/************************************************************************************ Filename : RenderTiny_D3D11_Device.h Content : RenderDevice implementation header for D3DX10. Created : September 10, 2012 Authors : Andrew Reisse Copyright : Copyright 2012 Oculus VR, Inc. All Rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ************************************************************************************/ #ifndef INC_RenderTiny_D3D11_Device_h #define INC_RenderTiny_D3D11_Device_h #include "Kernel/OVR_Math.h" #include "Kernel/OVR_Array.h" #include "Kernel/OVR_String.h" #include "Kernel/OVR_Color.h" #include namespace OVR { namespace RenderTiny { class RenderDevice; class Buffer; //----------------------------------------------------------------------------------- // Rendering primitive type used to render Model. enum PrimitiveType { Prim_Triangles, Prim_Lines, Prim_TriangleStrip, Prim_Unknown, Prim_Count }; // Types of shaders taht can be stored together in a ShaderSet. enum ShaderStage { Shader_Vertex = 0, Shader_Fragment = 2, Shader_Pixel = 2, Shader_Count = 3, }; // Built-in shader types; used by LoadBuiltinShader. enum BuiltinShaders { VShader_MV = 0, VShader_MVP = 1, VShader_Count = 2, FShader_Solid = 0, FShader_Gouraud = 1, FShader_Texture = 2, FShader_LitGouraud = 3, FShader_LitTexture = 4, FShader_Count }; enum MapFlags { Map_Discard = 1, Map_Read = 2, // do not use Map_Unsynchronized = 4, // like D3D11_MAP_NO_OVERWRITE }; // Buffer types used for uploading geometry & constants. enum BufferUsage { Buffer_Unknown = 0, Buffer_Vertex = 1, Buffer_Index = 2, Buffer_Uniform = 4, Buffer_TypeMask = 0xff, Buffer_ReadOnly = 0x100, // Buffer must be created with Data(). }; enum TextureFormat { Texture_RGBA = 0x0100, Texture_Depth = 0x8000, Texture_TypeMask = 0xff00, Texture_SamplesMask = 0x00ff, Texture_RenderTarget = 0x10000, Texture_GenMipmaps = 0x20000, }; // Texture sampling modes. enum SampleMode { Sample_Linear = 0, Sample_Nearest = 1, Sample_Anisotropic = 2, Sample_FilterMask = 3, Sample_Repeat = 0, Sample_Clamp = 4, Sample_ClampBorder = 8, // If unsupported Clamp is used instead. Sample_AddressMask =12, Sample_Count =13, }; // Base class for vertex and pixel shaders. Stored in ShaderSet. class ShaderBase : public RefCountBase { friend class ShaderSet; protected: ShaderStage Stage; public: RenderDevice* Ren; unsigned char* UniformData; int UniformsSize; enum VarType { VARTYPE_FLOAT, VARTYPE_INT, VARTYPE_BOOL, }; struct Uniform { String Name; VarType Type; int Offset, Size; }; Array UniformInfo; ShaderBase(RenderDevice* r, ShaderStage stage); ShaderBase(ShaderStage s) : Stage(s) {} ~ShaderBase(); ShaderStage GetStage() const { return Stage; } virtual void Set(PrimitiveType) const { } virtual void SetUniformBuffer(class Buffer* buffers, int i = 0) { OVR_UNUSED2(buffers, i); } void InitUniforms(ID3D10Blob* s); void InitUniforms(void* s, size_t sizeS); virtual bool SetUniform(const char* name, int n, const float* v); virtual bool SetUniformBool(const char* name, int n, const bool* v); void UpdateBuffer(Buffer* b); }; template class Shader : public ShaderBase { public: D3DShaderType* D3DShader; Shader(RenderDevice* r, D3DShaderType* s) : ShaderBase(r, SStage), D3DShader(s) {} Shader(RenderDevice* r, ID3D10Blob* s) : ShaderBase(r, SStage) { Load(s); InitUniforms(s); } Shader(RenderDevice* r, void* s, size_t size) : ShaderBase(r, SStage) { Load(s, size); InitUniforms(s, size); } ~Shader() { if (D3DShader) D3DShader->Release(); } bool Load(ID3D10Blob* shader) { return Load(shader->GetBufferPointer(), shader->GetBufferSize()); } // These functions have specializations. bool Load(void* shader, size_t size); void Set(PrimitiveType prim) const; void SetUniformBuffer(Buffer* buffers, int i = 0); }; typedef Shader VertexShader; typedef Shader PixelShader; // A