return Vector2(-x, -y); } // Scalar multiplication/division scales vector. Vector2 operator* (T s) const { return Vector2(x*s, y*s); } Vector2& operator*= (T s) { x *= s; y *= s; return *this; } Vector2 operator/ (T s) const { T rcp = T(1)/s; return Vector2(x*rcp, y*rcp); } Vector2& operator/= (T s) { T rcp = T(1)/s; x *= rcp; y *= rcp; return *this; } static Vector2 Min(const Vector2& a, const Vector2& b) { return Vector2((a.x < b.x) ? a.x : b.x, (a.y < b.y) ? a.y : b.y); } static Vector2 Max(const Vector2& a, const Vector2& b) { return Vector2((a.x > b.x) ? a.x : b.x, (a.y > b.y) ? a.y : b.y); } // Compare two vectors for equality with tolerance. Returns true if vectors match withing tolerance. bool Compare(const Vector2&b, T tolerance = ((T)MATH_DOUBLE_TOLERANCE)) { return (fabs(b.x-x) < tolerance) && (fabs(b.y-y) < tolerance); } // Access element by index T& operator[] (int idx) { OVR_ASSERT(0 <= idx && idx < 2); return *(&x + idx); } const T& operator[] (int idx) const { OVR_ASSERT(0 <= idx && idx < 2); return *(&x + idx); } // Entry-wise product of two vectors Vector2 EntrywiseMultiply(const Vector2& b) const { return Vector2(x * b.x, y * b.y);} // Multiply and divide operators do entry-wise math. Used Dot() for dot product. Vector2 operator* (const Vector2& b) const { return Vector2(x * b.x, y * b.y); } Vector2 operator/ (const Vector2& b) const { return Vector2(x / b.x, y / b.y); } // Dot product // Used to calculate angle q between two vectors among other things, // as (A dot B) = |a||b|cos(q). T Dot(const Vector2& b) const { return x*b.x + y*b.y; } // Returns the angle from this vector to b, in radians. T Angle(const Vector2& b) const { T div = LengthSq()*b.LengthSq(); OVR_ASSERT(div != T(0)); T result = Acos((this->Dot(b))/sqrt(div)); return result; } // Return Length of the vector squared. T LengthSq() const { return (x * x + y * y); } // Return vector length. T Length() const { return sqrt(LengthSq()); } // Returns squared distance between two points represented by vectors. T DistanceSq(const Vector2& b) const { return (*this - b).LengthSq(); } // Returns distance between two points represented by vectors. T Distance(const Vector2& b) const { return (*this - b).Length(); } // Determine if this a unit vector. bool IsNormalized() const { return fabs(LengthSq() - T(1)) < ((T)MATH_DOUBLE_TOLERANCE); } // Normalize, convention vector length to 1. void Normalize() { T l = Length(); OVR_ASSERT(l != T(0)); *this /= l; } // Returns normalized (unit) version of the vector without modifying itself. Vector2 Normalized() const { T l = Length(); OVR_ASSERT(l != T(0)); return *this / l; } // Linearly interpolates from this vector to another. // Factor should be between 0.0 and 1.0, with 0 giving full value to this. Vector2 Lerp(const Vector2& b, T f) const { return *this*(T(1) - f) + b*f; } // Projects this vector onto the argument; in other words, // A.Project(B) returns projection of vector A onto B. Vector2 ProjectTo(const Vector2& b) const { T l2 = b.LengthSq(); OVR_ASSERT(l2 != T(0)); return b * ( Dot(b) / l2 ); } }; typedef Vector2 Vector2f; typedef Vector2 Vector2d; typedef Vector2 Vector2i; typedef Vector2 Point2f; typedef Vector2 Point2d; typedef Vector2 Point2i; //------------------------------------------------------------------------------------- // ***** Vector3<> - 3D vector of {x, y, z} // // Vector3f (Vector3d) represents a 3-dimensional vector or point in space, // consisting of coordinates x, y and z. template class Vector3 { public: T x, y, z; // FIXME: default initialization of a vector class can be very expensive in a full-blown // application. A few hundred thousand vector constructions is not unlikely and can add // up to milliseconds of time on processors like the PS3 PPU. Vector3() : x(0), y(0), z(0) { } Vector3(T x_, T y_, T z_ = 0) : x(x_), y(y_), z(z_) { } explicit Vector3(T s) : x(s), y(s), z(s) { } explicit Vector3(const Vector3::OtherFloatType> &src) : x((T)src.x), y((T)src.y), z((T)src.z) { } static const Vector3 ZERO; // C-interop support. typedef typename CompatibleTypes >::Type CompatibleType; Vector3(const CompatibleType& s) : x(s.x), y(s.y), z(s.z) { } operator const CompatibleType& () const { static_assert(sizeof(Vector3) == sizeof(CompatibleType), "sizeof(Vector3) failure"); return reinterpret_cast(*this); } bool operator== (const Vector3& b) const { return x == b.x && y == b.y && z == b.z; } bool operator!= (const Vector3& b) const { return x != b.x || y != b.y || z != b.z; } Vector3 operator+ (const Vector3& b) const { return Vector3(x + b.x, y + b.y, z + b.z); } Vector3& operator+= (const Vector3& b) { x += b.x; y += b.y; z += b.z; return *this; } Vector3 operator- (const Vector3& b) const { return Vector3(x - b.x, y - b.y, z - b.z); } Vector3& operator-= (const Vector3& b) { x -= b.x; y -= b.y; z -= b.z; return *this; } Vector3 operator- () const { return Vector3(-x, -y, -z); } // Scalar multiplication/division scales vector. Vector3 operator* (T s) const { return Vector3(x*s, y*s, z*s); } Vector3& operator*= (T s) { x *= s; y *= s; z *= s; return *this; } Vector3 operator/ (T s) const { T rcp = T(1)/s; return Vector3(x*rcp, y*rcp, z*rcp); } Vector3& operator/= (T s) { T rcp = T(1)/s; x *= rcp; y *= rcp; z *= rcp; return *this; } static Vector3 Min(const Vector3& a, const Vector3& b) { return Vector3((a.x < b.x) ? a.x : b.x, (a.y < b.y) ? a.y : b.y, (a.z < b.z) ? a.z : b.z); } static Vector3 Max(const Vector3& a, const Vector3& b) { return Vector3((a.x > b.x) ? a.x : b.x, (a.y > b.y) ? a.y : b.y, (a.z > b.z) ? a.z : b.z); } // Compare two vectors for equality with tolerance. Returns true if vectors match withing tolerance. bool Compare(const Vector3&b, T tolerance = ((T)MATH_DOUBLE_TOLERANCE)) { return (fabs(b.x-x) < tolerance) && (fabs(b.y-y) < tolerance) && (fabs(b.z-z) < tolerance); } T& operator[] (int idx) { OVR_ASSERT(0 <= idx && idx < 3); return *(&x + idx); } const T& operator[] (int idx) const { OVR_ASSERT(0 <= idx && idx < 3); return *(&x + idx); } // Entrywise product of two vectors Vector3 EntrywiseMultiply(const Vector3& b) const { return Vector3(x * b.x, y * b.y, z * b.z);} // Multiply and divide operators do entry-wise math Vector3 operator* (const Vector3& b) const { return Vector3(x * b.x, y * b.y, z * b.z); } Vector3 operator/ (const Vector3& b) const { return Vector3(x / b.x, y / b.y, z / b.z); } // Dot product // Used to calculate angle q between two vectors among other things, // as (A dot B) = |a||b|cos(q). T Dot(const Vector3& b) const { return x*b.x + y*b.y + z*b.z; } // Compute cross product, which generates a normal vector. // Direction vector can be determined by right-hand rule: Pointing index finder in // direction a and middle finger in direction b, thumb will point in a.Cross(b). Vector3 Cross(const Vector3& b) const { return Vector3(y*b.z - z*b.y, z*b.x - x*b.z, x*b.y - y*b.x); } // Returns the angle from this vector to b, in radians. T Angle(const Vector3& b) const { T div = LengthSq()*b.LengthSq(); OVR_ASSERT(div != T(0)); T result = Acos((this->Dot(b))/sqrt(div)); return result; } // Return Length of the vector squared. T LengthSq() const { return (x * x + y * y + z * z); } // Return vector length. T Length() const { return sqrt(LengthSq()); } // Returns squared distance between two points represented by vectors. T DistanceSq(Vector3 const& b) const { return (*this - b).LengthSq(); } // Returns distance between two points represented by vectors. T Distance(Vector3 const& b) const { return (*this - b).Length(); } // Determine if this a unit vector. bool IsNormalized() const { return fabs(LengthSq() - T(1)) < ((T)MATH_DOUBLE_TOLERANCE); } // Normalize, convention vector length to 1. void Normalize() { T l = Length(); OVR_ASSERT(l != T(0)); *this /= l; } // Returns normalized (unit) version of the vector without modifying itself. Vector3 Normalized() const { T l = Length(); OVR_ASSERT(l != T(0)); return *this / l; } // Linearly interpolates from this vector to another. // Factor should be between 0.0 and 1.0, with 0 giving full value to this. Vector3 Lerp(const Vector3& b, T f) const { return *this*(T(1) - f) + b*f; } // Projects this vector