/************************************************************************************ PublicHeader: OVR.h Filename : OVR_SensorFusion.h Content : Methods that determine head orientation from sensor data over time Created : October 9, 2012 Authors : Michael Antonov, Steve LaValle Copyright : Copyright 2012 Oculus VR, Inc. All Rights reserved. Use of this software is subject to the terms of the Oculus license agreement provided at the time of installation or download, or which otherwise accompanies this software in either electronic or hard copy form. *************************************************************************************/ #ifndef OVR_SensorFusion_h #define OVR_SensorFusion_h #include "OVR_Device.h" #include "OVR_SensorFilter.h" namespace OVR { //------------------------------------------------------------------------------------- // ***** SensorFusion // SensorFusion class accumulates Sensor notification messages to keep track of // orientation, which involves integrating the gyro and doing correction with gravity. // Orientation is reported as a quaternion, from which users can obtain either the // rotation matrix or Euler angles. // // The class can operate in two ways: // - By user manually passing MessageBodyFrame messages to the OnMessage() function. // - By attaching SensorFusion to a SensorDevice, in which case it will // automatically handle notifications from that device. class SensorFusion : public NewOverrideBase { public: SensorFusion(SensorDevice* sensor = 0); ~SensorFusion(); // Attaches this SensorFusion to a sensor device, from which it will receive // notification messages. If a sensor is attached, manual message notification // is not necessary. Calling this function also resets SensorFusion state. bool AttachToSensor(SensorDevice* sensor); // Returns true if this Sensor fusion object is attached to a sensor. bool IsAttachedToSensor() const { return Handler.IsHandlerInstalled(); } void SetGravityEnabled(bool enableGravity) { EnableGravity = enableGravity; } bool IsGravityEnabled() const { return EnableGravity;} void SetYawCorrectionEnabled(bool enableYawCorrection) { EnableYawCorrection = enableYawCorrection; } // Yaw correction is set up to work bool IsYawCorrectionEnabled() const { return EnableYawCorrection;} // Yaw correction is currently working (forcing a corrective yaw rotation) bool IsYawCorrectionInProgress() const { return YawCorrectionInProgress;} // Store the calibration matrix for the magnetometer void SetMagCalibration(const Matrix4f& m) { MagCalibrationMatrix = m; MagCalibrated = true; if (MagReferenced) MagReady = true; } // True only if the mag has calibration values stored bool HasMagCalibration() const { return MagCalibrated;} // Force the mag into the uncalibrated state void ClearMagCalibration() { MagCalibrated = false; MagReady = false; } // Set the magnetometer's reference orientation for use in yaw correction // The supplied mag is an uncalibrated value void SetMagReference(const Quatf& q, const Vector3f& rawMag); // Default to current HMD orientation void SetMagReference() { SetMagReference(Q, RawMag); } bool HasMagReference() const { return MagReferenced; } void ClearMagReference() { MagReferenced = false; MagReady = false; } bool IsMagReady() const { return MagReady; } void SetMagRefDistance(const float d) { MagRefDistance = d; } // Notifies SensorFusion object about a new BodyFrame message from a sensor. // Should be called by user if not attaching to a sensor. void OnMessage(const MessageBodyFrame& msg) { OVR_ASSERT(!IsAttachedToSensor()); handleMessage(msg); } // Obtain the current accumulated orientation. Quatf GetOrientation() const { Lock::Locker lockScope(Handler.GetHandlerLock()); return Q; } // Use a predictive filter to estimate the future orientation Quatf GetPredictedOrientation(); // Obtain the last absolute acceleration reading, in m/s^2. Vector3f GetAcceleration() const { Lock::Locker lockScope(Handler.GetHandlerLock()); return A; } // Obtain the last angular velocity reading, in rad/s. Vector3f GetAngularVelocity() const { Lock::Locker lockScope(Handler.GetHandlerLock()); return AngV; } // Obtain the last magnetometer reading, in Gauss Vector3f GetMagnetometer() const { Lock::Locker lockScope(Handler.GetHandlerLock()); return RawMag; } // Obtain the filtered magnetometer reading, in Gauss Vector3f GetFilteredMagnetometer() const { Lock::Locker lockScope(Handler.GetHandlerLock()); return FRawMag.Mean(); } // Obtain the calibrated magnetometer reading (direction and field strength) Vector3f GetCalibratedMagnetometer() const { OVR_ASSERT(MagCalibrated); Lock::Locker lockScope(Handler.GetHandlerLock()); return CalMag; } Vector3f GetCalibratedMagValue(const Vector3f& rawMag) const; float GetMagRefYaw() const { return MagRefYaw; } float GetYawErrorAngle() const { return YawErrorAngle; } // For later //Vector3f GetGravity() const; // Resets the current orientation void Reset() { Lock::Locker lockScope(Handler.GetHandlerLock()); Q = Quatf(); QUncorrected = Quatf(); Stage = 0; } // Configuration // Gain used to correct gyro with accel. Default value is appropriate for typical use. float GetAccelGain() const { return Gain; } void SetAccelGain(float ag) { Gain = ag; } // Multiplier for yaw rotation (turning); setting this higher than 1 (the default) can allow the game // to be played without auxillary rotation controls, possibly making it more immersive. Whether this is more // or less likely to cause motion sickness is unknown. float GetYawMultiplier() const { return YawMult; } void SetYawMultiplier(float y) { YawMult = y; } void SetDelegateMessageHandler(MessageHandler* handler) { pDelegate = handler; } // Prediction functions. // Prediction delta specifes how much prediction should be applied in seconds; it should in // general be under the average rendering latency. Call GetPredictedOrientation() to get // predicted orientation. float GetPredictionDelta() const { return PredictionDT; } void SetPrediction(float dt, bool enable = true) { PredictionDT = dt; EnablePrediction = enable; } void SetPredictionEnabled(bool enable = true) { EnablePrediction = enable; } bool IsPredictionEnabled() { return EnablePrediction; } // Methods for magnetometer calibration static float AngleDifference(float theta1, float theta2); static Vector3f CalculateSphereCenter(Vector3f p1, Vector3f p2, Vector3f p3, Vector3f p4); private: SensorFusion* getThis() { return this; } // Internal handler for messages; bypasses error checking. void handleMessage(const MessageBodyFrame& msg); class BodyFrameHandler : public MessageHandler { SensorFusion* pFusion; public: BodyFrameHandler(SensorFusion* fusion) : pFusion(fusion) { } ~BodyFrameHandler(); virtual void OnMessage(const Message& msg); virtual bool SupportsMessageType(MessageType type) const; }; Quatf Q; Quatf QUncorrected; Vector3f A; Vector3f AngV; Vector3f CalMag; Vector3f RawMag; unsigned int Stage; float DeltaT; BodyFrameHandler Handler; MessageHandler* pDelegate; float Gain; float YawMult; volatile bool EnableGravity; bool EnablePrediction; float PredictionDT; SensorFilter FRawMag; SensorFilter FAccW; SensorFilter FAngV; int TiltCondCount; float TiltErrorAngle; Vector3f TiltErrorAxis; bool EnableYawCorrection; Matrix4f MagCalibrationMatrix; bool MagCalibrated; int MagCondCount; bool MagReferenced; float MagRefDistance; bool MagReady; Quatf MagRefQ; Vector3f MagRefM; float MagRefYaw; float YawErrorAngle; int YawErrorCount; bool YawCorrectionInProgress; bool YawCorrectionActivated; }; } // namespace OVR #endif