/************************************************************************************ Filename : OVR_LatencyTestImpl.cpp Content : Oculus Latency Tester device implementation. Created : March 7, 2013 Authors : Lee Cooper Copyright : Copyright 2013 Oculus VR, Inc. All Rights reserved. Licensed under the Oculus VR SDK License Version 2.0 (the "License"); you may not use the Oculus VR SDK except in compliance with the License, which is provided at the time of installation or download, or which otherwise accompanies this software in either electronic or hard copy form. You may obtain a copy of the License at http://www.oculusvr.com/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, the Oculus VR SDK distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *************************************************************************************/ #include "OVR_LatencyTestImpl.h" namespace OVR { //------------------------------------------------------------------------------------- // ***** Oculus Latency Tester specific packet data structures enum { LatencyTester_VendorId = Oculus_VendorId, LatencyTester_ProductId = 0x0101, }; // Reported data is little-endian now static UInt16 DecodeUInt16(const UByte* buffer) { return (UInt16(buffer[1]) << 8) | UInt16(buffer[0]); } /* Unreferenced static SInt16 DecodeSInt16(const UByte* buffer) { return (SInt16(buffer[1]) << 8) | SInt16(buffer[0]); }*/ static void UnpackSamples(const UByte* buffer, UByte* r, UByte* g, UByte* b) { *r = buffer[0]; *g = buffer[1]; *b = buffer[2]; } // Messages we handle. enum LatencyTestMessageType { LatencyTestMessage_None = 0, LatencyTestMessage_Samples = 1, LatencyTestMessage_ColorDetected = 2, LatencyTestMessage_TestStarted = 3, LatencyTestMessage_Button = 4, LatencyTestMessage_Unknown = 0x100, LatencyTestMessage_SizeError = 0x101, }; struct LatencyTestSample { UByte Value[3]; }; struct LatencyTestSamples { UByte SampleCount; UInt16 Timestamp; LatencyTestSample Samples[20]; LatencyTestMessageType Decode(const UByte* buffer, int size) { if (size < 64) { return LatencyTestMessage_SizeError; } SampleCount = buffer[1]; Timestamp = DecodeUInt16(buffer + 2); for (UByte i = 0; i < SampleCount; i++) { UnpackSamples(buffer + 4 + (3 * i), &Samples[i].Value[0], &Samples[i].Value[1], &Samples[i].Value[2]); } return LatencyTestMessage_Samples; } }; struct LatencyTestSamplesMessage { LatencyTestMessageType Type; LatencyTestSamples Samples; }; bool DecodeLatencyTestSamplesMessage(LatencyTestSamplesMessage* message, UByte* buffer, int size) { memset(message, 0, sizeof(LatencyTestSamplesMessage)); if (size < 64) { message->Type = LatencyTestMessage_SizeError; return false; } switch (buffer[0]) { case LatencyTestMessage_Samples: message->Type = message->Samples.Decode(buffer, size); break; default: message->Type = LatencyTestMessage_Unknown; break; } return (message->Type < LatencyTestMessage_Unknown) && (message->Type != LatencyTestMessage_None); } struct LatencyTestColorDetected { UInt16 CommandID; UInt16 Timestamp; UInt16 Elapsed; UByte TriggerValue[3]; UByte TargetValue[3]; LatencyTestMessageType Decode(const UByte* buffer, int size) { if (size < 13) return LatencyTestMessage_SizeError; CommandID = DecodeUInt16(buffer + 1); Timestamp = DecodeUInt16(buffer + 3); Elapsed = DecodeUInt16(buffer + 5); memcpy(TriggerValue, buffer + 7, 3); memcpy(TargetValue, buffer + 10, 3); return LatencyTestMessage_ColorDetected; } }; struct LatencyTestColorDetectedMessage { LatencyTestMessageType Type; LatencyTestColorDetected ColorDetected; }; bool