onto the argument; in other words, // A.Project(B) returns projection of vector A onto B. Vector3 ProjectTo(const Vector3& b) const { T l2 = b.LengthSq(); OVR_ASSERT(l2 != T(0)); return b * ( Dot(b) / l2 ); } // Projects this vector onto a plane defined by a normal vector Vector3 ProjectToPlane(const Vector3& normal) const { return *this - this->ProjectTo(normal); } }; typedef Vector3 Vector3f; typedef Vector3 Vector3d; typedef Vector3 Vector3i; static_assert((sizeof(Vector3f) == 3*sizeof(float)), "sizeof(Vector3f) failure"); static_assert((sizeof(Vector3d) == 3*sizeof(double)), "sizeof(Vector3d) failure"); static_assert((sizeof(Vector3i) == 3*sizeof(int32_t)), "sizeof(Vector3i) failure"); typedef Vector3 Point3f; typedef Vector3 Point3d; typedef Vector3 Point3i; //------------------------------------------------------------------------------------- // ***** Vector4<> - 4D vector of {x, y, z, w} // // Vector4f (Vector4d) represents a 3-dimensional vector or point in space, // consisting of coordinates x, y, z and w. template class Vector4 { public: T x, y, z, w; // FIXME: default initialization of a vector class can be very expensive in a full-blown // application. A few hundred thousand vector constructions is not unlikely and can add // up to milliseconds of time on processors like the PS3 PPU. Vector4() : x(0), y(0), z(0), w(0) { } Vector4(T x_, T y_, T z_, T w_) : x(x_), y(y_), z(z_), w(w_) { } explicit Vector4(T s) : x(s), y(s), z(s), w(s) { } explicit Vector4(const Vector3& v, const float w_=1) : x(v.x), y(v.y), z(v.z), w(w_) { } explicit Vector4(const Vector4::OtherFloatType> &src) : x((T)src.x), y((T)src.y), z((T)src.z), w((T)src.w) { } static const Vector4 ZERO; // C-interop support. typedef typename CompatibleTypes< Vector4 >::Type CompatibleType; Vector4(const CompatibleType& s) : x(s.x), y(s.y), z(s.z), w(s.w) { } operator const CompatibleType& () const { static_assert(sizeof(Vector4) == sizeof(CompatibleType), "sizeof(Vector4) failure"); return reinterpret_cast(*this); } Vector4& operator= (const Vector3& other) { x=other.x; y=other.y; z=other.z; w=1; return *this; } bool operator== (const Vector4& b) const { return x == b.x && y == b.y && z == b.z && w == b.w; } bool operator!= (const Vector4& b) const { return x != b.x || y != b.y || z != b.z || w != b.w; } Vector4 operator+ (const Vector4& b) const { return Vector4(x + b.x, y + b.y, z + b.z, w + b.w); } Vector4& operator+= (const Vector4& b) { x += b.x; y += b.y; z += b.z; w += b.w; return *this; } Vector4 operator- (const Vector4& b) const { return Vector4(x - b.x, y - b.y, z - b.z, w - b.w); } Vector4& operator-= (const Vector4& b) { x -= b.x; y -= b.y; z -= b.z; w -= b.w; return *this; } Vector4 operator- () const { return Vector4(-x, -y, -z, -w); } // Scalar multiplication/division scales vector. Vector4 operator* (T s) const { return Vector4(x*s, y*s, z*s, w*s); } Vector4& operator*= (T s) { x *= s; y *= s; z *= s; w *= s;return *this; } Vector4 operator/ (T s) const { T rcp = T(1)/s; return Vector4(x*rcp, y*rcp, z*rcp, w*rcp); } Vector4& operator/= (T s) { T rcp = T(1)/s; x *= rcp; y *= rcp; z *= rcp; w *= rcp; return *this; } static Vector4 Min(const Vector4& a, const Vector4& b) { return Vector4((a.x < b.x) ? a.x : b.x, (a.y < b.y) ? a.y : b.y, (a.z < b.z) ? a.z : b.z, (a.w < b.w) ? a.w : b.w); } static Vector4 Max(const Vector4& a, const Vector4& b) { return Vector4((a.x > b.x) ? a.x : b.x, (a.y > b.y) ? a.y : b.y, (a.z > b.z) ? a.z : b.z, (a.w > b.w) ? a.w : b.w); } // Compare two vectors for equality with tolerance. Returns true if vectors match withing tolerance. bool Compare(const Vector4&b, T tolerance = ((T)MATH_DOUBLE_TOLERANCE)) { return (fabs(b.x-x) < tolerance) && (fabs(b.y-y) < tolerance) && (fabs(b.z-z) < tolerance) && (fabs(b.w-w) < tolerance); } T& operator[] (int idx) { OVR_ASSERT(0 <= idx && idx < 4); return *(&x + idx); } const T& operator[] (int idx) const { OVR_ASSERT(0 <= idx && idx < 4); return *(&x + idx); } // Entry wise product of two vectors Vector4 EntrywiseMultiply(const Vector4& b) const { return Vector4(x * b.x, y * b.y, z * b.z);} // Multiply and divide operators do entry-wise math Vector4 operator* (const Vector4& b) const { return Vector4(x * b.x, y * b.y, z * b.z, w * b.w); } Vector4 operator/ (const Vector4& b) const { return Vector4(x / b.x, y / b.y, z / b.z, w / b.w); } // Dot product T Dot(const Vector4& b) const { return x*b.x + y*b.y + z*b.z + w*b.w; } // Return Length of the vector squared. T LengthSq() const { return (x * x + y * y + z * z + w * w); } // Return vector length. T Length() const { return sqrt(LengthSq()); } // Determine if this a unit vector. bool IsNormalized() const { return fabs(LengthSq() - T(1)) < Math::Tolerance; } // Normalize, convention vector length to 1. void Normalize() { T l = Length(); OVR_ASSERT(l != T(0)); *this /= l; } // Returns normalized (unit) version of the vector without modifying itself. Vector4 Normalized() const { T l = Length(); OVR_ASSERT(l != T(0)); return *this / l; } }; typedef Vector4 Vector4f; typedef Vector4 Vector4d; typedef Vector4 Vector4i; //------------------------------------------------------------------------------------- // ***** Bounds3 // Bounds class used to describe a 3D axis aligned bounding box. template class Bounds3 { public: Vector3 b[2]; Bounds3() { } Bounds3( const Vector3 & mins, const Vector3 & maxs ) { b[0] = mins; b[1] = maxs; } void Clear() { b[0].x = b[0].y = b[0].z = Math::MaxValue; b[1].x = b[1].y = b[1].z = -Math::MaxValue; } void AddPoint( const Vector3 & v ) { b[0].x = Alg::Min( b[0].x, v.x ); b[0].y = Alg::Min( b[0].y, v.y ); b[0].z = Alg::Min( b[0].z, v.z ); b[1].x = Alg::Max( b[1].x, v.x ); b[1].y = Alg::Max( b[1].y, v.y ); b[1].z = Alg::Max( b[1].z, v.z ); } const Vector3 & GetMins() const { return b[0]; } const Vector3 & GetMaxs() const { return b[1]; } Vector3 & GetMins() { return b[0]; } Vector3 & GetMaxs() { return b[1]; } }; typedef Bounds3 Bounds3f; typedef Bounds3 Bounds3d; //------------------------------------------------------------------------------------- // ***** Size // Size class represents 2D size with Width, Height components. // Used to describe distentions of render targets, etc. template class Size { public: T w, h; Size() : w(0), h(0) { } Size(T w_, T h_) : w(w_), h(h_) { } explicit Size(T s) : w(s), h(s) { } explicit Size(const Size::OtherFloatType> &src) : w((T)src.w), h((T)src.h) { } // C-interop support. typedef typename CompatibleTypes >::Type CompatibleType; Size(const CompatibleType& s) : w(s.w), h(s.h) { } operator const CompatibleType& () const { static_assert(sizeof(Size) == sizeof(CompatibleType), "sizeof(Size) failure"); return reinterpret_cast(*this); } bool operator== (const Size& b) const { return w == b.w && h == b.h; } bool operator!= (const Size& b) const { return w != b.w || h != b.h; } Size operator+ (const Size& b) const { return Size(w + b.w, h + b.h); } Size& operator+= (const Size& b) { w += b.w; h += b.h; return *this; } Size operator- (const Size& b) const { return Size(w - b.w, h - b.h); } Size& operator-= (const Size& b) { w -= b.w; h -= b.h; return *this; } Size operator- () const { return Size(-w, -h); } Size operator* (const Size& b) const { return Size(w * b.w, h * b.h); } Size& operator*= (const Size& b) { w *= b.w; h *= b.h; return *this; } Size operator/ (const Size& b) const { return Size(w / b.w, h / b.h); } Size& operator/= (const Size& b) { w /= b.w; h /= b.h; return *this; } // Scalar multiplication/division scales both components. Size operator* (T s) const { return Size(w*s, h*s); } Size& operator*= (T s) { w *= s; h *= s; return *this; } Size operator/ (T s) const { return Size(w/s, h/s); } Size& operator/= (T s) { w /= s; h /= s; return *this; } static Size Min(const Size& a, const Size& b) { return Size((a.w < b.w) ? a.w : b.w, (a.h < b.h) ? a.h : b.h); } static Size Max(const Size& a, const Size& b) { return Size((a.w > b.w) ? a.w : b.w, (a.h > b.h) ? a.h : b.h); } T Area() const { return w * h; } inline Vector2 ToVector() const { return Vector2(w, h); } }; typedef Size Sizei; typedef Size Sizeu; typedef Size Sizef; typedef Size