group of shaders, one per stage. // A ShaderSet is applied to a RenderDevice for rendering with a given fill. class ShaderSet : public RefCountBase { protected: Ptr Shaders[Shader_Count]; public: ShaderSet() { } ~ShaderSet() { } virtual void SetShader(ShaderBase *s) { Shaders[s->GetStage()] = s; } virtual void UnsetShader(int stage) { Shaders[stage] = NULL; } ShaderBase* GetShader(int stage) { return Shaders[stage]; } virtual void Set(PrimitiveType prim) const { for (int i = 0; i < Shader_Count; i++) if (Shaders[i]) Shaders[i]->Set(prim); } // Set a uniform (other than the standard matrices). It is undefined whether the // uniforms from one shader occupy the same space as those in other shaders // (unless a buffer is used, then each buffer is independent). virtual bool SetUniform(const char* name, int n, const float* v) { bool result = 0; for (int i = 0; i < Shader_Count; i++) if (Shaders[i]) result |= Shaders[i]->SetUniform(name, n, v); return result; } bool SetUniform1f(const char* name, float x) { const float v[] = {x}; return SetUniform(name, 1, v); } bool SetUniform2f(const char* name, float x, float y) { const float v[] = {x,y}; return SetUniform(name, 2, v); } bool SetUniform3f(const char* name, float x, float y, float z) { const float v[] = {x,y,z}; return SetUniform(name, 3, v); } bool SetUniform4f(const char* name, float x, float y, float z, float w = 1) { const float v[] = {x,y,z,w}; return SetUniform(name, 4, v); } bool SetUniformv(const char* name, const Vector3f& v) { const float a[] = {v.x,v.y,v.z,1}; return SetUniform(name, 4, a); } bool SetUniform4fv(const char* name, int n, const Vector4f* v) { return SetUniform(name, 4*n, &v[0].x); } virtual bool SetUniform4x4f(const char* name, const Matrix4f& m) { Matrix4f mt = m.Transposed(); return SetUniform(name, 16, &mt.M[0][0]); } }; // Fill combines a ShaderSet (vertex, pixel) with textures, if any. // Every model has a fill. class ShaderFill : public RefCountBase { Ptr Shaders; Ptr Textures[8]; void* InputLayout; // HACK this should be abstracted public: ShaderFill(ShaderSet* sh) : Shaders(sh) { InputLayout = NULL; } ShaderFill(ShaderSet& sh) : Shaders(sh) { InputLayout = NULL; } ShaderSet* GetShaders() { return Shaders; } void* GetInputLayout() { return InputLayout; } virtual void Set(PrimitiveType prim = Prim_Unknown) const; virtual void SetTexture(int i, class Texture* tex) { if (i < 8) Textures[i] = tex; } void SetInputLayout(void* newIL) { InputLayout = (void*)newIL; } }; // Buffer for vertex or index data. Some renderers require separate buffers, so that // is recommended. Some renderers cannot have high-performance buffers which are readable, // so reading in Map should not be relied on. // // Constraints on buffers, such as ReadOnly, are not enforced by the API but may result in // rendering-system dependent undesirable behavior, such as terrible performance or unreported failure. // // Use of a buffer inconsistent with usage is also not checked by the API, but it may result in bad // performance or even failure. // // Use the Data() function to set buffer data the first time, if possible (it may be faster). class Buffer : public RefCountBase { public: RenderDevice* Ren; Ptr D3DBuffer; size_t Size; int Use; bool Dynamic; public: Buffer(RenderDevice* r) : Ren(r), Size(0), Use(0) {} virtual ~Buffer() {} ID3D11Buffer* GetBuffer() { return D3DBuffer; } virtual size_t GetSize() { return Size; } virtual void* Map(size_t start, size_t size, int flags = 0); virtual bool Unmap(void *m); // Allocates a buffer, optionally filling it with data. virtual bool Data(int use, const void* buffer, size_t size); }; class Texture : public RefCountBase { public: RenderDevice* Ren; Ptr Tex; Ptr TexSv; Ptr TexRtv; Ptr TexDsv; mutable Ptr Sampler; int Width, Height; int Samples; Texture(RenderDevice* r, int