/************************************************************************************ Filename : OVR_ThreadsWinAPI.cpp Platform : WinAPI Content : Windows specific thread-related (safe) functionality Created : September 19, 2012 Notes : Copyright : Copyright 2014 Oculus VR, LLC All Rights reserved. Licensed under the Oculus VR Rift SDK License Version 3.2 (the "License"); you may not use the Oculus VR Rift SDK except in compliance with the License, which is provided at the time of installation or download, or which otherwise accompanies this software in either electronic or hard copy form. You may obtain a copy of the License at http://www.oculusvr.com/licenses/LICENSE-3.2 Unless required by applicable law or agreed to in writing, the Oculus VR SDK distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ************************************************************************************/ #include "OVR_Threads.h" #include "OVR_Hash.h" #include "OVR_Log.h" #include "OVR_Timer.h" #ifdef OVR_ENABLE_THREADS // For _beginthreadex / _endtheadex #include namespace OVR { //----------------------------------------------------------------------------------- // *** Internal Mutex implementation class class MutexImpl : public NewOverrideBase { // System mutex or semaphore HANDLE hMutexOrSemaphore; bool Recursive; volatile unsigned LockCount; friend class WaitConditionImpl; public: // Constructor/destructor MutexImpl(bool recursive = 1); ~MutexImpl(); // Locking functions void DoLock(); bool TryLock(); void Unlock(Mutex* pmutex); // Returns 1 if the mutes is currently locked bool IsLockedByAnotherThread(Mutex* pmutex); }; // *** Constructor/destructor MutexImpl::MutexImpl(bool recursive) { Recursive = recursive; LockCount = 0; #if defined(OVR_OS_WIN32) // Older versions of Windows don't support CreateSemaphoreEx, so stick with CreateSemaphore for portability. hMutexOrSemaphore = Recursive ? CreateMutex(NULL, 0, NULL) : CreateSemaphore(NULL, 1, 1, NULL); #else // No CreateSemaphore() call, so emulate it. hMutexOrSemaphore = Recursive ? CreateMutex(NULL, 0, NULL) : CreateSemaphoreEx(NULL, 1, 1, NULL, 0, SEMAPHORE_ALL_ACCESS); #endif } MutexImpl::~MutexImpl() { CloseHandle(hMutexOrSemaphore); } // Lock and try lock void MutexImpl::DoLock() { if (::WaitForSingleObject(hMutexOrSemaphore, INFINITE) != WAIT_OBJECT_0) return; LockCount++; } bool MutexImpl::TryLock() { DWORD ret; if ((ret=::WaitForSingleObject(hMutexOrSemaphore, 0)) != WAIT_OBJECT_0) return 0; LockCount++; return 1; } void MutexImpl::Unlock(Mutex* pmutex) { OVR_UNUSED(pmutex); unsigned lockCount; LockCount--; lockCount = LockCount; // Release mutex if ((Recursive ? ReleaseMutex(hMutexOrSemaphore) : ReleaseSemaphore(hMutexOrSemaphore, 1, NULL)) != 0) { // This used to call Wait handlers if lockCount == 0. } } bool MutexImpl::IsLockedByAnotherThread(Mutex* pmutex) { // There could be multiple interpretations of IsLocked with respect to current thread if (LockCount == 0) return 0; if (!TryLock()) return 1; Unlock(pmutex); return 0; } /* bool MutexImpl::IsSignaled() const { // An mutex is signaled if it is not locked ANYWHERE // Note that this is different from IsLockedByAnotherThread function, // that takes current thread into account return LockCount == 0; } */ // *** Actual Mutex class implementation Mutex::Mutex(bool recursive) { pImpl = new MutexImpl(recursive); } Mutex::~Mutex() { delete pImpl; } // Lock