Sized; //----------------------------------------------------------------------------------- // ***** Rect // Rect describes a rectangular area for rendering, that includes position and size. template class Rect { public: T x, y; T w, h; Rect() { } Rect(T x1, T y1, T w1, T h1) : x(x1), y(y1), w(w1), h(h1) { } Rect(const Vector2& pos, const Size& sz) : x(pos.x), y(pos.y), w(sz.w), h(sz.h) { } Rect(const Size& sz) : x(0), y(0), w(sz.w), h(sz.h) { } // C-interop support. typedef typename CompatibleTypes >::Type CompatibleType; Rect(const CompatibleType& s) : x(s.Pos.x), y(s.Pos.y), w(s.Size.w), h(s.Size.h) { } operator const CompatibleType& () const { static_assert(sizeof(Rect) == sizeof(CompatibleType), "sizeof(Rect) failure"); return reinterpret_cast(*this); } Vector2 GetPos() const { return Vector2(x, y); } Size GetSize() const { return Size(w, h); } void SetPos(const Vector2& pos) { x = pos.x; y = pos.y; } void SetSize(const Size& sz) { w = sz.w; h = sz.h; } bool operator == (const Rect& vp) const { return (x == vp.x) && (y == vp.y) && (w == vp.w) && (h == vp.h); } bool operator != (const Rect& vp) const { return !operator == (vp); } }; typedef Rect Recti; //-------------------------------------------------------------------------------------// // ***** Quat // // Quatf represents a quaternion class used for rotations. // // Quaternion multiplications are done in right-to-left order, to match the // behavior of matrices. template class Quat { public: // w + Xi + Yj + Zk T x, y, z, w; Quat() : x(0), y(0), z(0), w(1) { } Quat(T x_, T y_, T z_, T w_) : x(x_), y(y_), z(z_), w(w_) { } explicit Quat(const Quat::OtherFloatType> &src) : x((T)src.x), y((T)src.y), z((T)src.z), w((T)src.w) { } typedef typename CompatibleTypes >::Type CompatibleType; // C-interop support. Quat(const CompatibleType& s) : x(s.x), y(s.y), z(s.z), w(s.w) { } operator CompatibleType () const { CompatibleType result; result.x = x; result.y = y; result.z = z; result.w = w; return result; } // Constructs quaternion for rotation around the axis by an angle. Quat(const Vector3& axis, T angle) { // Make sure we don't divide by zero. if (axis.LengthSq() == 0) { // Assert if the axis is zero, but the angle isn't OVR_ASSERT(angle == 0); x = 0; y = 0; z = 0; w = 1; return; } Vector3 unitAxis = axis.Normalized(); T sinHalfAngle = sin(angle * T(0.5)); w = cos(angle * T(0.5)); x = unitAxis.x * sinHalfAngle; y = unitAxis.y * sinHalfAngle; z = unitAxis.z * sinHalfAngle; } // Constructs quaternion for rotation around one of the coordinate axis by an angle. Quat(Axis A, T angle, RotateDirection d = Rotate_CCW, HandedSystem s = Handed_R) { T sinHalfAngle = s * d *sin(angle * T(0.5)); T v[3]; v[0] = v[1] = v[2] = T(0); v[A] = sinHalfAngle; w = cos(angle * T(0.5)); x = v[0]; y = v[1]; z = v[2]; } // Compute axis and angle from quaternion void GetAxisAngle(Vector3* axis, T* angle) const { if ( x*x + y*y + z*z > ((T)MATH_DOUBLE_TOLERANCE) * ((T)MATH_DOUBLE_TOLERANCE) ) { *axis = Vector3(x, y, z).Normalized(); *angle = 2 * Acos(w); if (*angle > ((T)MATH_DOUBLE_PI)) // Reduce the magnitude of the angle, if necessary { *angle = ((T)MATH_DOUBLE_TWOPI) - *angle; *axis = *axis * (-1); } } else { *axis = Vector3(1, 0, 0); *angle= 0; } } // Constructs the quaternion from a rotation matrix explicit Quat(const Matrix4& m) { T trace = m.M[0][0] + m.M[1][1] + m.M[2][2]; // In almost all cases, the first part is executed. // However, if the trace is not positive, the other // cases arise. if (trace > T(0)) { T s = sqrt(trace + T(1)) * T(2); // s=4*qw w = T(0.25) * s; x = (m.M[2][1] - m.M[1][2]) / s; y = (m.M[0][2] - m.M[2][0]) / s; z = (m.M[1][0] - m.M[0][1]) / s; } else if ((m.M[0][0] > m.M[1][1])&&(m.M[0][0] > m.M[2][2])) { T s = sqrt(T(1) + m.M[0][0] - m.M[1][1] - m.M[2][2]) * T(2); w = (m.M[2][1] - m.M[1][2]) / s; x = T(0.25) * s; y = (m.M[0][1] + m.M[1][0]) / s; z = (m.M[2][0] + m.M[0][2]) / s; } else if (m.M[1][1] > m.M[2][2]) { T s = sqrt(T(1) + m.M[1][1] - m.M[0][0] - m.M[2][2]) * T(2); // S=4*qy w = (m.M[0][2] - m.M[2][0]) / s; x = (m.M[0][1] + m.M[1][0]) / s; y = T(0.25) * s; z = (m.M[1][2] + m.M[2][1]) / s; } else { T s = sqrt(T(1) + m.M[2][2] - m.M[0][0] - m.M[1][1]) * T(2); // S=4*qz w = (m.M[1][0] - m.M[0][1]) / s; x = (m.M[0][2] + m.M[2][0]) / s; y = (m.M[1][2] + m.M[2][1]) / s; z = T(0.25) * s; } } // Constructs the quaternion from a rotation matrix explicit Quat(const Matrix3& m) { T trace = m.M[0][0] + m.M[1][1] + m.M[2][2]; // In almost all cases, the first part is executed. // However, if the trace is not positive, the other // cases arise. if (trace > T(0)) { T s = sqrt(trace + T(1)) * T(2); // s=4*qw w = T(0.25) * s; x = (m.M[2][1] - m.M[1][2]) / s; y = (m.M[0][2] - m.M[2][0]) / s; z = (m.M[1][0] - m.M[0][1]) / s; } else if ((m.M[0][0] > m.M[1][1])&&(m.M[0][0] > m.M[2][2])) { T s = sqrt(T(1) + m.M[0][0] - m.M[1][1] - m.M[2][2]) * T(2); w = (m.M[2][1] - m.M[1][2]) / s; x = T(0.25) * s; y = (m.M[0][1] + m.M[1][0]) / s; z = (m.M[2][0] + m.M[0][2]) / s; } else if (m.M[1][1] > m.M[2][2]) { T s = sqrt(T(1) + m.M[1][1] - m.M[0][0] - m.M[2][2]) * T(2); // S=4*qy w = (m.M[0][2] - m.M[2][0]) / s; x = (m.M[0][1] + m.M[1][0]) / s; y = T(0.25) * s; z = (m.M[1][2] + m.M[2][1]) / s; } else { T s = sqrt(T(1) + m.M[2][2] - m.M[0][0] - m.M[1][1]) * T(2); // S=4*qz w = (m.M[1][0] - m.M[0][1]) / s; x = (m.M[0][2] + m.M[2][0]) / s; y = (m.M[1][2] + m.M[2][1]) / s; z = T(0.25) * s; } } bool operator== (const Quat& b) const { return x == b.x && y == b.y && z == b.z && w == b.w; } bool operator!= (const Quat& b) const { return x != b.x || y != b.y || z != b.z || w != b.w; } Quat operator+ (const Quat& b) const { return Quat(x + b.x, y + b.y, z + b.z, w + b.w); } Quat& operator+= (const Quat& b) { w += b.w; x += b.x; y += b.y; z += b.z; return *this; } Quat operator- (const Quat& b) const { return Quat(x - b.x, y - b.y, z - b.z, w - b.w); } Quat& operator-= (const Quat& b) { w -= b.w; x -= b.x; y -= b.y; z -= b.z; return *this; } Quat operator* (T s) const { return Quat(x * s, y * s, z * s, w * s); } Quat& operator*= (T s) { w *= s; x *= s; y *= s; z *= s; return *this; } Quat operator/ (T s) const { T rcp = T(1)/s; return Quat(x * rcp, y * rcp, z * rcp, w *rcp); } Quat& operator/= (T s) { T rcp = T(1)/s; w *= rcp; x *= rcp; y *= rcp; z *= rcp; return *this; } // Get Imaginary part vector Vector3 Imag() const { return Vector3(x,y,z); } // Get quaternion length. T Length() const { return sqrt(LengthSq()); } // Get quaternion length squared. T LengthSq() const { return (x * x + y * y + z * z + w * w); } // Simple Euclidean distance in R^4 (not SLERP distance, but at least respects Haar measure) T Distance(const Quat& q) const { T d1 = (*this - q).Length(); T d2 = (*this + q).Length(); // Antipodal point check return (d1 < d2) ? d1 : d2; } T DistanceSq(const Quat& q) const { T d1 = (*this - q).LengthSq(); T d2 = (*this + q).LengthSq(); // Antipodal point check return (d1 < d2) ? d1 : d2; } T Dot(const Quat& q) const { return x * q.x + y * q.y + z * q.z + w * q.w; } // Angle between two quaternions in radians T Angle(const Quat& q) const { return 2 * Acos(Alg::Abs(Dot(q))); } // Normalize bool IsNormalized() const { return fabs(LengthSq() - T(1)) < ((T)MATH_DOUBLE_TOLERANCE); } void Normalize() { T l = Length(); OVR_ASSERT(l != T(0)); *this /= l; } Quat Normalized() const { T l = Length(); OVR_ASSERT(l != T(0)); return *this / l; } // Returns conjugate of the quaternion. Produces inverse rotation if quaternion is normalized. Quat Conj() const { return Quat(-x, -y, -z, w); } // Quaternion multiplication. Combines quaternion rotations, performing the one on the // right hand side first. Quat operator* (const Quat& b) const { return Quat(w * b.x + x * b.w + y * b.z - z * b.y, w * b.y - x * b.z + y * b.w + z * b.x, w * b.z + x * b.y - y * b.x + z * b.w, w * b.w - x * b.x - y * b.y - z * b.z); } // // this^p normalized; same as rotating by this p times. Quat PowNormalized(T p) const { Vector3 v; T a; GetAxisAngle(&v, &a); return Quat(v, a * p); } // Normalized linear interpolation of quaternions Quat Nlerp(const Quat& other, T a) { T sign = (Dot(other) >= 0) ? 