fmt, int w, int h); virtual ~Texture(); virtual int GetWidth() const { return Width; } virtual int GetHeight() const { return Height; } virtual int GetSamples() const { return Samples; } virtual void SetSampleMode(int sm); // Updates texture to point to specified resources // - used for slave rendering. void UpdatePlaceholderTexture(ID3D11Texture2D* texture, ID3D11ShaderResourceView* psrv) { Tex = texture; TexSv = psrv; TexRtv.Clear(); TexDsv.Clear(); D3D11_TEXTURE2D_DESC desc; texture->GetDesc(&desc); Width = desc.Width; Height= desc.Height; } virtual void Set(int slot, ShaderStage stage = Shader_Fragment) const; }; //----------------------------------------------------------------------------------- // Node is a base class for geometry in a Scene, it contains base position // and orientation data. // Model and Container both derive from it. // class Node : public RefCountBase { Vector3f Pos; Quatf Rot; mutable Matrix4f Mat; mutable bool MatCurrent; public: Node() : Pos(Vector3f(0)), MatCurrent(1) { } virtual ~Node() { } enum NodeType { Node_NonDisplay, Node_Container, Node_Model }; virtual NodeType GetType() const { return Node_NonDisplay; } const Vector3f& GetPosition() const { return Pos; } const Quatf& GetOrientation() const { return Rot; } void SetPosition(Vector3f p) { Pos = p; MatCurrent = 0; } void SetOrientation(Quatf q) { Rot = q; MatCurrent = 0; } void Move(Vector3f p) { Pos += p; MatCurrent = 0; } void Rotate(Quatf q) { Rot = q * Rot; MatCurrent = 0; } // For testing only; causes Position an Orientation void SetMatrix(const Matrix4f& m) { MatCurrent = true; Mat = m; } const Matrix4f& GetMatrix() const { if (!MatCurrent) { Mat = Matrix4f(Rot); Mat = Matrix4f::Translation(Pos) * Mat; MatCurrent = 1; } return Mat; } virtual void Render(const Matrix4f& ltw, RenderDevice* ren) { OVR_UNUSED2(ltw, ren); } }; // Vertex type; same format is used for all shapes for simplicity. // Shapes are built by adding vertices to Model. struct Vertex { Vector3f Pos; Color C; float U, V; Vector3f Norm; Vertex (const Vector3f& p, const Color& c = Color(64,0,0,255), float u = 0, float v = 0, Vector3f n = Vector3f(1,0,0)) : Pos(p), C(c), U(u), V(v), Norm(n) {} Vertex(float x, float y, float z, const Color& c = Color(64,0,0,255), float u = 0, float v = 0) : Pos(x,y,z), C(c), U(u), V(v) { } bool operator==(const Vertex& b) const { return Pos == b.Pos && C == b.C && U == b.U && V == b.V; } }; // LightingParams are stored in a uniform buffer, don't change it without fixing all renderers // Scene contains a set of LightingParams that is uses for rendering. struct LightingParams { Vector4f Ambient; Vector4f LightPos[8]; Vector4f LightColor[8]; float LightCount; int Version; LightingParams() : LightCount(0), Version(0) {} void Update(const Matrix4f& view, const Vector4f* SceneLightPos) { Version++; for (int i = 0; i < LightCount; i++) { LightPos[i] = view.Transform(SceneLightPos[i]); } } void Set(ShaderSet* s) const { s->SetUniform4fv("Ambient", 1, &Ambient); s->SetUniform1f("LightCount", LightCount); s->SetUniform4fv("LightPos", (int)LightCount, LightPos); s->SetUniform4fv("LightColor", (int)LightCount, LightColor); } }; //----------------------------------------------------------------------------------- // Model is a triangular mesh with a fill that can be added to scene. // class Model : public Node { public: Array Vertices; Array Indices; PrimitiveType Type; Ptr Fill; bool Visible; // Some renderers will create these if they didn't exist before rendering. // Currently they are not updated, so vertex data should not be changed after rendering. Ptr VertexBuffer; Ptr IndexBuffer; Model(PrimitiveType t = Prim_Triangles) : Type(t), Fill(NULL), Visible(true) { } ~Model() { } PrimitiveType GetPrimType() const { return Type; } void SetVisible(bool visible) { Visible = visible; } bool IsVisible() const { return Visible; } // Node implementation. virtual NodeType GetType() const { return Node_Model; } virtual void Render(const Matrix4f& ltw, RenderDevice* ren); // Returns the index next added vertex will have. uint16_t GetNextVertexIndex() const { return (uint16_t)Vertices.GetSize(); } uint16_t AddVertex(const Vertex& v) { OVR_ASSERT(!VertexBuffer && !IndexBuffer); uint16_t index = (uint16_t)Vertices.GetSize(); Vertices.PushBack(v); return index; } void AddTriangle(uint16_t a, uint16_t b, uint16_t c) { Indices.PushBack(a); Indices.PushBack(b); Indices.PushBack(c); } // Uses texture coordinates for uniform world scaling (must use a repeat sampler). void AddSolidColorBox(float x1, float y1, float z1, float x2, float y2, float z2, Color c); }; // Container stores a collection of rendering nodes (Models or other containers). class Container : public Node { public: Array > Nodes; Container() { } ~Container() { } virtual NodeType GetType() const { return Node_Container; } virtual void Render(const Matrix4f& ltw, RenderDevice* ren); void Add(Node *n) { Nodes.PushBack(n); } void Clear() { Nodes.Clear(); } }; // Scene combines a collection of model class Scene : public NewOverrideBase { public: Container World; Vector4f LightPos[8]; LightingParams Lighting; public: void Render(RenderDevice* ren, const Matrix4f& view); void SetAmbient(Vector4f color) { Lighting.Ambient = color; } void AddLight(Vector3f pos, Vector4f color) { int n = (int)Lighting.LightCount; OVR_ASSERT(n < 8); LightPos[n] = pos; Lighting.LightColor[n] = color; Lighting.LightCount++; } void Clear() { World.Clear(); Lighting.Ambient = Vector4f(0.0f, 0.0f, 0.0f, 0.0f); Lighting.LightCount = 0; } }; //----------------------------------------------------------------------------------- enum DisplayMode { Display_Window = 0, Display_Fullscreen = 1 }; // Rendering parameters used by RenderDevice::CreateDevice. struct RendererParams { int Multisample; int Fullscreen; // Resolution of the rendering buffer used during creation. // Allows buffer of different size then the widow if not zero. Sizei Resolution; // Windows - Monitor name for fullscreen mode. String MonitorName; // MacOS long DisplayId; RendererParams(int ms = 1) : Multisample(ms), Fullscreen(0), Resolution(0) {} bool IsDisplaySet() const { return MonitorName.GetLength() || DisplayId; } }; class RenderDevice : public RefCountBase { protected: int WindowWidth, WindowHeight; RendererParams Params; Matrix4f Proj; Ptr pTextVertexBuffer; // For lighting on platforms with uniform buffers Ptr LightingBuffer; public: enum CompareFunc { Compare_Always = 0, Compare_Less = 1, Compare_Greater = 2, Compare_Count }; Ptr DXGIFactory; HWND Window; Ptr Device; Ptr Context; Ptr SwapChain; Ptr Adapter; Ptr FullscreenOutput; int FSDesktopX, FSDesktopY; Ptr BackBuffer; Ptr BackBufferRT; Ptr CurRenderTarget; Ptr CurDepthBuffer; Ptr Rasterizer; Ptr BlendState; D3D11_VIEWPORT D3DViewport; Ptr DepthStates[1 + 2 * Compare_Count]; Ptr CurDepthState; Ptr ModelVertexIL; Ptr SamplerStates[Sample_Count]; struct StandardUniformData { Matrix4f Proj; Matrix4f View; } StdUniforms; Ptr UniformBuffers[Shader_Count]; int MaxTextureSet[Shader_Count]; Ptr VertexShaders[VShader_Count]; Ptr PixelShaders[FShader_Count]; Ptr CommonUniforms[8]; Ptr DefaultFill; Ptr QuadVertexBuffer; Array > DepthBuffers; public: // Slave parameters are used to create a renderer that uses an externally // specified device. struct SlaveRendererParams { ID3D11Device* pDevice; ID3D11DeviceContext* pDeviceContext; ID3D11RenderTargetView* pBackBufferRT; Sizei RTSize; int Multisample; }; RenderDevice(); RenderDevice(const RendererParams& p, HWND window); RenderDevice(const SlaveRendererParams& p); virtual ~RenderDevice(); // Implement static initializer function to create this