and try lock void Mutex::DoLock() { pImpl->DoLock(); } bool Mutex::TryLock() { return pImpl->TryLock(); } void Mutex::Unlock() { pImpl->Unlock(this); } bool Mutex::IsLockedByAnotherThread() { return pImpl->IsLockedByAnotherThread(this); } //----------------------------------------------------------------------------------- // ***** Event bool Event::Wait(unsigned delay) { Mutex::Locker lock(&StateMutex); // Do the correct amount of waiting if (delay == OVR_WAIT_INFINITE) { while(!State) StateWaitCondition.Wait(&StateMutex); } else if (delay) { if (!State) StateWaitCondition.Wait(&StateMutex, delay); } bool state = State; // Take care of temporary 'pulsing' of a state if (Temporary) { Temporary = false; State = false; } return state; } void Event::updateState(bool newState, bool newTemp, bool mustNotify) { Mutex::Locker lock(&StateMutex); State = newState; Temporary = newTemp; if (mustNotify) StateWaitCondition.NotifyAll(); } //----------------------------------------------------------------------------------- // ***** Win32 Wait Condition Implementation // Internal implementation class class WaitConditionImpl : public NewOverrideBase { // Event pool entries for extra events struct EventPoolEntry : public NewOverrideBase { HANDLE hEvent; EventPoolEntry *pNext; EventPoolEntry *pPrev; }; Lock WaitQueueLoc; // Stores free events that can be used later EventPoolEntry * pFreeEventList; // A queue of waiting objects to be signaled EventPoolEntry* pQueueHead; EventPoolEntry* pQueueTail; // Allocation functions for free events EventPoolEntry* GetNewEvent(); void ReleaseEvent(EventPoolEntry* pevent); // Queue operations void QueuePush(EventPoolEntry* pentry); EventPoolEntry* QueuePop(); void QueueFindAndRemove(EventPoolEntry* pentry); public: // Constructor/destructor WaitConditionImpl(); ~WaitConditionImpl(); // Release mutex and wait for condition. The mutex is re-acqured after the wait. bool Wait(Mutex *pmutex, unsigned delay = OVR_WAIT_INFINITE); // Notify a condition, releasing at one object waiting void Notify(); // Notify a condition, releasing all objects waiting void NotifyAll(); }; WaitConditionImpl::WaitConditionImpl() { pFreeEventList = 0; pQueueHead = pQueueTail = 0; } WaitConditionImpl::~WaitConditionImpl() { // Free all the resources EventPoolEntry* p = pFreeEventList; EventPoolEntry* pentry; while(p) { // Move to next pentry = p; p = p->pNext; // Delete old ::CloseHandle(pentry->hEvent); delete pentry; } // Shouldn't we also consider the queue? // To be safe pFreeEventList = 0; pQueueHead = pQueueTail = 0; } // Allocation functions for free events WaitConditionImpl::EventPoolEntry* WaitConditionImpl::GetNewEvent() { EventPoolEntry* pentry; // If there are any free nodes, use them if (pFreeEventList) { pentry = pFreeEventList; pFreeEventList = pFreeEventList->pNext; } else { // Allocate a new node pentry = new EventPoolEntry; pentry->pNext = 0; pentry->pPrev = 0; // Non-signaled manual event pentry->hEvent = ::CreateEvent(NULL, TRUE, 0, NULL); } return pentry; } void WaitConditionImpl::ReleaseEvent(EventPoolEntry* pevent) { // Mark event as non-signaled ::ResetEvent(pevent->hEvent); // And add it to free pool pevent->pNext = pFreeEventList; pevent->pPrev = 0; pFreeEventList = pevent; } // Queue operations void WaitConditionImpl::QueuePush(EventPoolEntry* pentry) { // Items already exist? Just add to tail if (pQueueTail) { pentry->pPrev = pQueueTail; pQueueTail->pNext = pentry; pentry->pNext = 0; pQueueTail = pentry; } else { // No items in queue pentry->pNext = pentry->pPrev = 0; pQueueHead = pQueueTail = pentry; } } WaitConditionImpl::EventPoolEntry* WaitConditionImpl::QueuePop() { EventPoolEntry* pentry = pQueueHead; // No items, null pointer if (pentry) { // More items after this one? just grab the first item if (pQueueHead->pNext) { pQueueHead = pentry->pNext; pQueueHead->pPrev = 0; } else { // Last item left pQueueTail = pQueueHead = 0; } } return pentry; } void WaitConditionImpl::QueueFindAndRemove(EventPoolEntry* pentry) { // Do an exhaustive search looking for an entry EventPoolEntry* p = pQueueHead; while(p) { // Entry found? Remove. if (p == pentry) { // Remove the node form the list // Prev link if (pentry->pPrev) pentry->pPrev->pNext = pentry->pNext; else pQueueHead = pentry->pNext; // Next link if (pentry->pNext) pentry->pNext->pPrev = pentry->pPrev; else pQueueTail = pentry->pPrev; // Done return; } // Move to next item p = p->pNext; } } bool WaitConditionImpl::Wait(Mutex *pmutex, unsigned delay) { bool result = 0; unsigned i; unsigned lockCount = pmutex->pImpl->LockCount; EventPoolEntry* pentry; // Mutex must have been locked if (lockCount == 0) return 0; // Add an object to the wait queue WaitQueueLoc.DoLock(); QueuePush(pentry = GetNewEvent()); WaitQueueLoc.Unlock(); // Finally, release a mutex or semaphore if (pmutex->pImpl->Recursive) { // Release the recursive mutex N times pmutex->pImpl->LockCount = 0; for(i=0; ipImpl->hMutexOrSemaphore); } else { pmutex->pImpl->LockCount = 0; ::ReleaseSemaphore(pmutex->pImpl->hMutexOrSemaphore, 1, NULL); } // Note that there is a gap here between mutex.Unlock() and Wait(). However, // if notify() comes in at this point in the other thread it will set our // corresponding event so wait will just fall through, as expected. // Block and wait on the event DWORD waitResult = ::WaitForSingleObject(pentry->hEvent, (delay == OVR_WAIT_INFINITE) ? INFINITE : delay); /* repeat_wait: DWORD waitResult = ::MsgWaitForMultipleObjects(1, &pentry->hEvent, FALSE, (delay == OVR_WAIT_INFINITE) ? INFINITE : delay, QS_ALLINPUT); */ WaitQueueLoc.DoLock(); switch(waitResult) { case WAIT_ABANDONED: case WAIT_OBJECT_0: result = 1; // Wait was successful, therefore the event entry should already be removed // So just add entry back to a free list ReleaseEvent(pentry); break; /* case WAIT_OBJECT_0 + 1: // Messages in WINDOWS queue { MSG msg; PeekMessage(&msg, NULL, 0U, 0U, PM_NOREMOVE); WaitQueueLoc.Unlock(); goto repeat_wait; } break; */ default: // Timeout, our entry should still be in a queue QueueFindAndRemove(pentry); ReleaseEvent(pentry); } WaitQueueLoc.Unlock(); // Re-aquire the mutex for(i=0; iDoLock(); // Return the result return result; } // Notify a condition, releasing the least object in a queue void WaitConditionImpl::Notify() { Lock::Locker lock(&WaitQueueLoc); // Pop last entry & signal it EventPoolEntry* pentry = QueuePop(); if (pentry) ::SetEvent(pentry->hEvent); } // Notify a condition, releasing all objects waiting void WaitConditionImpl::NotifyAll() { Lock::Locker lock(&WaitQueueLoc); // Pop and signal all events // NOTE : There is no need to release the events, it's the waiters job to do so EventPoolEntry* pentry = QueuePop(); while (pentry) { ::SetEvent(pentry->hEvent); pentry = QueuePop(); } } // *** Actual implementation of WaitCondition