1 : -1; return (*this * sign * a + other * (1-a)).Normalized(); } // Rotate transforms vector in a manner that matches Matrix rotations (counter-clockwise, // assuming negative direction of the axis). Standard formula: q(t) * V * q(t)^-1. Vector3 Rotate(const Vector3& v) const { return ((*this * Quat(v.x, v.y, v.z, T(0))) * Inverted()).Imag(); } // Inversed quaternion rotates in the opposite direction. Quat Inverted() const { return Quat(-x, -y, -z, w); } // Sets this quaternion to the one rotates in the opposite direction. void Invert() { *this = Quat(-x, -y, -z, w); } // GetEulerAngles extracts Euler angles from the quaternion, in the specified order of // axis rotations and the specified coordinate system. Right-handed coordinate system // is the default, with CCW rotations while looking in the negative axis direction. // Here a,b,c, are the Yaw/Pitch/Roll angles to be returned. // rotation a around axis A1 // is followed by rotation b around axis A2 // is followed by rotation c around axis A3 // rotations are CCW or CW (D) in LH or RH coordinate system (S) template void GetEulerAngles(T *a, T *b, T *c) const { static_assert((A1 != A2) && (A2 != A3) && (A1 != A3), "(A1 != A2) && (A2 != A3) && (A1 != A3)"); T Q[3] = { x, y, z }; //Quaternion components x,y,z T ww = w*w; T Q11 = Q[A1]*Q[A1]; T Q22 = Q[A2]*Q[A2]; T Q33 = Q[A3]*Q[A3]; T psign = T(-1); // Determine whether even permutation if (((A1 + 1) % 3 == A2) && ((A2 + 1) % 3 == A3)) psign = T(1); T s2 = psign * T(2) * (psign*w*Q[A2] + Q[A1]*Q[A3]); if (s2 < T(-1) + ((T)MATH_DOUBLE_SINGULARITYRADIUS)) { // South pole singularity *a = T(0); *b = -S*D*((T)MATH_DOUBLE_PIOVER2); *c = S*D*atan2(T(2)*(psign*Q[A1]*Q[A2] + w*Q[A3]), ww + Q22 - Q11 - Q33 ); } else if (s2 > T(1) - ((T)MATH_DOUBLE_SINGULARITYRADIUS)) { // North pole singularity *a = T(0); *b = S*D*((T)MATH_DOUBLE_PIOVER2); *c = S*D*atan2(T(2)*(psign*Q[A1]*Q[A2] + w*Q[A3]), ww + Q22 - Q11 - Q33); } else { *a = -S*D*atan2(T(-2)*(w*Q[A1] - psign*Q[A2]*Q[A3]), ww + Q33 - Q11 - Q22); *b = S*D*asin(s2); *c = S*D*atan2(T(2)*(w*Q[A3] - psign*Q[A1]*Q[A2]), ww + Q11 - Q22 - Q33); } return; } template void GetEulerAngles(T *a, T *b, T *c) const { GetEulerAngles(a, b, c); } template void GetEulerAngles(T *a, T *b, T *c) const { GetEulerAngles(a, b, c); } // GetEulerAnglesABA extracts Euler angles from the quaternion, in the specified order of // axis rotations and the specified coordinate system. Right-handed coordinate system // is the default, with CCW rotations while looking in the negative axis direction. // Here a,b,c, are the Yaw/Pitch/Roll angles to be returned. // rotation a around axis A1 // is followed by rotation b around axis A2 // is followed by rotation c around axis A1 // Rotations are CCW or CW (D) in LH or RH coordinate system (S) template void GetEulerAnglesABA(T *a, T *b, T *c) const { static_assert(A1 != A2, "A1 != A2"); T Q[3] = {x, y, z}; // Quaternion components // Determine the missing axis that was not supplied int m = 3 - A1 - A2; T ww = w*w; T Q11 = Q[A1]*Q[A1]; T Q22 = Q[A2]*Q[A2]; T Qmm = Q[m]*Q[m]; T psign = T(-1); if ((A1 + 1) % 3 == A2) // Determine whether even permutation { psign = T(1); } T c2 = ww + Q11 - Q22 - Qmm; if (c2 < T(-1) + Math::SingularityRadius) { // South pole singularity *a = T(0); *b = S*D*((T)MATH_DOUBLE_PI); *c = S*D*atan2( T(2)*(w*Q[A1] - psign*Q[A2]*Q[m]), ww + Q22 - Q11 - Qmm); } else if (c2 > T(1) - Math::SingularityRadius) { // North pole singularity *a = T(0); *b = T(0); *c = S*D*atan2( T(2)*(w*Q[A1] - psign*Q[A2]*Q[m]), ww + Q22 - Q11 - Qmm); } else { *a = S*D*atan2( psign*w*Q[m] + Q[A1]*Q[A2], w*Q[A2] -psign*Q[A1]*Q[m]); *b = S*D*acos(c2); *c = S*D*atan2( -psign*w*Q[m] + Q[A1]*Q[A2], w*Q[A2] + psign*Q[A1]*Q[m]); } return; } }; typedef Quat Quatf; typedef Quat Quatd; static_assert((sizeof(Quatf) == 4*sizeof(float)), "sizeof(Quatf) failure"); static_assert((sizeof(Quatd) == 4*sizeof(double)), "sizeof(Quatd) failure"); //------------------------------------------------------------------------------------- // ***** Pose // Position and orientation combined. template class Pose { public: typedef typename CompatibleTypes >::Type CompatibleType; Pose() { } Pose(const Quat& orientation, const Vector3& pos) : Rotation(orientation), Translation(pos) { } Pose(const Pose& s) : Rotation(s.Rotation), Translation(s.Translation) { } Pose(const CompatibleType& s) : Rotation(s.Orientation), Translation(s.Position) { } explicit Pose(const Pose::OtherFloatType> &s) : Rotation(s.Rotation), Translation(s.Translation) { } operator typename CompatibleTypes >::Type () const { typename CompatibleTypes >::Type result; result.Orientation = Rotation; result.Position = Translation; return result; } Quat Rotation; Vector3 Translation; static_assert((sizeof(T) == sizeof(double) || sizeof(T) == sizeof(float)), "(sizeof(T) == sizeof(double) || sizeof(T) == sizeof(float))"); void ToArray(T* arr) const { T temp[7] = { Rotation.x, Rotation.y, Rotation.z, Rotation.w, Translation.x, Translation.y, Translation.z }; for (int i = 0; i < 7; i++) arr[i] = temp[i]; } static Pose FromArray(const T* v) { Quat rotation(v[0], v[1], v[2], v[3]); Vector3 translation(v[4], v[5], v[6]); return Pose(rotation, translation); } Vector3 Rotate(const Vector3& v) const { return Rotation.Rotate(v); } Vector3 Translate(const Vector3& v) const { return v + Translation; } Vector3 Apply(const Vector3& v) const { return Translate(Rotate(v)); } Pose operator*(const Pose& other) const { return Pose(Rotation * other.Rotation, Apply(other.Translation)); } Pose Inverted() const { Quat inv = Rotation.Inverted(); return Pose(inv, inv.Rotate(-Translation)); } }; typedef Pose Posef; typedef Pose Posed; static_assert((sizeof(Posed) == sizeof(Quatd) + sizeof(Vector3d)), "sizeof(Posed) failure"); static_assert((sizeof(Posef) == sizeof(Quatf) + sizeof(Vector3f)), "sizeof(Posef) failure"); //------------------------------------------------------------------------------------- // ***** Matrix4 // // Matrix4 is a 4x4 matrix used for 3d transformations and projections. // Translation stored in the last column. // The matrix is stored in row-major order in memory, meaning that values // of the first row are stored before the next one. // // The arrangement of the matrix is chosen to be in Right-Handed // coordinate system and counterclockwise rotations when looking down // the axis // // Transformation Order: // - Transformations are applied from right to left, so the expression // M1 * M2 * M3 * V means that the vector V is transformed by M3 first, // followed by M2 and M1. // // Coordinate system: Right Handed // // Rotations: Counterclockwise when looking down the axis. All angles are in radians. // // | sx 01 02 tx | // First column (sx, 10, 20): Axis X basis vector. // | 10 sy 12 ty | // Second column (01, sy, 21): Axis Y basis vector. // | 20 21 sz tz | // Third columnt (02, 12, sz): Axis Z basis vector. // | 30 31 32 33 | // // The basis vectors are first three columns. template class Matrix4 { static const Matrix4 IdentityValue; public: T M[4][4]; enum NoInitType { NoInit }; // Construct with no memory initialization. Matrix4(NoInitType) { } // By default, we construct identity matrix. Matrix4() { SetIdentity(); } Matrix4(T m11, T m12, T m13, T m14, T m21, T m22, T m23, T m24, T m31, T m32, T m33, T m34, T m41, T m42, T m43, T m44) { M[0][0] = m11; M[0][1] = m12; M[0][2] = m13; M[0][3] = m14; M[1][0] = m21; M[1][1] = m22; M[1][2] = m23; M[1][3] = m24; M[2][0] = m31; M[2][1] = m32; M[2][2] = m33; M[2][3] = m34; M[3][0] = m41; M[3][1] = m42; M[3][2] = m43; M[3][3] = m44; } Matrix4(T m11, T m12, T m13, T m21, T m22, T m23, T m31, T m32, T m33) { M[0][0] = m11; M[0][1] = m12; M[0][2] = m13; M[0][3] = 0; M[1][0] = m21; M[1][1] = m22; M[1][2] = m23; M[1][3] = 0; M[2][0] = m31; M[2][1] = m32; M[2][2] = m33; M[2][3] = 0; M[3][0] = 0; M[3][1] = 0; M[3][2] = 0; M[3][3] = 1; } explicit Matrix4(const Quat& q) { T ww = q.w*q.w; T xx = q.x*q.x; T yy = q.y*q.y; T zz = q.z*q.z; M[0][0] = ww + xx - yy - zz; M[0][1] = 2 * (q.x*q.y - q.w*q.z); M[0][2] = 2 * (q.x*q.z + q.w*q.y); M[0][3] = 0; M[1][0] = 2 * (q.x*q.y + q.w*q.z); M[1][1] = ww - xx + yy - zz; M[1][2] = 2 * (q.y*q.z - q.w*q.x); M[1][3] = 