summaryrefslogtreecommitdiffstats
path: root/LibOVR/Src/Kernel/OVR_Alg.h
blob: 9e234c59e47f9bf325113461b14f65d67a27c875 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
/************************************************************************************

PublicHeader:   OVR.h
Filename    :   OVR_Alg.h
Content     :   Simple general purpose algorithms: Sort, Binary Search, etc.
Created     :   September 19, 2012
Notes       : 

Copyright   :   Copyright 2012 Oculus VR, Inc. All Rights reserved.

Use of this software is subject to the terms of the Oculus license
agreement provided at the time of installation or download, or which
otherwise accompanies this software in either electronic or hard copy form.

************************************************************************************/

#ifndef OVR_Alg_h
#define OVR_Alg_h

#include "OVR_Types.h"
#include <string.h>

namespace OVR { namespace Alg {


//-----------------------------------------------------------------------------------
// ***** Operator extensions

template <typename T> OVR_FORCE_INLINE void Swap(T &a, T &b) 
{  T temp(a); a = b; b = temp; }


// ***** min/max are not implemented in Visual Studio 6 standard STL

template <typename T> OVR_FORCE_INLINE const T Min(const T a, const T b)
{ return (a < b) ? a : b; }

template <typename T> OVR_FORCE_INLINE const T Max(const T a, const T b)
{ return (b < a) ? a : b; }

template <typename T> OVR_FORCE_INLINE const T Clamp(const T v, const T minVal, const T maxVal)
{ return Max<T>(minVal, Min<T>(v, maxVal)); }

template <typename T> OVR_FORCE_INLINE int     Chop(T f)
{ return (int)f; }

template <typename T> OVR_FORCE_INLINE T       Lerp(T a, T b, T f) 
{ return (b - a) * f + a; }


// These functions stand to fix a stupid VC++ warning (with /Wp64 on):
// "warning C4267: 'argument' : conversion from 'size_t' to 'const unsigned', possible loss of data"
// Use these functions instead of gmin/gmax if the argument has size
// of the pointer to avoid the warning. Though, functionally they are
// absolutelly the same as regular gmin/gmax.
template <typename T>   OVR_FORCE_INLINE const T PMin(const T a, const T b)
{
    OVR_COMPILER_ASSERT(sizeof(T) == sizeof(UPInt));
    return (a < b) ? a : b;
}
template <typename T>   OVR_FORCE_INLINE const T PMax(const T a, const T b)
{
    OVR_COMPILER_ASSERT(sizeof(T) == sizeof(UPInt));
    return (b < a) ? a : b;
}


template <typename T>   OVR_FORCE_INLINE const T Abs(const T v)
{ return (v>=0) ? v : -v; }


//-----------------------------------------------------------------------------------
// ***** OperatorLess
//
template<class T> struct OperatorLess
{
    static bool Compare(const T& a, const T& b)
    {
        return a < b;
    }
};


//-----------------------------------------------------------------------------------
// ***** QuickSortSliced
//
// Sort any part of any array: plain, Array, ArrayPaged, ArrayUnsafe.
// The range is specified with start, end, where "end" is exclusive!
// The comparison predicate must be specified.
template<class Array, class Less> 
void QuickSortSliced(Array& arr, UPInt start, UPInt end, Less less)
{
    enum 
    {
        Threshold = 9
    };

    if(end - start <  2) return;

    SPInt  stack[80];
    SPInt* top   = stack; 
    SPInt  base  = (SPInt)start;
    SPInt  limit = (SPInt)end;

    for(;;)
    {
        SPInt len = limit - base;
        SPInt i, j, pivot;

        if(len > Threshold)
        {
            // we use base + len/2 as the pivot
            pivot = base + len / 2;
            Swap(arr[base], arr[pivot]);

            i = base + 1;
            j = limit - 1;

            // now ensure that *i <= *base <= *j 
            if(less(arr[j],    arr[i])) Swap(arr[j],    arr[i]);
            if(less(arr[base], arr[i])) Swap(arr[base], arr[i]);
            if(less(arr[j], arr[base])) Swap(arr[j], arr[base]);

            for(;;)
            {
                do i++; while( less(arr[i], arr[base]) );
                do j--; while( less(arr[base], arr[j]) );

                if( i > j )
                {
                    break;
                }

                Swap(arr[i], arr[j]);
            }

            Swap(arr[base], arr[j]);