WaitCondition::WaitCondition() { pImpl = new WaitConditionImpl; } WaitCondition::~WaitCondition() { delete pImpl; } // Wait without a mutex bool WaitCondition::Wait(Mutex *pmutex, unsigned delay) { return pImpl->Wait(pmutex, delay); } // Notification void WaitCondition::Notify() { pImpl->Notify(); } void WaitCondition::NotifyAll() { pImpl->NotifyAll(); } //----------------------------------------------------------------------------------- // ***** Thread Class // Per-thread variable // MA: Don't use TLS for now - portability issues with DLLs, etc. /* #if !defined(OVR_CC_MSVC) || (OVR_CC_MSVC < 1300) __declspec(thread) Thread* pCurrentThread = 0; #else #pragma data_seg(".tls$") __declspec(thread) Thread* pCurrentThread = 0; #pragma data_seg(".rwdata") #endif */ // *** Thread constructors. Thread::Thread(size_t stackSize, int processor) { CreateParams params; params.stackSize = stackSize; params.processor = processor; Init(params); } Thread::Thread(Thread::ThreadFn threadFunction, void* userHandle, size_t stackSize, int processor, Thread::ThreadState initialState) { CreateParams params(threadFunction, userHandle, stackSize, processor, initialState); Init(params); } Thread::Thread(const CreateParams& params) { Init(params); } void Thread::Init(const CreateParams& params) { // Clear the variables ThreadFlags = 0; ThreadHandle = 0; IdValue = 0; ExitCode = 0; SuspendCount = 0; StackSize = params.stackSize; Processor = params.processor; Priority = params.priority; // Clear Function pointers ThreadFunction = params.threadFunction; UserHandle = params.userHandle; if (params.initialState != NotRunning) Start(params.initialState); } Thread::~Thread() { // Thread should not running while object is being destroyed, // this would indicate ref-counting issue. //OVR_ASSERT(IsRunning() == 0); // Clean up thread. CleanupSystemThread(); ThreadHandle = 0; } // *** Overridable User functions. // Default Run implementation int Thread::Run() { if (!ThreadFunction) return 0; int ret = ThreadFunction(this, UserHandle); return ret; } void Thread::OnExit() { } // Finishes the thread and releases internal reference to it. void Thread::FinishAndRelease() { // Note: thread must be US. ThreadFlags &= (uint32_t)~(OVR_THREAD_STARTED); ThreadFlags |= OVR_THREAD_FINISHED; // Release our reference; this is equivalent to 'delete this' // from the point of view of our thread. Release(); } // *** ThreadList - used to tack all created threads class ThreadList : public NewOverrideBase { //------------------------------------------------------------------------ struct ThreadHashOp { size_t operator()(const Thread* ptr) { return (((size_t)ptr) >> 6) ^ (size_t)ptr; } }; HashSet ThreadSet; Mutex ThreadMutex; WaitCondition ThreadsEmpty; // Track the root thread that created us. ThreadId RootThreadId; static ThreadList* volatile pRunningThreads; void addThread(Thread *pthread) { Mutex::Locker lock(&ThreadMutex); ThreadSet.Add(pthread); } void removeThread(Thread *pthread) { Mutex::Locker lock(&ThreadMutex); ThreadSet.Remove(pthread); if (ThreadSet.GetSize() == 0) ThreadsEmpty.Notify(); } void finishAllThreads() { // Only original root thread can call this. OVR_ASSERT(GetCurrentThreadId() == RootThreadId); Mutex::Locker lock(&ThreadMutex); while (ThreadSet.GetSize() != 0) ThreadsEmpty.Wait(&ThreadMutex); } public: ThreadList() { RootThreadId = GetCurrentThreadId(); } ~ThreadList() { } static void