0; M[2][0] = 2 * (q.x*q.z - q.w*q.y); M[2][1] = 2 * (q.y*q.z + q.w*q.x); M[2][2] = ww - xx - yy + zz; M[2][3] = 0; M[3][0] = 0; M[3][1] = 0; M[3][2] = 0; M[3][3] = 1; } explicit Matrix4(const Pose& p) { Matrix4 result(p.Rotation); result.SetTranslation(p.Translation); *this = result; } // C-interop support explicit Matrix4(const Matrix4::OtherFloatType> &src) { for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) M[i][j] = (T)src.M[i][j]; } // C-interop support. Matrix4(const typename CompatibleTypes >::Type& s) { static_assert(sizeof(s) == sizeof(Matrix4), "sizeof(s) == sizeof(Matrix4)"); memcpy(M, s.M, sizeof(M)); } operator typename CompatibleTypes >::Type () const { typename CompatibleTypes >::Type result; static_assert(sizeof(result) == sizeof(Matrix4), "sizeof(result) == sizeof(Matrix4)"); memcpy(result.M, M, sizeof(M)); return result; } void ToString(char* dest, size_t destsize) const { size_t pos = 0; for (int r=0; r<4; r++) for (int c=0; c<4; c++) pos += OVR_sprintf(dest+pos, destsize-pos, "%g ", M[r][c]); } static Matrix4 FromString(const char* src) { Matrix4 result; if (src) { for (int r=0; r<4; r++) { for (int c=0; c<4; c++) { result.M[r][c] = (T)atof(src); while (src && *src != ' ') { src++; } while (src && *src == ' ') { src++; } } } } return result; } static const Matrix4& Identity() { return IdentityValue; } void SetIdentity() { M[0][0] = M[1][1] = M[2][2] = M[3][3] = 1; M[0][1] = M[1][0] = M[2][3] = M[3][1] = 0; M[0][2] = M[1][2] = M[2][0] = M[3][2] = 0; M[0][3] = M[1][3] = M[2][1] = M[3][0] = 0; } void SetXBasis(const Vector3f & v) { M[0][0] = v.x; M[1][0] = v.y; M[2][0] = v.z; } Vector3f GetXBasis() const { return Vector3f(M[0][0], M[1][0], M[2][0]); } void SetYBasis(const Vector3f & v) { M[0][1] = v.x; M[1][1] = v.y; M[2][1] = v.z; } Vector3f GetYBasis() const { return Vector3f(M[0][1], M[1][1], M[2][1]); } void SetZBasis(const Vector3f & v) { M[0][2] = v.x; M[1][2] = v.y; M[2][2] = v.z; } Vector3f GetZBasis() const { return Vector3f(M[0][2], M[1][2], M[2][2]); } bool operator== (const Matrix4& b) const { bool isEqual = true; for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) isEqual &= (M[i][j] == b.M[i][j]); return isEqual; } Matrix4 operator+ (const Matrix4& b) const { Matrix4 result(*this); result += b; return result; } Matrix4& operator+= (const Matrix4& b) { for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) M[i][j] += b.M[i][j]; return *this; } Matrix4 operator- (const Matrix4& b) const { Matrix4 result(*this); result -= b; return result; } Matrix4& operator-= (const Matrix4& b) { for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) M[i][j] -= b.M[i][j]; return *this; } // Multiplies two matrices into destination with minimum copying. static Matrix4& Multiply(Matrix4* d, const Matrix4& a, const Matrix4& b) { OVR_ASSERT((d != &a) && (d != &b)); int i = 0; do { d->M[i][0] = a.M[i][0] * b.M[0][0] + a.M[i][1] * b.M[1][0] + a.M[i][2] * b.M[2][0] + a.M[i][3] * b.M[3][0]; d->M[i][1] = a.M[i][0] * b.M[0][1] + a.M[i][1] * b.M[1][1] + a.M[i][2] * b.M[2][1] + a.M[i][3] * b.M[3][1]; d->M[i][2] = a.M[i][0] * b.M[0][2] + a.M[i][1] * b.M[1][2] + a.M[i][2] * b.M[2][2] + a.M[i][3] * b.M[3][2]; d->M[i][3] = a.M[i][0] * b.M[0][3] + a.M[i][1] * b.M[1][3] + a.M[i][2] * b.M[2][3] + a.M[i][3] * b.M[3][3]; } while((++i) < 4); return *d; } Matrix4 operator* (const Matrix4& b) const { Matrix4 result(Matrix4::NoInit); Multiply(&result, *this, b); return result; } Matrix4& operator*= (const Matrix4& b) { return Multiply(this, Matrix4(*this), b); } Matrix4 operator* (T s) const { Matrix4 result(*this); result *= s; return result; } Matrix4& operator*= (T s) { for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) M[i][j] *= s; return *this; } Matrix4 operator/ (T s) const { Matrix4 result(*this); result /= s; return result; } Matrix4& operator/= (T s) { for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) M[i][j] /= s; return *this; } Vector3 Transform(const Vector3& v) const { const T rcpW = 1.0f / (M[3][0] * v.x + M[3][1] * v.y + M[3][2] * v.z + M[3][3]); return Vector3((M[0][0] * v.x + M[0][1] * v.y + M[0][2] * v.z + M[0][3]) * rcpW, (M[1][0] * v.x + M[1][1] * v.y + M[1][2] * v.z + M[1][3]) * rcpW, (M[2][0] * v.x + M[2][1] * v.y + M[2][2] * v.z + M[2][3]) * rcpW); } Vector4 Transform(const Vector4& v) const { return Vector4(M[0][0] * v.x + M[0][1] * v.y + M[0][2] * v.z + M[0][3] * v.w, M[1][0] * v.x + M[1][1] * v.y + M[1][2] * v.z + M[1][3] * v.w, M[2][0] * v.x + M[2][1] * v.y + M[2][2] * v.z + M[2][3] * v.w, M[3][0] * v.x + M[3][1] * v.y + M[3][2] * v.z + M[3][3] * v.w); } Matrix4 Transposed() const { return Matrix4(M[0][0], M[1][0], M[2][0], M[3][0], M[0][1], M[1][1], M[2][1], M[3][1], M[0][2], M[1][2], M[2][2], M[3][2], M[0][3], M[1][3], M[2][3], M[3][3]); } void Transpose() { *this = Transposed(); } T SubDet (const size_t* rows, const size_t* cols) const { return M[rows[0]][cols[0]] * (M[rows[1]][cols[1]] * M[rows[2]][cols[2]] - M[rows[1]][cols[2]] * M[rows[2]][cols[1]]) - M[rows[0]][cols[1]] * (M[rows[1]][cols[0]] * M[rows[2]][cols[2]] - M[rows[1]][cols[2]] * M[rows[2]][cols[0]]) + M[rows[0]][cols[2]] * (M[rows[1]][cols[0]] * M[rows[2]][cols[1]] - M[rows[1]][cols[1]] * M[rows[2]][cols[0]]); } T Cofactor(size_t I, size_t J) const { const size_t indices[4][3] = {{1,2,3},{0,2,3},{0,1,3},{0,1,2}}; return ((I+J)&1) ? -SubDet(indices[I],indices[J]) : SubDet(indices[I],indices[J]); } T Determinant() const { return M[0][0] * Cofactor(0,0) + M[0][1] * Cofactor(0,1) + M[0][2] * Cofactor(0,2) + M[0][3] * Cofactor(0,3); } Matrix4 Adjugated() const { return Matrix4(Cofactor(0,0), Cofactor(1,0), Cofactor(2,0), Cofactor(3,0), Cofactor(0,1), Cofactor(1,1), Cofactor(2,1), Cofactor(3,1), Cofactor(0,2), Cofactor(1,2), Cofactor(2,2), Cofactor(3,2), Cofactor(0,3), Cofactor(1,3), Cofactor(2,3), Cofactor(3,3)); } Matrix4 Inverted() const { T det = Determinant(); assert(det != 0); return Adjugated() * (1.0f/det); } void Invert() { *this = Inverted(); } // This is more efficient than general inverse, but ONLY works // correctly if it is a homogeneous transform matrix (rot + trans) Matrix4 InvertedHomogeneousTransform() const { // Make the inverse rotation matrix Matrix4 rinv = this->Transposed(); rinv.M[3][0] = rinv.M[3][1] = rinv.M[3][2] = 0.0f; // Make the inverse translation matrix Vector3 tvinv(-M[0][3],-M[1][3],-M[2][3]); Matrix4 tinv = Matrix4::Translation(tvinv); return rinv * tinv; // "untranslate", then "unrotate" } // This is more efficient than general inverse, but ONLY works // correctly if it is a homogeneous transform matrix (rot + trans) void InvertHomogeneousTransform() { *this = InvertedHomogeneousTransform(); } // Matrix to Euler Angles conversion // a,b,c, are the YawPitchRoll angles to be returned // rotation a around axis A1 // is followed by rotation b around axis A2 // is followed by rotation c around axis A3 // rotations are CCW or CW (D) in LH or RH coordinate system (S) template void ToEulerAngles(T *a, T *b, T *c) const { static_assert((A1 != A2) && (A2 != A3) && (A1 != A3), "(A1 != A2) && (A2 != A3) && (A1 != A3)"); T psign = -1; if (((A1 + 1) % 3 == A2) && ((A2 + 1) % 3 == A3)) // Determine whether even permutation psign = 1; T pm = psign*M[A1][A3]; if (pm < -1.0f + Math::SingularityRadius) { // South pole singularity *a = 0; *b = -S*D*((T)MATH_DOUBLE_PIOVER2); *c = S*D*atan2( psign*M[A2][A1], M[A2][A2] ); } else if (pm > 1.0f - Math::SingularityRadius) { // North pole singularity *a = 0; *b = S*D*((T)MATH_DOUBLE_PIOVER2); *c = S*D*atan2( psign*M[A2][A1], M[A2][A2] ); } else { // Normal case (nonsingular) *a = S*D*atan2( -psign*M[A2][A3], M[A3][A3] ); *b = S*D*asin(pm); *c = S*D*atan2( -psign*M[A1][A2], M[A1][A1] ); } return; } // Matrix to Euler Angles conversion // a,b,c, are the YawPitchRoll angles to be returned // rotation a around axis A1 // is followed by rotation b around axis A2 // is followed by rotation c around axis A1 // rotations are CCW or CW (D) in LH or RH coordinate system (S) template void ToEulerAnglesABA(T *a, T *b, T *c) const { static_assert(A1 != A2, "A1 != A2"); // Determine the axis that was not supplied int m = 3 - A1 - A2; T psign = -1; if ((A1 + 1) % 