/************************************************************************************ PublicHeader: OVR.h Filename : OVR_SensorFusion.h Content : Methods that determine head orientation from sensor data over time Created : October 9, 2012 Authors : Michael Antonov, Steve LaValle Copyright : Copyright 2012 Oculus VR, Inc. All Rights reserved. Use of this software is subject to the terms of the Oculus license agreement provided at the time of installation or download, or which otherwise accompanies this software in either electronic or hard copy form. *************************************************************************************/ #ifndef OVR_SensorFusion_h #define OVR_SensorFusion_h #include "OVR_Device.h" #include "OVR_SensorFilter.h" #include namespace OVR { //------------------------------------------------------------------------------------- // ***** SensorFusion // SensorFusion class accumulates Sensor notification messages to keep track of // orientation, which involves integrating the gyro and doing correction with gravity. // Magnetometer based yaw drift correction is also supported; it is usually enabled // automatically based on loaded magnetometer configuration. // Orientation is reported as a quaternion, from which users can obtain either the // rotation matrix or Euler angles. // // The class can operate in two ways: // - By user manually passing MessageBodyFrame messages to the OnMessage() function. // - By attaching SensorFusion to a SensorDevice, in which case it will // automatically handle notifications from that device. class SensorFusion : public NewOverrideBase { enum { MagMaxReferences = 80 }; public: SensorFusion(SensorDevice* sensor = 0); ~SensorFusion(); // *** Setup // Attaches this SensorFusion to a sensor device, from which it will receive // notification messages. If a sensor is attached, manual message notification // is not necessary. Calling this function also resets SensorFusion state. bool AttachToSensor(SensorDevice* sensor); // Returns true if this Sensor fusion object is attached to a sensor. bool IsAttachedToSensor() const { return Handler.IsHandlerInstalled(); } // *** State Query // Obtain the current accumulated orientation. Many apps will want to use GetPredictedOrientation // instead to reduce latency. Quatf GetOrientation() const { return lockedGet(&Q); } // Get predicted orientaion in the near future; predictDt is lookahead amount in seconds. Quatf GetPredictedOrientation(float predictDt); Quatf GetPredictedOrientation() { return GetPredictedOrientation(PredictionDT); } // Obtain the last absolute acceleration reading, in m/s^2. Vector3f GetAcceleration() const { return lockedGet(&A); } // Obtain the last angular velocity reading, in rad/s. Vector3f GetAngularVelocity() const { return lockedGet(&AngV); } // Obtain the last raw magnetometer reading, in Gauss Vector3f GetMagnetometer() const { return lockedGet(&RawMag); } // Obtain the calibrated magnetometer reading (direction and field strength) Vector3f GetCalibratedMagnetometer() const { OVR_ASSERT(MagCalibrated); return lockedGet(&CalMag); } // Resets the current orientation. void Reset(); // *** Configuration void EnableMotionTracking(bool enable = true) { MotionTrackingEnabled = enable; } bool IsMotionTrackingEnabled() const { return MotionTrackingEnabled; } // Multiplier for yaw rotation (turning); setting this higher than 1 (the default) can allow the game // to be played without auxillary rotation controls, possibly making it more immersive. // Whether this is more or less likely to cause motion sickness is unknown. float GetYawMultiplier() const { return YawMult; } void SetYawMultiplier(float y) { YawMult = y; } // *** Prediction Control // Prediction functions. // Prediction delta specifes how much prediction should be applied in seconds; it should in // general be under the average rendering latency. Call GetPredictedOrientation() to get // predicted orientation. float GetPredictionDelta() const { return PredictionDT; } void SetPrediction(float dt, bool enable = true) { PredictionDT = dt; EnablePrediction = enable; } void SetPredictionEnabled(bool enable = true) { EnablePrediction = enable; } bool IsPredictionEnabled() { return EnablePrediction; } // *** Accelerometer/Gravity Correction Control // Enables/disables gravity correction (on by default). void SetGravityEnabled(bool