class. // Creates a new rendering device static RenderDevice* CreateDevice(const RendererParams& rp, void* oswnd); // Creates a "slave" renderer existing device. static RenderDevice* CreateSlaveDevice(const SlaveRendererParams& srp); // Constructor helper void initShadersAndStates(); void InitShaders( const char * vertex_shader, const char * pixel_shader, ShaderSet ** pShaders, ID3D11InputLayout ** pVertexIL, D3D11_INPUT_ELEMENT_DESC * DistortionMeshVertexDesc, int num_elements); void UpdateMonitorOutputs(); void SetViewport(int x, int y, int w, int h) { SetViewport(Recti(x,y,w,h)); } // Set viewport ignoring any adjustments used for the stereo mode. virtual void SetViewport(const Recti& vp); virtual void SetFullViewport(); virtual bool SetParams(const RendererParams& newParams); const RendererParams& GetParams() const { return Params; } virtual void Present(bool vsyncEnabled); // Waits for rendering to complete; important for reducing latency. virtual void WaitUntilGpuIdle(); // Don't call these directly, use App/Platform instead virtual bool SetFullscreen(DisplayMode fullscreen); virtual void Clear(float r = 0, float g = 0, float b = 0, float a = 1, float depth = 1); // Resources virtual Buffer* CreateBuffer(); virtual Texture* CreateTexture(int format, int width, int height, const void* data, int mipcount=1); // Placeholder texture to come in externally virtual Texture* CreatePlaceholderTexture(int format); virtual ShaderSet* CreateShaderSet() { return new ShaderSet; } Texture* GetDepthBuffer(int w, int h, int ms); // Begin drawing directly to the currently selected render target, no post-processing. virtual void BeginRendering(); // Begin drawing the primary scene, starting up whatever post-processing may be needed. virtual void BeginScene(); virtual void FinishScene(); // Texture must have been created with Texture_RenderTarget. Use NULL for the default render target. // NULL depth buffer means use an internal, temporary one. virtual void SetRenderTarget(Texture* color, Texture* depth = NULL, Texture* stencil = NULL); void SetDefaultRenderTarget() { SetRenderTarget(NULL, NULL); } virtual void SetDepthMode(bool enable, bool write, CompareFunc func = Compare_Less); virtual void SetProjection(const Matrix4f& proj); virtual void SetWorldUniforms(const Matrix4f& proj); // The index 0 is reserved for non-buffer uniforms, and so cannot be used with this function. virtual void SetCommonUniformBuffer(int i, Buffer* buffer); // The data is not copied, it must remain valid until the end of the frame virtual void SetLighting(const LightingParams* light); virtual Matrix4f GetProjection() const { return Proj; } // This is a View matrix only, it will be combined with the projection matrix from SetProjection virtual void Render(const Matrix4f& view, Model* model); virtual void Render(const ShaderFill* fill, Buffer* vertices, Buffer* indices,int stride); virtual void Render(const ShaderFill* fill, Buffer* vertices, Buffer* indices,int stride, const Matrix4f& matrix, int offset, int count, PrimitiveType prim = Prim_Triangles, bool updateUniformData = true); virtual ShaderFill *CreateSimpleFill() { return DefaultFill; } ShaderFill * CreateTextureFill(Texture* tex); virtual ShaderBase *LoadBuiltinShader(ShaderStage stage, int shader); bool RecreateSwapChain(); virtual ID3D10Blob* CompileShader(const char* profile, const char* src, const char* mainName = "main"); ID3D11SamplerState* GetSamplerState(int sm); void SetTexture(ShaderStage stage, int slot, const Texture* t); }; int GetNumMipLevels(int w, int h); // Filter an rgba image with a 2x2 box filter, for mipmaps. // Image size must be a power of 2. void FilterRgba2x2(const uint8_t* src, int w, int h, uint8_t* dest); }} //Anything including this file, uses these using namespace OVR; using namespace OVR::RenderTiny; #endif