3 == A2) // Determine whether even permutation psign = 1.0f; T c2 = M[A1][A1]; if (c2 < -1 + Math::SingularityRadius) { // South pole singularity *a = 0; *b = S*D*((T)MATH_DOUBLE_PI); *c = S*D*atan2( -psign*M[A2][m],M[A2][A2]); } else if (c2 > 1.0f - Math::SingularityRadius) { // North pole singularity *a = 0; *b = 0; *c = S*D*atan2( -psign*M[A2][m],M[A2][A2]); } else { // Normal case (nonsingular) *a = S*D*atan2( M[A2][A1],-psign*M[m][A1]); *b = S*D*acos(c2); *c = S*D*atan2( M[A1][A2],psign*M[A1][m]); } return; } // Creates a matrix that converts the vertices from one coordinate system // to another. static Matrix4 AxisConversion(const WorldAxes& to, const WorldAxes& from) { // Holds axis values from the 'to' structure int toArray[3] = { to.XAxis, to.YAxis, to.ZAxis }; // The inverse of the toArray int inv[4]; inv[0] = inv[abs(to.XAxis)] = 0; inv[abs(to.YAxis)] = 1; inv[abs(to.ZAxis)] = 2; Matrix4 m(0, 0, 0, 0, 0, 0, 0, 0, 0); // Only three values in the matrix need to be changed to 1 or -1. m.M[inv[abs(from.XAxis)]][0] = T(from.XAxis/toArray[inv[abs(from.XAxis)]]); m.M[inv[abs(from.YAxis)]][1] = T(from.YAxis/toArray[inv[abs(from.YAxis)]]); m.M[inv[abs(from.ZAxis)]][2] = T(from.ZAxis/toArray[inv[abs(from.ZAxis)]]); return m; } // Creates a matrix for translation by vector static Matrix4 Translation(const Vector3& v) { Matrix4 t; t.M[0][3] = v.x; t.M[1][3] = v.y; t.M[2][3] = v.z; return t; } // Creates a matrix for translation by vector static Matrix4 Translation(T x, T y, T z = 0.0f) { Matrix4 t; t.M[0][3] = x; t.M[1][3] = y; t.M[2][3] = z; return t; } // Sets the translation part void SetTranslation(const Vector3& v) { M[0][3] = v.x; M[1][3] = v.y; M[2][3] = v.z; } Vector3 GetTranslation() const { return Vector3( M[0][3], M[1][3], M[2][3] ); } // Creates a matrix for scaling by vector static Matrix4 Scaling(const Vector3& v) { Matrix4 t; t.M[0][0] = v.x; t.M[1][1] = v.y; t.M[2][2] = v.z; return t; } // Creates a matrix for scaling by vector static Matrix4 Scaling(T x, T y, T z) { Matrix4 t; t.M[0][0] = x; t.M[1][1] = y; t.M[2][2] = z; return t; } // Creates a matrix for scaling by constant static Matrix4 Scaling(T s) { Matrix4 t; t.M[0][0] = s; t.M[1][1] = s; t.M[2][2] = s; return t; } // Simple L1 distance in R^12 T Distance(const Matrix4& m2) const { T d = fabs(M[0][0] - m2.M[0][0]) + fabs(M[0][1] - m2.M[0][1]); d += fabs(M[0][2] - m2.M[0][2]) + fabs(M[0][3] - m2.M[0][3]); d += fabs(M[1][0] - m2.M[1][0]) + fabs(M[1][1] - m2.M[1][1]); d += fabs(M[1][2] - m2.M[1][2]) + fabs(M[1][3] - m2.M[1][3]); d += fabs(M[2][0] - m2.M[2][0]) + fabs(M[2][1] - m2.M[2][1]); d += fabs(M[2][2] - m2.M[2][2]) + fabs(M[2][3] - m2.M[2][3]); d += fabs(M[3][0] - m2.M[3][0]) + fabs(M[3][1] - m2.M[3][1]); d += fabs(M[3][2] - m2.M[3][2]) + fabs(M[3][3] - m2.M[3][3]); return d; } // Creates a rotation matrix rotating around the X axis by 'angle' radians. // Just for quick testing. Not for final API. Need to remove case. static Matrix4 RotationAxis(Axis A, T angle, RotateDirection d, HandedSystem s) { T sina = s * d *sin(angle); T cosa = cos(angle); switch(A) { case Axis_X: return Matrix4(1, 0, 0, 0, cosa, -sina, 0, sina, cosa); case Axis_Y: return Matrix4(cosa, 0, sina, 0, 1, 0, -sina, 0, cosa); case Axis_Z: return Matrix4(cosa, -sina, 0, sina, cosa, 0, 0, 0, 1); } } // Creates a rotation matrix rotating around the X axis by 'angle' radians. // Rotation direction is depends on the coordinate system: // RHS (Oculus default): Positive angle values rotate Counter-clockwise (CCW), // while looking in the negative axis direction. This is the // same as looking down from positive axis values towards origin. // LHS: Positive angle values rotate clock-wise (CW), while looking in the // negative axis direction. static Matrix4 RotationX(T angle) { T sina = sin(angle); T cosa = cos(angle); return Matrix4(1, 0, 0, 0, cosa, -sina, 0, sina, cosa); } // Creates a rotation matrix rotating around the Y axis by 'angle' radians. // Rotation direction is depends on the coordinate system: // RHS (Oculus default): Positive angle values rotate Counter-clockwise (CCW), // while looking in the negative axis direction. This is the // same as looking down from positive axis values towards origin. // LHS: Positive angle values rotate clock-wise (CW), while looking in the // negative axis direction. static Matrix4 RotationY(T angle) { T sina = sin(angle); T cosa = cos(angle); return Matrix4(cosa, 0, sina, 0, 1, 0, -sina, 0, cosa); } // Creates a rotation matrix rotating around the Z axis by 'angle' radians. // Rotation direction is depends on the coordinate system: // RHS (Oculus default): Positive angle values rotate Counter-clockwise (CCW), // while looking in the negative axis direction. This is the // same as looking down from positive axis values towards origin. // LHS: Positive angle values rotate clock-wise (CW), while looking in the // negative axis direction. static Matrix4 RotationZ(T angle) { T sina = sin(angle); T cosa = cos(angle); return Matrix4(cosa, -sina, 0, sina, cosa, 0, 0, 0, 1); } // LookAtRH creates a View transformation matrix for right-handed coordinate system. // The resulting matrix points camera from 'eye' towards 'at' direction, with 'up' // specifying the up vector. The resulting matrix should be used with PerspectiveRH // projection. static Matrix4 LookAtRH(const Vector3& eye, const Vector3& at, const Vector3& up) { Vector3 z = (eye - at).Normalized(); // Forward Vector3 x = up.Cross(z).Normalized(); // Right Vector3 y = z.Cross(x); Matrix4 m(x.x, x.y, x.z, -(x.Dot(eye)), y.x, y.y, y.z, -(y.Dot(eye)), z.x, z.y, z.z, -(z.Dot(eye)), 0, 0, 0, 1 ); return m; } // LookAtLH creates a View transformation matrix for left-handed coordinate system. // The resulting matrix points camera from 'eye' towards 'at' direction, with 'up' // specifying the up vector. static Matrix4 LookAtLH(const Vector3& eye, const Vector3& at, const Vector3& up) { Vector3 z = (at - eye).Normalized(); // Forward Vector3 x = up.Cross(z).Normalized(); // Right Vector3 y = z.Cross(x); Matrix4 m(x.x, x.y, x.z, -(x.Dot(eye)), y.x, y.y, y.z, -(y.Dot(eye)), z.x, z.y, z.z, -(z.Dot(eye)), 0, 0, 0, 1 ); return m; } // PerspectiveRH creates a right-handed perspective projection matrix that can be // used with the Oculus sample renderer. // yfov - Specifies vertical field of view in radians. // aspect - Screen aspect ration, which is usually width/height for square pixels. // Note that xfov = yfov * aspect. // znear - Absolute value of near Z clipping clipping range. // zfar - Absolute value of far Z clipping clipping range (larger then near). // Even though RHS usually looks in the direction of negative Z, positive values // are expected for znear and zfar. static Matrix4 PerspectiveRH(T yfov, T aspect, T znear, T zfar) { Matrix4 m; T tanHalfFov = tan(yfov * 0.5f); m.M[0][0] = 1. / (aspect * tanHalfFov); m.M[1][1] = 1. / tanHalfFov; m.M[2][2] = zfar / (znear - zfar); m.M[3][2] = -1.; m.M[2][3] = (zfar * znear) / (znear - zfar); m.M[3][3] = 0.; // Note: Post-projection matrix result assumes Left-Handed coordinate system, // with Y up, X right and Z forward. This supports positive z-buffer values. // This is the case even for RHS coordinate input. return m; } // PerspectiveLH creates a left-handed perspective projection matrix that can be // used with the Oculus sample renderer. // yfov - Specifies vertical field of view in radians. // aspect - Screen aspect ration, which is usually width/height for square pixels. // Note that xfov = yfov * aspect. // znear - Absolute value of near Z clipping clipping range. // zfar - Absolute value of far Z clipping clipping range (larger then near). static Matrix4 PerspectiveLH(T yfov, T aspect, T znear, T zfar) { Matrix4 m; T tanHalfFov = tan(yfov * 0.5f); m.M[0][0] = 1. / (aspect * tanHalfFov); m.M[1][1] = 1. / tanHalfFov; //m.M[2][2] = zfar / (znear - zfar); m.M[2][2] = zfar / (zfar - znear); m.M[3][2] = -1.; m.M[2][3] = (zfar * znear) / (znear - zfar); m.M[3][3] = 0.; // Note: Post-projection matrix result assumes Left-Handed coordinate system, // with Y up, X right and Z forward. This supports positive z-buffer values. // This is the case even