AddRunningThread(Thread *pthread) { // Non-atomic creation ok since only the root thread if (!pRunningThreads) { pRunningThreads = new ThreadList; OVR_ASSERT(pRunningThreads); } pRunningThreads->addThread(pthread); } // NOTE: 'pthread' might be a dead pointer when this is // called so it should not be accessed; it is only used // for removal. static void RemoveRunningThread(Thread *pthread) { OVR_ASSERT(pRunningThreads); pRunningThreads->removeThread(pthread); } static void FinishAllThreads() { // This is ok because only root thread can wait for other thread finish. if (pRunningThreads) { pRunningThreads->finishAllThreads(); delete pRunningThreads; pRunningThreads = 0; } } }; // By default, we have no thread list. ThreadList* volatile ThreadList::pRunningThreads = 0; // FinishAllThreads - exposed publicly in Thread. void Thread::FinishAllThreads() { ThreadList::FinishAllThreads(); } // *** Run override int Thread::PRun() { // Suspend us on start, if requested if (ThreadFlags & OVR_THREAD_START_SUSPENDED) { Suspend(); ThreadFlags &= (uint32_t)~OVR_THREAD_START_SUSPENDED; } // Call the virtual run function ExitCode = Run(); return ExitCode; } /* MA: Don't use TLS for now. // Static function to return a pointer to the current thread void Thread::InitCurrentThread(Thread *pthread) { pCurrentThread = pthread; } // Static function to return a pointer to the current thread Thread* Thread::GetThread() { return pCurrentThread; } */ // *** User overridables bool Thread::GetExitFlag() const { return (ThreadFlags & OVR_THREAD_EXIT) != 0; } void Thread::SetExitFlag(bool exitFlag) { // The below is atomic since ThreadFlags is AtomicInt. if (exitFlag) ThreadFlags |= OVR_THREAD_EXIT; else ThreadFlags &= (uint32_t) ~OVR_THREAD_EXIT; } // Determines whether the thread was running and is now finished bool Thread::IsFinished() const { return (ThreadFlags & OVR_THREAD_FINISHED) != 0; } // Determines whether the thread is suspended bool Thread::IsSuspended() const { return SuspendCount > 0; } // Returns current thread state Thread::ThreadState Thread::GetThreadState() const { if (IsSuspended()) return Suspended; if (ThreadFlags & OVR_THREAD_STARTED) return Running; return NotRunning; } // Join thread bool Thread::Join(int maxWaitMs) const { // If polling, if (maxWaitMs == 0) { // Just return if finished return IsFinished(); } // If waiting forever, else if (maxWaitMs > 0) { // Try waiting once WaitForSingleObject(ThreadHandle, maxWaitMs); // Return if the wait succeeded return IsFinished(); } // While not finished, while (!IsFinished()) { // Wait for the thread handle to signal WaitForSingleObject(ThreadHandle, INFINITE); } return true; } // ***** Thread management /* static */ int Thread::GetOSPriority(ThreadPriority p) { switch(p) { // If the process is REALTIME_PRIORITY_CLASS then it could have priority values 3 through14 and -3 through -14. case Thread::CriticalPriority: return THREAD_PRIORITY_TIME_CRITICAL; // 15 case Thread::HighestPriority: return THREAD_PRIORITY_HIGHEST; // 2 case Thread::AboveNormalPriority: return THREAD_PRIORITY_ABOVE_NORMAL; // 1 case Thread::NormalPriority: return THREAD_PRIORITY_NORMAL; // 0 case Thread::BelowNormalPriority: return THREAD_PRIORITY_BELOW_NORMAL; // -1 case Thread::LowestPriority: return THREAD_PRIORITY_LOWEST; // -2 case Thread::IdlePriority: return THREAD_PRIORITY_IDLE; // -15 } return THREAD_PRIORITY_NORMAL; } /* static */ Thread::ThreadPriority Thread::GetOVRPriority(int osPriority) { // If the process is REALTIME_PRIORITY_CLASS then it could have priority values 3 through14 and -3 through -14. // As a result, it's possible for those cases that an unknown/invalid ThreadPriority enum be returned. However, // in practice we don't expect to be using such processes. // The ThreadPriority types aren't linearly distributed, so we need to check for some values explicitly. if(osPriority == THREAD_PRIORITY_TIME_CRITICAL) return Thread::CriticalPriority; if(osPriority == THREAD_PRIORITY_IDLE) return Thread::IdlePriority; return (ThreadPriority)(Thread::NormalPriority - osPriority); } Thread::ThreadPriority Thread::GetPriority() { int osPriority = ::GetThreadPriority(ThreadHandle); if(osPriority != THREAD_PRIORITY_ERROR_RETURN) { return GetOVRPriority(osPriority); } return NormalPriority; } /* static */ Thread::ThreadPriority Thread::GetCurrentPriority() { int osPriority = ::GetThreadPriority(::GetCurrentThread()); if(osPriority != THREAD_PRIORITY_ERROR_RETURN) { return GetOVRPriority(osPriority); } return NormalPriority; } bool Thread::SetPriority(ThreadPriority p) { BOOL ret = ::SetThreadPriority(ThreadHandle, Thread::GetOSPriority(p)); return (ret != FALSE); } /* static */ bool Thread::SetCurrentPriority(ThreadPriority p) { BOOL ret = ::SetThreadPriority(::GetCurrentThread(), Thread::GetOSPriority(p)); return (ret != FALSE); } // The actual first function called on thread start #if defined(OVR_OS_WIN32) unsigned WINAPI Thread_Win32StartFn(void * phandle) #else // Other Micorosft OSs... DWORD WINAPI Thread_Win32StartFn(void *phandle) #endif { Thread * pthread = (Thread*)phandle; if (pthread->Processor != -1) { DWORD_PTR ret = SetThreadAffinityMask(GetCurrentThread(), (DWORD)pthread->Processor); if (ret == 0) OVR_DEBUG_LOG(("Could not set hardware processor for the thread")); } BOOL ret = ::SetThreadPriority(GetCurrentThread(), Thread::GetOSPriority(pthread->Priority)); if (ret == 0) OVR_DEBUG_LOG(("Could not set thread priority")); OVR_UNUSED(ret); // Ensure that ThreadId is assigned once thread is running, in case // beginthread hasn't filled it in yet. pthread->IdValue = (ThreadId)::GetCurrentThreadId(); DWORD result = pthread->PRun(); // Signal the thread as done and release it atomically. pthread->FinishAndRelease(); // At this point Thread object might be dead; however we can still pass // it to RemoveRunningThread since it is only used as a key there. ThreadList::RemoveRunningThread(pthread); return (unsigned) result; } bool Thread::Start(ThreadState initialState) { if (initialState == NotRunning) return 0; if (GetThreadState() != NotRunning) { OVR_DEBUG_LOG(("Thread::Start failed - thread %p already running", this)); return 0; } // Free old thread handle before creating the new one CleanupSystemThread(); // AddRef to us until the thread is finished. AddRef(); ThreadList::AddRunningThread(this); ExitCode = 0; SuspendCount = 0; ThreadFlags = (initialState == Running) ? 0 : OVR_THREAD_START_SUSPENDED; #if defined(OVR_OS_WIN32) ThreadHandle = (HANDLE) _beginthreadex(0, (unsigned)StackSize, Thread_Win32StartFn, this, 0, (unsigned*)&IdValue); #else // Other Micorosft OSs... DWORD TheThreadId; ThreadHandle = CreateThread(0, (unsigned)StackSize, Thread_Win32StartFn, this, 0, &TheThreadId); IdValue = (ThreadId)TheThreadId; #endif // Failed? Fail the function if (ThreadHandle == 0) { ThreadFlags = 0; Release(); ThreadList::RemoveRunningThread(this); return 0; } return 1; } // Suspend the thread until resumed bool Thread::Suspend() { // Can't suspend a thread that wasn't started if (!