enableGravity) { EnableGravity = enableGravity; } bool IsGravityEnabled() const { return EnableGravity;} // Gain used to correct gyro with accel. Default value is appropriate for typical use. float GetAccelGain() const { return Gain; } void SetAccelGain(float ag) { Gain = ag; } // *** Magnetometer and Yaw Drift Correction Control // Methods to load and save a mag calibration. Calibrations can optionally // be specified by name to differentiate multiple calibrations under different conditions // If LoadMagCalibration succeeds, it will override YawCorrectionEnabled based on // saved calibration setting. bool SaveMagCalibration(const char* calibrationName = NULL) const; bool LoadMagCalibration(const char* calibrationName = NULL); // Enables/disables magnetometer based yaw drift correction. Must also have mag calibration // data for this correction to work. void SetYawCorrectionEnabled(bool enable) { EnableYawCorrection = enable; } // Determines if yaw correction is enabled. bool IsYawCorrectionEnabled() const { return EnableYawCorrection;} // Yaw correction is currently working (forcing a corrective yaw rotation) bool IsYawCorrectionInProgress() const { return YawCorrectionInProgress;} // Store the calibration matrix for the magnetometer void SetMagCalibration(const Matrix4f& m) { MagCalibrationMatrix = m; time(&MagCalibrationTime); // time stamp the calibration MagCalibrated = true; } // Retrieves the magnetometer calibration matrix Matrix4f GetMagCalibration() const { return MagCalibrationMatrix; } // Retrieve the time of the calibration time_t GetMagCalibrationTime() const { return MagCalibrationTime; } // True only if the mag has calibration values stored bool HasMagCalibration() const { return MagCalibrated;} // Force the mag into the uncalibrated state void ClearMagCalibration() { MagCalibrated = false; } // These refer to reference points that associate mag readings with orientations void ClearMagReferences() { MagNumReferences = 0; } void SetMagRefDistance(const float d) { MagRefDistance = d; } Vector3f GetCalibratedMagValue(const Vector3f& rawMag) const; float GetMagRefYaw() const { return MagRefYaw; } float GetYawErrorAngle() const { return YawErrorAngle; } // *** Message Handler Logic // Notifies SensorFusion object about a new BodyFrame message from a sensor. // Should be called by user if not attaching to a sensor. void OnMessage(const MessageBodyFrame& msg) { OVR_ASSERT(!IsAttachedToSensor()); handleMessage(msg); } void SetDelegateMessageHandler(MessageHandler* handler) { pDelegate = handler; } private: SensorFusion* getThis() { return this; } // Helper used to read and return value within a Lock. template C lockedGet(const C* p) const { Lock::Locker lockScope(Handler.GetHandlerLock()); return *p; } // Internal handler for messages; bypasses error checking. void handleMessage(const MessageBodyFrame& msg); // Set the magnetometer's reference orientation for use in yaw correction // The supplied mag is an uncalibrated value void setMagReference(const Quatf& q, const Vector3f& rawMag); // Default to current HMD orientation void setMagReference() { setMagReference(Q, RawMag); } class BodyFrameHandler : public MessageHandler { SensorFusion* pFusion; public: BodyFrameHandler(SensorFusion* fusion) : pFusion(fusion) { } ~BodyFrameHandler(); virtual void OnMessage(const Message& msg); virtual bool SupportsMessageType(MessageType type) const; }; Ptr pSensor; Quatf Q; Quatf QUncorrected; Vector3f A; Vector3f AngV; Vector3f CalMag; Vector3f RawMag; unsigned int Stage; float RunningTime; float DeltaT; BodyFrameHandler Handler; MessageHandler* pDelegate; float Gain; float YawMult; volatile bool EnableGravity; bool EnablePrediction; float PredictionDT; float PredictionTimeIncrement; SensorFilter FRawMag; SensorFilter FAccW; SensorFilter FAngV; int TiltCondCount; float TiltErrorAngle; Vector3f TiltErrorAxis; bool EnableYawCorrection; Matrix4f MagCalibrationMatrix; time_t MagCalibrationTime; bool MagCalibrated; int MagCondCount; float MagRefDistance; Quatf MagRefQ; Vector3f MagRefM; float MagRefYaw; bool MagHasNearbyReference; Quatf MagRefTableQ[MagMaxReferences]; Vector3f MagRefTableM[MagMaxReferences]; float MagRefTableYaw[MagMaxReferences]; int MagNumReferences; float YawErrorAngle; int YawErrorCount; bool YawCorrectionInProgress; bool YawCorrectionActivated; bool MotionTrackingEnabled; }; } // namespace OVR #endif