for RHS coordinate input. return m; } static Matrix4 Ortho2D(T w, T h) { Matrix4 m; m.M[0][0] = 2.0/w; m.M[1][1] = -2.0/h; m.M[0][3] = -1.0; m.M[1][3] = 1.0; m.M[2][2] = 0; return m; } }; typedef Matrix4 Matrix4f; typedef Matrix4 Matrix4d; //------------------------------------------------------------------------------------- // ***** Matrix3 // // Matrix3 is a 3x3 matrix used for representing a rotation matrix. // The matrix is stored in row-major order in memory, meaning that values // of the first row are stored before the next one. // // The arrangement of the matrix is chosen to be in Right-Handed // coordinate system and counterclockwise rotations when looking down // the axis // // Transformation Order: // - Transformations are applied from right to left, so the expression // M1 * M2 * M3 * V means that the vector V is transformed by M3 first, // followed by M2 and M1. // // Coordinate system: Right Handed // // Rotations: Counterclockwise when looking down the axis. All angles are in radians. template class SymMat3; template class Matrix3 { static const Matrix3 IdentityValue; public: T M[3][3]; enum NoInitType { NoInit }; // Construct with no memory initialization. Matrix3(NoInitType) { } // By default, we construct identity matrix. Matrix3() { SetIdentity(); } Matrix3(T m11, T m12, T m13, T m21, T m22, T m23, T m31, T m32, T m33) { M[0][0] = m11; M[0][1] = m12; M[0][2] = m13; M[1][0] = m21; M[1][1] = m22; M[1][2] = m23; M[2][0] = m31; M[2][1] = m32; M[2][2] = m33; } /* explicit Matrix3(const Quat& q) { T ww = q.w*q.w; T xx = q.x*q.x; T yy = q.y*q.y; T zz = q.z*q.z; M[0][0] = ww + xx - yy - zz; M[0][1] = 2 * (q.x*q.y - q.w*q.z); M[0][2] = 2 * (q.x*q.z + q.w*q.y); M[1][0] = 2 * (q.x*q.y + q.w*q.z); M[1][1] = ww - xx + yy - zz; M[1][2] = 2 * (q.y*q.z - q.w*q.x); M[2][0] = 2 * (q.x*q.z - q.w*q.y); M[2][1] = 2 * (q.y*q.z + q.w*q.x); M[2][2] = ww - xx - yy + zz; } */ explicit Matrix3(const Quat& q) { const T tx = q.x+q.x, ty = q.y+q.y, tz = q.z+q.z; const T twx = q.w*tx, twy = q.w*ty, twz = q.w*tz; const T txx = q.x*tx, txy = q.x*ty, txz = q.x*tz; const T tyy = q.y*ty, tyz = q.y*tz, tzz = q.z*tz; M[0][0] = T(1) - (tyy + tzz); M[0][1] = txy - twz; M[0][2] = txz + twy; M[1][0] = txy + twz; M[1][1] = T(1) - (txx + tzz); M[1][2] = tyz - twx; M[2][0] = txz - twy; M[2][1] = tyz + twx; M[2][2] = T(1) - (txx + tyy); } inline explicit Matrix3(T s) { M[0][0] = M[1][1] = M[2][2] = s; M[0][1] = M[0][2] = M[1][0] = M[1][2] = M[2][0] = M[2][1] = 0; } explicit Matrix3(const Pose& p) { Matrix3 result(p.Rotation); result.SetTranslation(p.Translation); *this = result; } // C-interop support explicit Matrix3(const Matrix4::OtherFloatType> &src) { for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) M[i][j] = (T)src.M[i][j]; } // C-interop support. Matrix3(const typename CompatibleTypes >::Type& s) { static_assert(sizeof(s) == sizeof(Matrix3), "sizeof(s) == sizeof(Matrix3)"); memcpy(M, s.M, sizeof(M)); } operator const typename CompatibleTypes >::Type () const { typename CompatibleTypes >::Type result; static_assert(sizeof(result) == sizeof(Matrix3), "sizeof(result) == sizeof(Matrix3)"); memcpy(result.M, M, sizeof(M)); return result; } void ToString(char* dest, size_t destsize) const { size_t pos = 0; for (int r=0; r<3; r++) for (int c=0; c<3; c++) pos += OVR_sprintf(dest+pos, destsize-pos, "%g ", M[r][c]); } static Matrix3 FromString(const char* src) { Matrix3 result; for (int r=0; r<3; r++) for (int c=0; c<3; c++) { result.M[r][c] = (T)atof(src); while (src && *src != ' ') src++; while (src && *src == ' ') src++; } return result; } static const Matrix3& Identity() { return IdentityValue; } void SetIdentity() { M[0][0] = M[1][1] = M[2][2] = 1; M[0][1] = M[1][0] = M[2][0] = 0; M[0][2] = M[1][2] = M[2][1] = 0; } bool operator== (const Matrix3& b) const { bool isEqual = true; for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) isEqual &= (M[i][j] == b.M[i][j]); return isEqual; } Matrix3 operator+ (const Matrix3& b) const { Matrix4 result(*this); result += b; return result; } Matrix3& operator+= (const Matrix3& b) { for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) M[i][j] += b.M[i][j]; return *this; } void operator= (const Matrix3& b) { for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) M[i][j] = b.M[i][j]; return; } void operator= (const SymMat3& b) { for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) M[i][j] = 0; M[0][0] = b.v[0]; M[0][1] = b.v[1]; M[0][2] = b.v[2]; M[1][1] = b.v[3]; M[1][2] = b.v[4]; M[2][2] = b.v[5]; return; } Matrix3 operator- (const Matrix3& b) const { Matrix3 result(*this); result -= b; return result; } Matrix3& operator-= (const Matrix3& b) { for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) M[i][j] -= b.M[i][j]; return *this; } // Multiplies two matrices into destination with minimum copying. static Matrix3& Multiply(Matrix3* d, const Matrix3& a, const Matrix3& b) { OVR_ASSERT((d != &a) && (d != &b)); int i = 0; do { d->M[i][0] = a.M[i][0] * b.M[0][0] + a.M[i][1] * b.M[1][0] + a.M[i][2] * b.M[2][0]; d->M[i][1] = a.M[i][0] * b.M[0][1] + a.M[i][1] * b.M[1][1] + a.M[i][2] * b.M[2][1]; d->M[i][2] = a.M[i][0] * b.M[0][2] + a.M[i][1] * b.M[1][2] + a.M[i][2] * b.M[2][2]; } while((++i) < 3); return *d; } Matrix3 operator* (const Matrix3& b) const { Matrix3 result(Matrix3::NoInit); Multiply(&result, *this, b); return result; } Matrix3& operator*= (const Matrix3& b) { return Multiply(this, Matrix3(*this), b); } Matrix3 operator* (T s) const { Matrix3 result(*this); result *= s; return result; } Matrix3& operator*= (T s) { for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) M[i][j] *= s; return *this; } Vector3 operator* (const Vector3 &b) const { Vector3 result; result.x = M[0][0]*b.x + M[0][1]*b.y + M[0][2]*b.z; result.y = M[1][0]*b.x + M[1][1]*b.y + M[1][2]*b.z; result.z = M[2][0]*b.x + M[2][1]*b.y + M[2][2]*b.z; return result; } Matrix3 operator/ (T s) const { Matrix3 result(*this); result /= s; return result; } Matrix3& operator/= (T s) { for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) M[i][j] /= s; return *this; } Vector2 Transform(const Vector2& v) const { const float rcpZ = 1.0f / (M[2][0] * v.x + M[2][1] * v.y + M[2][2]); return Vector2((M[0][0] * v.x + M[0][1] * v.y + M[0][2]) * rcpZ, (M[1][0] * v.x + M[1][1] * v.y + M[1][2]) * rcpZ); } Vector3 Transform(const Vector3& v) const { return Vector3(M[0][0] * v.x + M[0][1] * v.y + M[0][2] * v.z, M[1][0] * v.x + M[1][1] * v.y + M[1][2] * v.z, M[2][0] * v.x + M[2][1] * v.y + M[2][2] * v.z); } Matrix3 Transposed() const { return Matrix3(M[0][0], M[1][0], M[2][0], M[0][1], M[1][1], M[2][1], M[0][2], M[1][2], M[2][2]); } void Transpose() { *this = Transposed(); } T SubDet (const size_t* rows, const size_t* cols) const { return M[rows[0]][cols[0]] * (M[rows[1]][cols[1]] * M[rows[2]][cols[2]] - M[rows[1]][cols[2]] * M[rows[2]][cols[1]]) - M[rows[0]][cols[1]] * (M[rows[1]][cols[0]] * M[rows[2]][cols[2]] - M[rows[1]][cols[2]] * M[rows[2]][cols[0]]) + M[rows[0]][cols[2]] * (M[rows[1]][cols[0]] * M[rows[2]][cols[1]] - M[rows[1]][cols[1]] * M[rows[2]][cols[0]]); } // M += a*b.t() inline void Rank1Add(const Vector3 &a, const Vector3 &b) { M[0][0] += a.x*b.x; M[0][1] += a.x*b.y; M[0][2] += a.x*b.z; M[1][0] += a.y*b.x; M[1][1] += a.y*b.y; M[1][2] += a.y*b.z; M[2][0] += a.z*b.x; M[2][1] += a.z*b.y; M[2][2] += a.z*b.z; } // M -= a*b.t() inline void Rank1Sub(const Vector3 &a, const Vector3 &b) { M[0][0] -= a.x*b.x; M[0][1] -= a.x*b.y; M[0][2] -= a.x*b.z; M[1][0] -= a.y*b.x; M[1][1] -= a.y*b.y; M[1][2] -= a.y*b.z; M[2][0] -= a.z*b.x; M[2][1] -= a.z*b.y; M[2][2] -= a.z*b.z; } inline Vector3 Col(int c) const { return Vector3(M[0][c], M[1][c], M[2][c]); } inline Vector3 Row(int r) const { return Vector3(M[r][0], M[r][1], M[r][2]); } inline T Determinant() const { const Matrix3& m = *this; T d; d = m.M[0][0] * (m.M[1][1]*m.M[2][2] - m.M[1][2] * m.M[2][1]); d -= m.M[0][1] * (m.M[1][0]*m.M[2][2] - m.M[1][2] * m.M[2][0]); d += m.M[0][2] * (m.M[1][0]*m.M[2][1] - m.M[1][1] * m.M[2][0]); return d; } inline Matrix3 Inverse() const { Matrix3 a; const Matrix3& m = *this; T d = Determinant(); assert(d != 0); T s = T(1)/d; a.M[0][0] = s * (m.M[1][1] * m.M[2][2] - m.M[1][2] * m.M[2][1]); a.M[1][0] = s * (m.M[1][2] * m.M[2][0] - m.M[1][0] * m.M[2][2]); a.M[2][0] = s * (m.M[1][0] * m.M[2][1] - m.M[1][1] * m.M[2][0]); a.M[0][1] = s * (m.M[0][2] * m.M[2][1] - m.M[0][1] * m.M[2][2]); a.M[1][1] = s * (m.M[0][0] * m.M[2][2] - m.M[0][2] * m.M[2][0]); a.M[2][1] = s * (m.M[0][1] * m.M[2][0] - m.M[0][0] * m.M[2][1]); a.M[0][2] = s * (m.M[0][1] * m.M[1][2] - m.M[0][2] * m.M[1][1]); a.M[1][2] = s * (m.M[0][2] * m.M[1][0] - m.M[0][0] * m.M[1][2]); a.M[2][2] = s * (m.M[0][0] * m.M[1][1] - m.M[0][1] * m.M[1][0]); return a; } }; typedef Matrix3 Matrix3f; typedef Matrix3 Matrix3d; //------------------------------------------------------------------------------------- template class SymMat3 { private: typedef SymMat3 this_type; public: typedef T Value_t; // Upper symmetric T v[6]; // _00 _01 _02 _11 _12 _22 inline SymMat3() {} inline explicit SymMat3(T s) { v[0] = v[3] = v[5] = s; v[1] = v[2] = v[4] = 0; } inline explicit SymMat3(T a00, T a01, T a02, T a11, T a12, T a22) { v[0] = a00; v[1] = a01; v[2] = a02; v[3] = a11; v[4] = a12; v[5] = a22; } static inline int Index(unsigned int i, unsigned int j) { return (i <= j) ? (3*i - i*(i+1)/2 + j) : (3*j - j*(j+1)/2 + i); } inline T operator()(int i, int j) const { return v[Index(i,j)]; } inline T &operator()(int i, int j) { return v[Index(i,j)]; } template inline SymMat3 CastTo() const { return SymMat3(static_cast(v[0]), static_cast(v[1]), static_cast(v[2]), static_cast(v[3]), static_cast(v[4]), static_cast(v[5])); } inline this_type& operator+=(const this_type& b) { v[0]+=b.v[0]; v[1]+=b.v[1]; v[2]+=b.v[2]; v[3]+=b.v[3]; v[4]+=b.v[4]; v[5]+=b.v[5]; return *this; } inline this_type& operator-=(const this_type& b) { v[0]-=b.v[0]; v[1]-=b.v[1]; v[2]-=b.v[2]; v[3]-=b.v[3]; v[4]-=b.v[4]; v[5]-=b.v[5]; return *this; } inline this_type& operator*=(T s) { v[0]*=s; v[1]*=s; v[2]*=s; v[3]*=s; v[4]*=s; v[5]*=s; return *this; } inline SymMat3 operator*(T s) const { SymMat3 d; d.v[0] = v[0]*s; d.v[1] = v[1]*s; d.v[2] = v[2]*s; d.v[3] = v[3]*s; d.v[4] = v[4]*s; d.v[5] = v[5]*s; return d; } // Multiplies two matrices into destination with minimum copying. static SymMat3& Multiply(SymMat3* d, const SymMat3& a, const SymMat3& b) { // _00 _01 _02 _11 _12 _22 d->v[0] = a.v[0] * b.v[0]; d->v[1] = a.v[0] * b.v[1] + a.v[1] * b.v[3]; d->v[2] = a.v[0] * b.v[2] + a.v[1] * b.v[4]; d->v[3] = a.v[3] * b.v[3]; d->v[4] = a.v[3] * b.v[4] + a.v[4] * b.v[5]; d->v[5] = a.v[5] * b.v[5]; return *d; } inline T Determinant() const { const this_type& m = *this; T d; d = m(0,0) * (m(1,1)*m(2,2) - m(1,2) * m(2,1)); d -= m(0,1) * (m(1,0)*m(2,2) - m(1,2) * m(2,0)); d += m(0,2) * (m(1,0)*m(2,1) - m(1,1) * m(2,0)); return d; } inline this_type Inverse() const { this_type a; const this_type& m = *this; T d = Determinant(); assert(d != 0); T s = T(1)/d; a(0,0) = s * (m(1,1) * m(2,2) - m(1,2) * m(2,1)); a(0,1) = s * (m(0,2) * m(2,1) - m(0,1) * m(2,2)); a(1,1) = s * (m(0,0) * m(2,2) - m(0,2) * m(2,0)); a(0,2) = s * (m(0,1) * m(1,2) - m(0,2) * m(1,1)); a(1,2) = s * (m(0,2) * m(1,0) - m(0,0) * m(1,2)); a(2,2) = s * (m(0,0) * m(1,1) - m(0,1) * m(1,0)); return a; } inline T Trace() const { return v[0] + v[3] + v[5]; } // M = a*a.t() inline void Rank1(const Vector3 &a) { v[0] = a.x*a.x; v[1] = a.x*a.y; v[2] = a.x*a.z; v[3] = a.y*a.y; v[4] = a.y*a.z; v[5] = a.z*a.z; } // M += a*a.t() inline void Rank1Add(const Vector3 &a) { v[0] += a.x*a.x; v[1] += a.x*a.y; v[2] += a.x*a.z; v[3] += a.y*a.y; v[4] += a.y*a.z; v[5] += a.z*a.z; } // M -= a*a.t() inline void Rank1Sub(const Vector3 &a) { v[0] -= a.x*a.x; v[1] -= a.x*a.y; v[2] -= a.x*a.z; v[3] -= a.y*a.y; v[4] -= a.y*a.z; v[5] -= a.z*a.z; } }; typedef SymMat3 SymMat3f; typedef SymMat3 SymMat3d; template inline Matrix3 operator*(const SymMat3& a, const SymMat3& b) { #define AJB_ARBC(r,c) (a(r,0)*b(0,c)+a(r,1)*b(1,c)+a(r,2)*b(2,c)) return Matrix3( AJB_ARBC(0,0), AJB_ARBC(0,1), AJB_ARBC(0,2), AJB_ARBC(1,0), AJB_ARBC(1,1), AJB_ARBC(1,2), AJB_ARBC(2,0), AJB_ARBC(2,1), AJB_ARBC(2,2)); #undef AJB_ARBC } template inline Matrix3 operator*(const Matrix3& a, const SymMat3& b) { #define AJB_ARBC(r,c) (a(r,0)*b(0,c)+a(r,1)*b(1,c)+a(r,2)*b(2,c)) return Matrix3( AJB_ARBC(0,0), AJB_ARBC(0,1), AJB_ARBC(0,2), AJB_ARBC(1,0), AJB_ARBC(1,1), AJB_ARBC(1,2), AJB_ARBC(2,0), AJB_ARBC(2,1), AJB_ARBC(2,2)); #undef AJB_ARBC } //------------------------------------------------------------------------------------- // ***** Angle // Cleanly representing the algebra of 2D rotations. // The operations maintain the angle between -Pi and Pi, the same range as atan2. template class Angle { public: enum AngularUnits { Radians = 0, Degrees = 1 }; Angle() : a(0) {} // Fix the range to be between -Pi and Pi Angle(T a_, AngularUnits u = Radians) : a((u == Radians) ? a_ : a_*((T)MATH_DOUBLE_DEGREETORADFACTOR)) { FixRange(); } T Get(AngularUnits u = Radians) const { return (u == Radians) ? a : a*((T)MATH_DOUBLE_RADTODEGREEFACTOR); } void Set(const T& x, AngularUnits u = Radians) { a = (u == Radians) ? x : x*((T)MATH_DOUBLE_DEGREETORADFACTOR); FixRange(); } int Sign() const { if (a == 0) return 0; else return (a > 0) ? 1 : -1; } T Abs() const { return (a > 0) ? a : -a; } bool operator== (const Angle& b) const { return a == b.a; } bool operator!= (const Angle& b) const { return a != b.a; } // bool operator< (const Angle& b) const { return a < a.b; } // bool operator> (const Angle& b) const { return a > a.b; } // bool operator<= (const Angle& b) const { return a <= a.b; } // bool operator>= (const Angle& b) const { return a >= a.b; } // bool operator= (const T& x) { a = x; FixRange(); } // These operations assume a is already between -Pi and Pi. Angle& operator+= (const Angle& b) { a = a + b.a; FastFixRange(); return *this; } Angle& operator+= (const T& x) { a = a + x; FixRange(); return *this; } Angle operator+ (const Angle& b) const { Angle res = *this; res += b; return res; } Angle operator+ (const T& x) const { Angle res = *this; res += x; return res; } Angle& operator-= (const Angle& b) { a = a - b.a; FastFixRange(); return *this; } Angle& operator-= (const T& x) { a = a - x; FixRange(); return *this; } Angle operator- (const Angle& b) const { Angle res = *this; res -= b; return res; } Angle operator- (const T& x) const { Angle res = *this; res -= x; return res; } T Distance(const Angle& b) { T c = fabs(a - b.a); return (c <= ((T)MATH_DOUBLE_PI)) ? c : ((T)MATH_DOUBLE_TWOPI) - c; } private: // The stored angle, which should be maintained between -Pi and Pi T a; // Fixes the angle range to [-Pi,Pi], but assumes no more than 2Pi away on either side inline void FastFixRange() { if (a < -((T)MATH_DOUBLE_PI)) a += ((T)MATH_DOUBLE_TWOPI); else if (a > ((T)MATH_DOUBLE_PI)) a -= ((T)MATH_DOUBLE_TWOPI); } // Fixes the angle range to [-Pi,Pi] for any given range, but slower then the fast method inline void FixRange() { // do nothing if the value is already in the correct range, since fmod call is expensive if (a >= -((T)MATH_DOUBLE_PI) && a <= ((T)MATH_DOUBLE_PI)) return; a = fmod(a,((T)MATH_DOUBLE_TWOPI)); if (a < -((T)MATH_DOUBLE_PI)) a += ((T)MATH_DOUBLE_TWOPI); else if (a > ((T)MATH_DOUBLE_PI)) a -= ((T)MATH_DOUBLE_TWOPI); } }; typedef Angle Anglef; typedef Angle Angled; //------------------------------------------------------------------------------------- // ***** Plane // Consists of a normal vector and distance from the origin where the plane is located. template class Plane { public: Vector3 N; T D; Plane() : D(0) {} // Normals must already be normalized Plane(const Vector3& n, T d) : N(n), D(d) {} Plane(T x, T y, T z, T d) : N(x,y,z), D(d) {} // construct from a point on the plane and the normal Plane(const Vector3& p, const Vector3& n) : N(n), D(-(p * n)) {} // Find the point to plane distance. The sign indicates what side of the plane the point is on (0 = point on plane). T TestSide(const Vector3& p) const { return (N.Dot(p)) + D; } Plane Flipped() const { return Plane(-N, -D); } void Flip() { N = -N; D = -D; } bool operator==(const Plane& rhs) const { return (this->D == rhs.D && this->N == rhs.N); } }; typedef Plane Planef; typedef Plane Planed; } // Namespace OVR #endif