(ThreadFlags & OVR_THREAD_STARTED)) return 0; if (::SuspendThread(ThreadHandle) != 0xFFFFFFFF) { SuspendCount++; return 1; } return 0; } // Resumes currently suspended thread bool Thread::Resume() { // Can't suspend a thread that wasn't started if (!(ThreadFlags & OVR_THREAD_STARTED)) return 0; // Decrement count, and resume thread if it is 0 int32_t oldCount = SuspendCount.ExchangeAdd_Acquire(-1); if (oldCount >= 1) { if (oldCount == 1) { if (::ResumeThread(ThreadHandle) != 0xFFFFFFFF) { return 1; } } else { return 1; } } return 0; } // Quits with an exit code void Thread::Exit(int exitCode) { // Can only exist the current thread. // MA: Don't use TLS for now. //if (GetThread() != this) // return; // Call the virtual OnExit function. OnExit(); // Signal this thread object as done and release it's references. FinishAndRelease(); ThreadList::RemoveRunningThread(this); // Call the exit function. #if defined(OVR_OS_WIN32) // _endthreadex doesn't exist on other Microsoft OSs and instead we need to call ExitThread directly. _endthreadex((unsigned)exitCode); #else ExitThread((unsigned)exitCode); #endif } void Thread::CleanupSystemThread() { if (ThreadHandle != 0) { ::CloseHandle(ThreadHandle); ThreadHandle = 0; } } // *** Sleep functions // static bool Thread::Sleep(unsigned secs) { ::Sleep(secs*1000); return 1; } // static bool Thread::MSleep(unsigned msecs) { ::Sleep(msecs); return 1; } void Thread::SetThreadName( const char* name ) { if(IdValue) SetThreadName(name, IdValue); // Else we don't know what thread to name. We can save the name and wait until the thread is created. } void Thread::SetThreadName(const char* name, ThreadId threadId) { #if !defined(OVR_BUILD_SHIPPING) || defined(OVR_BUILD_PROFILING) // http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx #pragma pack(push,8) struct THREADNAME_INFO { DWORD dwType; // Must be 0x1000 LPCSTR szName; // Pointer to name (in user address space) DWORD dwThreadID; // Thread ID (-1 for caller thread) DWORD dwFlags; // Reserved for future use; must be zero }; #pragma pack(pop) THREADNAME_INFO info = { 0x1000, name, (DWORD)threadId, 0 }; __try { RaiseException( 0x406D1388, 0, sizeof(info)/sizeof(ULONG_PTR), reinterpret_cast(&info)); } __except( GetExceptionCode()==0x406D1388 ? EXCEPTION_CONTINUE_EXECUTION : EXCEPTION_EXECUTE_HANDLER ) { return; } #endif // OVR_BUILD_SHIPPING } void Thread::SetCurrentThreadName( const char* name ) { SetThreadName(name, (ThreadId)::GetCurrentThreadId()); } void Thread::GetThreadName(char* name, size_t /*nameCapacity*/, ThreadId /*threadId*/) { // Not possible on Windows. name[0] = 0; } void Thread::GetCurrentThreadName(char* name, size_t /*nameCapacity*/) { // Not possible on Windows. name[0] = 0; } // static int Thread::GetCPUCount() { SYSTEM_INFO sysInfo; #if defined(_WIN32_WINNT) && (_WIN32_WINNT >= 0x0501) // GetNativeSystemInfo requires WinXP+ and a corresponding SDK (0x0501) or later. GetNativeSystemInfo(&sysInfo); #else GetSystemInfo(&sysInfo); #endif return (int) sysInfo.dwNumberOfProcessors; } // Returns the unique Id of a thread it is called on, intended for // comparison purposes. ThreadId GetCurrentThreadId() { return (ThreadId)::GetCurrentThreadId(); } } // OVR #endif