DecodeLatencyTestColorDetectedMessage(LatencyTestColorDetectedMessage* message, UByte* buffer, int size) { memset(message, 0, sizeof(LatencyTestColorDetectedMessage)); if (size < 13) { message->Type = LatencyTestMessage_SizeError; return false; } switch (buffer[0]) { case LatencyTestMessage_ColorDetected: message->Type = message->ColorDetected.Decode(buffer, size); break; default: message->Type = LatencyTestMessage_Unknown; break; } return (message->Type < LatencyTestMessage_Unknown) && (message->Type != LatencyTestMessage_None); } struct LatencyTestStarted { UInt16 CommandID; UInt16 Timestamp; UByte TargetValue[3]; LatencyTestMessageType Decode(const UByte* buffer, int size) { if (size < 8) return LatencyTestMessage_SizeError; CommandID = DecodeUInt16(buffer + 1); Timestamp = DecodeUInt16(buffer + 3); memcpy(TargetValue, buffer + 5, 3); return LatencyTestMessage_TestStarted; } }; struct LatencyTestStartedMessage { LatencyTestMessageType Type; LatencyTestStarted TestStarted; }; bool DecodeLatencyTestStartedMessage(LatencyTestStartedMessage* message, UByte* buffer, int size) { memset(message, 0, sizeof(LatencyTestStartedMessage)); if (size < 8) { message->Type = LatencyTestMessage_SizeError; return false; } switch (buffer[0]) { case LatencyTestMessage_TestStarted: message->Type = message->TestStarted.Decode(buffer, size); break; default: message->Type = LatencyTestMessage_Unknown; break; } return (message->Type < LatencyTestMessage_Unknown) && (message->Type != LatencyTestMessage_None); } struct LatencyTestButton { UInt16 CommandID; UInt16 Timestamp; LatencyTestMessageType Decode(const UByte* buffer, int size) { if (size < 5) return LatencyTestMessage_SizeError; CommandID = DecodeUInt16(buffer + 1); Timestamp = DecodeUInt16(buffer + 3); return LatencyTestMessage_Button; } }; struct LatencyTestButtonMessage { LatencyTestMessageType Type; LatencyTestButton Button; }; bool DecodeLatencyTestButtonMessage(LatencyTestButtonMessage* message, UByte* buffer, int size) { memset(message, 0, sizeof(LatencyTestButtonMessage)); if (size < 5) { message->Type = LatencyTestMessage_SizeError; return false; } switch (buffer[0]) { case LatencyTestMessage_Button: message->Type = message->Button.Decode(buffer, size); break; default: message->Type = LatencyTestMessage_Unknown; break; } return (message->Type < LatencyTestMessage_Unknown) && (message->Type != LatencyTestMessage_None); } struct LatencyTestConfigurationImpl { enum { PacketSize = 5 }; UByte Buffer[PacketSize]; OVR::LatencyTestConfiguration Configuration; LatencyTestConfigurationImpl(const OVR::LatencyTestConfiguration& configuration) : Configuration(configuration) { Pack(); } void Pack() { Buffer[0] = 5; Buffer[1] = UByte(Configuration.SendSamples); Buffer[2] = Configuration.Threshold.R; Buffer[3] = Configuration.Threshold.G; Buffer[4] = Configuration.Threshold.B; } void Unpack() { Configuration.SendSamples = Buffer[1] != 0 ? true : false; Configuration.Threshold.R = Buffer[2]; Configuration.Threshold.G = Buffer[3]; Configuration.Threshold.B = Buffer[4]; } }; struct LatencyTestCalibrateImpl { enum { PacketSize = 4 }; UByte Buffer[PacketSize]; Color CalibrationColor; LatencyTestCalibrateImpl(const Color& calibrationColor) : CalibrationColor(calibrationColor) { Pack(); } void Pack() { Buffer[0] = 7; Buffer[1] = CalibrationColor.R; Buffer[2] = CalibrationColor.G; Buffer[3] = CalibrationColor.B; } void Unpack() { CalibrationColor.R = Buffer[1]; CalibrationColor.G = Buffer[2]; CalibrationColor.B = Buffer[3]; } }; struct LatencyTestStartTestImpl { enum { PacketSize = 6 }; UByte