/************************************************************************************ Filename : OVR_Timer.cpp Content : Provides static functions for precise timing Created : September 19, 2012 Notes : Copyright : Copyright 2014 Oculus VR, Inc. All Rights reserved. Licensed under the Oculus VR Rift SDK License Version 3.1 (the "License"); you may not use the Oculus VR Rift SDK except in compliance with the License, which is provided at the time of installation or download, or which otherwise accompanies this software in either electronic or hard copy form. You may obtain a copy of the License at http://www.oculusvr.com/licenses/LICENSE-3.1 Unless required by applicable law or agreed to in writing, the Oculus VR SDK distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ************************************************************************************/ #include "OVR_Timer.h" #include "OVR_Log.h" #if defined (OVR_OS_WIN32) #define WIN32_LEAN_AND_MEAN #include #include #elif defined(OVR_OS_ANDROID) #include #include #else #include #endif namespace OVR { // For recorded data playback bool Timer::useFakeSeconds = false; double Timer::FakeSeconds = 0; //------------------------------------------------------------------------ // *** Timer - Platform Independent functions // Returns global high-resolution application timer in seconds. double Timer::GetSeconds() { if(useFakeSeconds) return FakeSeconds; return double(Timer::GetTicksNanos()) * 0.000000001; } #if !defined(OVR_OS_WIN32) // Unused on OSs other then Win32. void Timer::initializeTimerSystem() { } void Timer::shutdownTimerSystem() { } #endif //------------------------------------------------------------------------ // *** Android Specific Timer #if defined(OVR_OS_ANDROID) uint64_t Timer::GetTicksNanos() { if (useFakeSeconds) return (uint64_t) (FakeSeconds * NanosPerSecond); // Choreographer vsync timestamp is based on. struct timespec tp; const int status = clock_gettime(CLOCK_MONOTONIC, &tp); if (status != 0) { OVR_DEBUG_LOG(("clock_gettime status=%i", status )); } const uint64_t result = (uint64_t)tp.tv_sec * (uint64_t)(1000 * 1000 * 1000) + uint64_t(tp.tv_nsec); return result; } //------------------------------------------------------------------------ // *** Win32 Specific Timer #elif defined (OVR_OS_WIN32) // This helper class implements high-resolution wrapper that combines timeGetTime() output // with QueryPerformanceCounter. timeGetTime() is lower precision but drives the high bits, // as it's tied to the system clock. struct PerformanceTimer { PerformanceTimer() : OldMMTimeMs(0), MMTimeWrapCounter(0), PrefFrequency(0), LastResultNanos(0), PerfMinusTicksDeltaNanos(0) { } enum { MMTimerResolutionNanos = 1000000 }; void Initialize(); void Shutdown(); uint64_t GetTimeNanos(); UINT64 getFrequency() { if (PrefFrequency == 0) { LARGE_INTEGER freq; QueryPerformanceFrequency(&freq); PrefFrequency = freq.QuadPart; } return PrefFrequency; } bool UsingVista; CRITICAL_SECTION TimeCS; // timeGetTime() support with wrap. uint32_t OldMMTimeMs; uint32_t MMTimeWrapCounter; // Cached performance frequency result. uint64_t PrefFrequency; // Computed as (perfCounterNanos - ticksCounterNanos) initially, // and used to adjust timing. uint64_t PerfMinusTicksDeltaNanos; // Last returned value in nanoseconds, to ensure we don't back-step in time. uint64_t LastResultNanos; }; PerformanceTimer Win32_PerfTimer; void PerformanceTimer::Initialize() { MMRESULT mmr = timeBeginPeriod(1); OVR_ASSERT(TIMERR_NOERROR == mmr); OVR_UNUSED(mmr); InitializeCriticalSection(&TimeCS); MMTimeWrapCounter = 0; getFrequency(); // Set Vista flag. On Vista, we can just use QPC() without all the extra work UsingVista = false; OSVERSIONINFOA vi; vi.dwOSVersionInfoSize = sizeof(vi); if (GetVersionExA(&vi)) { UsingVista = vi.dwMajorVersion >= 6; } OVR_DEBUG_LOG(("Performance timer Vista flag = %d", (int)UsingVista)); } void PerformanceTimer::Shutdown() { DeleteCriticalSection(&TimeCS); MMRESULT mmr = timeEndPeriod(1); OVR_ASSERT(TIMERR_NOERROR == mmr); OVR_UNUSED(mmr); } uint64_t PerformanceTimer::GetTimeNanos() { uint64_t resultNanos; LARGE_INTEGER li; // If on Vista, if (UsingVista) { // Then we can use QPC() directly without all that extra work QueryPerformanceCounter(&li); uint64_t frequency = getFrequency(); uint64_t perfCounterSeconds = (uint64_t)li.QuadPart / frequency; uint64_t perfRemainderNanos = (((uint64_t)li.QuadPart - perfCounterSeconds * frequency) * Timer::NanosPerSecond) / frequency; resultNanos = perfCounterSeconds * Timer::NanosPerSecond + perfRemainderNanos; } else { // On Win32 QueryPerformanceFrequency is unreliable due to SMP and // performance levels, so use this logic to detect wrapping and track // high bits. ::EnterCriticalSection(&TimeCS); // Get raw value and perf counter "At the same time". QueryPerformanceCounter(&li); DWORD mmTimeMs = timeGetTime(); if (OldMMTimeMs > mmTimeMs) MMTimeWrapCounter++; OldMMTimeMs = mmTimeMs; // Normalize to nanoseconds. uint64_t frequency = getFrequency(); uint64_t perfCounterSeconds = uint64_t(li.QuadPart) / frequency; uint64_t perfRemainderNanos = ( (uint64_t(li.QuadPart) - perfCounterSeconds * frequency) * Timer::NanosPerSecond ) / frequency; uint64_t perfCounterNanos = perfCounterSeconds * Timer::NanosPerSecond + perfRemainderNanos; uint64_t mmCounterNanos = ((uint64_t(MMTimeWrapCounter) << 32) | mmTimeMs) * 1000000; if (PerfMinusTicksDeltaNanos == 0) PerfMinusTicksDeltaNanos = perfCounterNanos - mmCounterNanos; // Compute result before snapping. // // On first call, this evaluates to: // resultNanos = mmCounterNanos. // Next call, assuming no wrap: // resultNanos = prev_mmCounterNanos + (perfCounterNanos - prev_perfCounterNanos). // After wrap, this would be: // resultNanos = snapped(prev_mmCounterNanos +/- 1ms) + (perfCounterNanos - prev_perfCounterNanos). // resultNanos = perfCounterNanos - PerfMinusTicksDeltaNanos; // Snap the range so that resultNanos never moves further apart then its target resolution. // It's better to allow more slack on the high side as timeGetTime() may be updated at sporadically // larger then 1 ms intervals even when 1 ms resolution is requested. if (resultNanos > (mmCounterNanos + MMTimerResolutionNanos*2)) { resultNanos = mmCounterNanos + MMTimerResolutionNanos*2; if (resultNanos < LastResultNanos) resultNanos = LastResultNanos; PerfMinusTicksDeltaNanos = perfCounterNanos - resultNanos; } else if (resultNanos < (mmCounterNanos - MMTimerResolutionNanos)) { resultNanos = mmCounterNanos - MMTimerResolutionNanos; if (resultNanos < LastResultNanos) resultNanos = LastResultNanos; PerfMinusTicksDeltaNanos = perfCounterNanos - resultNanos; } LastResultNanos = resultNanos; ::LeaveCriticalSection(&TimeCS); } //Tom's addition, to keep precision //static uint64_t initial_time = 0; //if (!initial_time) initial_time = resultNanos; //resultNanos -= initial_time; // FIXME: This cannot be used for cross-process timestamps return resultNanos; } // Delegate to PerformanceTimer. uint64_t Timer::GetTicksNanos() { if (useFakeSeconds) return (uint64_t) (FakeSeconds * NanosPerSecond); return Win32_PerfTimer.GetTimeNanos(); } void Timer::initializeTimerSystem() { Win32_PerfTimer.Initialize(); } void Timer::shutdownTimerSystem() { Win32_PerfTimer.Shutdown(); } #else // !OVR_OS_WIN32 && !OVR_OS_ANDROID //------------------------------------------------------------------------ // *** Standard OS Timer uint64_t Timer::GetTicksNanos() { if (useFakeSeconds) return (uint64_t) (FakeSeconds * NanosPerSecond); // TODO: prefer rdtsc when available? uint64_t result; // Return microseconds. struct timeval tv; gettimeofday(&tv, 0); result = (uint64_t)tv.tv_sec * 1000000; result += tv.tv_usec; return result * 1000; } #endif // OS-specific } // OVR