Buffer[PacketSize]; Color TargetColor; LatencyTestStartTestImpl(const Color& targetColor) : TargetColor(targetColor) { Pack(); } void Pack() { UInt16 commandID = 1; Buffer[0] = 8; Buffer[1] = UByte(commandID & 0xFF); Buffer[2] = UByte(commandID >> 8); Buffer[3] = TargetColor.R; Buffer[4] = TargetColor.G; Buffer[5] = TargetColor.B; } void Unpack() { // UInt16 commandID = Buffer[1] | (UInt16(Buffer[2]) << 8); TargetColor.R = Buffer[3]; TargetColor.G = Buffer[4]; TargetColor.B = Buffer[5]; } }; struct LatencyTestDisplayImpl { enum { PacketSize = 6 }; UByte Buffer[PacketSize]; OVR::LatencyTestDisplay Display; LatencyTestDisplayImpl(const OVR::LatencyTestDisplay& display) : Display(display) { Pack(); } void Pack() { Buffer[0] = 9; Buffer[1] = Display.Mode; Buffer[2] = UByte(Display.Value & 0xFF); Buffer[3] = UByte((Display.Value >> 8) & 0xFF); Buffer[4] = UByte((Display.Value >> 16) & 0xFF); Buffer[5] = UByte((Display.Value >> 24) & 0xFF); } void Unpack() { Display.Mode = Buffer[1]; Display.Value = UInt32(Buffer[2]) | (UInt32(Buffer[3]) << 8) | (UInt32(Buffer[4]) << 16) | (UInt32(Buffer[5]) << 24); } }; //------------------------------------------------------------------------------------- // ***** LatencyTestDeviceFactory LatencyTestDeviceFactory LatencyTestDeviceFactory::Instance; void LatencyTestDeviceFactory::EnumerateDevices(EnumerateVisitor& visitor) { class LatencyTestEnumerator : public HIDEnumerateVisitor { // Assign not supported; suppress MSVC warning. void operator = (const LatencyTestEnumerator&) { } DeviceFactory* pFactory; EnumerateVisitor& ExternalVisitor; public: LatencyTestEnumerator(DeviceFactory* factory, EnumerateVisitor& externalVisitor) : pFactory(factory), ExternalVisitor(externalVisitor) { } virtual bool MatchVendorProduct(UInt16 vendorId, UInt16 productId) { return pFactory->MatchVendorProduct(vendorId, productId); } virtual void Visit(HIDDevice& device, const HIDDeviceDesc& desc) { OVR_UNUSED(device); LatencyTestDeviceCreateDesc createDesc(pFactory, desc); ExternalVisitor.Visit(createDesc); } }; LatencyTestEnumerator latencyTestEnumerator(this, visitor); GetManagerImpl()->GetHIDDeviceManager()->Enumerate(&latencyTestEnumerator); } bool LatencyTestDeviceFactory::MatchVendorProduct(UInt16 vendorId, UInt16 productId) const { return ((vendorId == LatencyTester_VendorId) && (productId == LatencyTester_ProductId)); } bool LatencyTestDeviceFactory::DetectHIDDevice(DeviceManager* pdevMgr, const HIDDeviceDesc& desc) { if (MatchVendorProduct(desc.VendorId, desc.ProductId)) { LatencyTestDeviceCreateDesc createDesc(this, desc); return pdevMgr->AddDevice_NeedsLock(createDesc).GetPtr() != NULL; } return false; } //------------------------------------------------------------------------------------- // ***** LatencyTestDeviceCreateDesc DeviceBase* LatencyTestDeviceCreateDesc::NewDeviceInstance() { return new LatencyTestDeviceImpl(this); } bool LatencyTestDeviceCreateDesc::GetDeviceInfo(DeviceInfo* info) const { if ((info->InfoClassType != Device_LatencyTester) && (info->InfoClassType != Device_None)) return false; OVR_strcpy(info->ProductName, DeviceInfo::MaxNameLength, HIDDesc.Product.ToCStr()); OVR_strcpy(info->Manufacturer, DeviceInfo::MaxNameLength, HIDDesc.Manufacturer.ToCStr()); info->Type = Device_LatencyTester; if (info->InfoClassType == Device_LatencyTester) { SensorInfo* sinfo = (SensorInfo*)info; sinfo->VendorId = HIDDesc.VendorId; sinfo->ProductId = HIDDesc.ProductId; sinfo->Version = HIDDesc.VersionNumber; OVR_strcpy(sinfo->SerialNumber, sizeof(sinfo->SerialNumber),HIDDesc.SerialNumber.ToCStr()); } return true; } //------------------------------------------------------------------------------------- // ***** LatencyTestDevice LatencyTestDeviceImpl::LatencyTestDeviceImpl(LatencyTestDeviceCreateDesc* createDesc) : OVR::HIDDeviceImpl(createDesc, 0) { } LatencyTestDeviceImpl::~LatencyTestDeviceImpl() { // Check that Shutdown() was called. OVR_ASSERT(!pCreateDesc->pDevice); } // Internal creation APIs. bool LatencyTestDeviceImpl::Initialize(DeviceBase* parent) { if (HIDDeviceImpl::Initialize(parent)) { LogText("OVR::LatencyTestDevice initialized.\n"); return true; } return false; } void LatencyTestDeviceImpl::Shutdown() { HIDDeviceImpl::Shutdown(); LogText("OVR::LatencyTestDevice - Closed '%s'\n", getHIDDesc()->Path.ToCStr()); } void LatencyTestDeviceImpl::OnInputReport(UByte* pData, UInt32 length) { bool processed = false; if (!processed) { LatencyTestSamplesMessage message; if (DecodeLatencyTestSamplesMessage(&message, pData, length)) { processed = true; onLatencyTestSamplesMessage(&message); } } if (!processed) { LatencyTestColorDetectedMessage message; if (DecodeLatencyTestColorDetectedMessage(&message, pData, length)) { processed = true; onLatencyTestColorDetectedMessage(&message); } } if (!processed) { LatencyTestStartedMessage message; if (DecodeLatencyTestStartedMessage(&message, pData, length)) { processed = true; onLatencyTestStartedMessage(&message); } } if (!processed) { LatencyTestButtonMessage message; if (DecodeLatencyTestButtonMessage(&message, pData, length)) { processed = true; onLatencyTestButtonMessage(&message); } } } bool LatencyTestDeviceImpl::SetConfiguration(const OVR::LatencyTestConfiguration& configuration, bool waitFlag) { bool result = false; ThreadCommandQueue* queue = GetManagerImpl()->GetThreadQueue(); if (GetManagerImpl()->GetThreadId() != OVR::GetCurrentThreadId()) { if (!waitFlag) { return queue->PushCall(this, &LatencyTestDeviceImpl::setConfiguration, configuration); } if (!queue->PushCallAndWaitResult( this, &LatencyTestDeviceImpl::setConfiguration, &result, configuration)) { return false; } } else return setConfiguration(configuration); return result; } bool LatencyTestDeviceImpl::setConfiguration(const OVR::LatencyTestConfiguration& configuration) { LatencyTestConfigurationImpl ltc(configuration); return GetInternalDevice()->SetFeatureReport(ltc.Buffer, LatencyTestConfigurationImpl::PacketSize); } bool LatencyTestDeviceImpl::GetConfiguration(OVR::LatencyTestConfiguration* configuration) { bool result = false; ThreadCommandQueue* pQueue = this->GetManagerImpl()->GetThreadQueue(); if (!pQueue->PushCallAndWaitResult(this, &LatencyTestDeviceImpl::getConfiguration, &result, configuration)) return false; return result; } bool LatencyTestDeviceImpl::getConfiguration(OVR::LatencyTestConfiguration* configuration) { LatencyTestConfigurationImpl ltc(*configuration); if (GetInternalDevice()->GetFeatureReport(ltc.Buffer, LatencyTestConfigurationImpl::PacketSize)) { ltc.Unpack(); *configuration = ltc.Configuration; return true; } return false; } bool LatencyTestDeviceImpl::SetCalibrate(const Color& calibrationColor, bool waitFlag) { bool result = false; ThreadCommandQueue* queue = GetManagerImpl()->GetThreadQueue(); if (!waitFlag) { return queue->PushCall(this, &LatencyTestDeviceImpl::setCalibrate, calibrationColor); } if (!queue->PushCallAndWaitResult( this, &LatencyTestDeviceImpl::setCalibrate, &result, calibrationColor)) { return false; } return result; } bool LatencyTestDeviceImpl::setCalibrate(const Color& calibrationColor) { LatencyTestCalibrateImpl ltc(calibrationColor); return GetInternalDevice()->SetFeatureReport(ltc.Buffer, LatencyTestCalibrateImpl::PacketSize); } bool LatencyTestDeviceImpl::SetStartTest(const Color& targetColor, bool waitFlag) { bool result = false; ThreadCommandQueue* queue = GetManagerImpl()->GetThreadQueue(); if (!waitFlag) { return queue->PushCall(this, &LatencyTestDeviceImpl::setStartTest, targetColor); } if (!queue->PushCallAndWaitResult( this, &LatencyTestDeviceImpl::setStartTest, &result, targetColor)) { return false; } return result; } bool LatencyTestDeviceImpl::setStartTest(const Color& targetColor) { LatencyTestStartTestImpl ltst(targetColor); return GetInternalDevice()->SetFeatureReport(ltst.Buffer, LatencyTestStartTestImpl::PacketSize); } bool LatencyTestDeviceImpl::SetDisplay(const OVR::LatencyTestDisplay& display, bool waitFlag) { bool result = false; ThreadCommandQueue * queue = GetManagerImpl()->GetThreadQueue(); if (!waitFlag) { return queue->PushCall(this, &LatencyTestDeviceImpl::setDisplay, display); } if (!queue->PushCallAndWaitResult( this, &LatencyTestDeviceImpl::setDisplay, &result, display)) { return false; } return result; } bool LatencyTestDeviceImpl::setDisplay(const OVR::LatencyTestDisplay& display) { LatencyTestDisplayImpl ltd(display); return GetInternalDevice()->SetFeatureReport(ltd.Buffer, LatencyTestDisplayImpl::PacketSize); } void LatencyTestDeviceImpl::onLatencyTestSamplesMessage(LatencyTestSamplesMessage* message) { if (message->Type != LatencyTestMessage_Samples) return; LatencyTestSamples& s = message->Samples; // Call OnMessage() within a lock to avoid conflicts with handlers. Lock::Locker scopeLock(HandlerRef.GetLock()); if (HandlerRef.GetHandler()) { MessageLatencyTestSamples samples(this); for (UByte i = 0; i < s.SampleCount; i++) { samples.Samples.PushBack(Color(s.Samples[i].Value[0], s.Samples[i].Value[1], s.Samples[i].Value[2])); } HandlerRef.GetHandler()->OnMessage(samples); } } void LatencyTestDeviceImpl::onLatencyTestColorDetectedMessage(LatencyTestColorDetectedMessage* message) { if (message->Type != LatencyTestMessage_ColorDetected) return; LatencyTestColorDetected& s = message->ColorDetected; // Call OnMessage() within a lock to avoid conflicts with handlers. Lock::Locker scopeLock(HandlerRef.GetLock()); if (HandlerRef.GetHandler()) { MessageLatencyTestColorDetected detected(this); detected.Elapsed = s.Elapsed; detected.DetectedValue = Color(s.TriggerValue[0], s.TriggerValue[1], s.TriggerValue[2]); detected.TargetValue = Color(s.TargetValue[0], s.TargetValue[1], s.TargetValue[2]); HandlerRef.GetHandler()->OnMessage(detected); } } void LatencyTestDeviceImpl::onLatencyTestStartedMessage(LatencyTestStartedMessage* message) { if (message->Type != LatencyTestMessage_TestStarted) return; LatencyTestStarted& ts = message->TestStarted; // Call OnMessage() within a lock to avoid conflicts with handlers. Lock::Locker scopeLock(HandlerRef.GetLock()); if (HandlerRef.GetHandler()) { MessageLatencyTestStarted started(this); started.TargetValue = Color(ts.TargetValue[0], ts.TargetValue[1], ts.TargetValue[2]); HandlerRef.GetHandler()->OnMessage(started); } } void LatencyTestDeviceImpl::onLatencyTestButtonMessage(LatencyTestButtonMessage* message) { if (message->Type != LatencyTestMessage_Button) return; // LatencyTestButton& s = message->Button; // Call OnMessage() within a lock to avoid conflicts with handlers. Lock::Locker scopeLock(HandlerRef.GetLock()); if (HandlerRef.GetHandler()) { MessageLatencyTestButton button(this); HandlerRef.GetHandler()->OnMessage(button); } } } // namespace OVR