            // now, push the largest sub-array
            if(j - base > limit - i)
            {
                top[0] = base;
                top[1] = j;
                base   = i;
            }
            else
            {
                top[0] = i;
                top[1] = limit;
                limit  = j;
            }
            top += 2;
        }
        else
        {
            // the sub-array is small, perform insertion sort
            j = base;
            i = j + 1;

            for(; i < limit; j = i, i++)
            {
                for(; less(arr[j + 1], arr[j]); j--)
                {
                    Swap(arr[j + 1], arr[j]);
                    if(j == base)
                    {
                        break;
                    }
                }
            }
            if(top > stack)
            {
                top  -= 2;
                base  = top[0];
                limit = top[1];
            }
            else
            {
                break;
            }
        }
    }
}


//-----------------------------------------------------------------------------------
// ***** QuickSortSliced
//
// Sort any part of any array: plain, Array, ArrayPaged, ArrayUnsafe.
// The range is specified with start, end, where "end" is exclusive!
// The data type must have a defined "<" operator.
template<class Array> 
void QuickSortSliced(Array& arr, UPInt start, UPInt end)
{
    typedef typename Array::ValueType ValueType;
    QuickSortSliced(arr, start, end, OperatorLess<ValueType>::Compare);
}

// Same as corresponding G_QuickSortSliced but with checking array limits to avoid
// crash in the case of wrong comparator functor.
template<class Array, class Less> 
bool QuickSortSlicedSafe(Array& arr, UPInt start, UPInt end, Less less)
{
    enum 
    {
        Threshold = 9
    };

    if(end - start <  2) return true;

    SPInt  stack[80];
    SPInt* top   = stack; 
    SPInt  base  = (SPInt)start;
    SPInt  limit = (SPInt)end;

    for(;;)
    {
        SPInt len = limit - base;
        SPInt i, j, pivot;

        if(len > Threshold)
        {
            // we use base + len/2 as the pivot
            pivot = base + len / 2;
            Swap(arr[base], arr[pivot]);

            i = base + 1;
            j = limit - 1;

            // now ensure that *i <= *base <= *j 
            if(less(arr[j],    arr[i])) Swap(arr[j],    arr[i]);
            if(less(arr[base], arr[i])) Swap(arr[base], arr[i]);
            if(less(arr[j], arr[base])) Swap(arr[j], arr[base]);

            for(;;)
            {
                do 
                {   
                    i++; 
                    if (i >= limit)
                        return false;
                } while( less(arr[i], arr[base]) );
                do 
                {
                    j--; 
                    if (j < 0)
                        return false;
                } while( less(arr[base], arr[j]) );

                if( i > j )
                {
                    break;
                }

                Swap(arr[i], arr[j]);
            }

            Swap(arr[base], arr[j]);

            // now, push the largest sub-array
            if(j - base > limit - i)
            {
                top[0] = base;
                top[1] = j;
                base   = i;
            }
            else
            {
                top[0] = i;
                top[1] = limit;
                limit  = j;
            }
            top += 2;
        }
        else
        {
            // the sub-array is small, perform insertion sort
            j = base;
            i = j + 1;

            for(; i < limit; j = i, i++)
            {
                for(; less(arr[j + 1], arr[j]); j--)
                {
                    Swap(arr[j + 1], arr[j]);
                    if(j == base)
                    {
                        break;
                    }
                }
            }
            if(top > stack)
            {
                top  -= 2;
                base  = top[0];
                limit = top[1];
            }
            else
            {
                break;
            }
        }
    }
    return true;
}

template<class Array> 
bool QuickSortSlicedSafe(Array& arr, UPInt start, UPInt end)
{
    typedef typename Array::ValueType ValueType;
    return QuickSortSlicedSafe(arr, start, end, OperatorLess<ValueType>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** QuickSort
//
// Sort an array Array, ArrayPaged, ArrayUnsafe.
// The array must have GetSize() function.
// The comparison predicate must be specified.
template<class Array, class Less> 
void QuickSort(Array& arr, Less less)
{
    QuickSortSliced(arr, 0, arr.GetSize(), less);
}

// checks for boundaries
template<class Array, class Less> 
bool QuickSortSafe(Array& arr, Less less)
{
    return QuickSortSlicedSafe(arr, 0, arr.GetSize(), less);
}


//-----------------------------------------------------------------------------------
// ***** QuickSort
//
// Sort an array Array, ArrayPaged, ArrayUnsafe.
// The array must have GetSize() function.
// The data type must have a defined "<" operator.
template<class Array> 
void QuickSort(Array& arr)
{
    typedef typename Array::ValueType ValueType;
    QuickSortSliced(arr, 0, arr.GetSize(), OperatorLess<ValueType>::Compare);
}

template<class Array> 
bool QuickSortSafe(Array& arr)
{
    typedef typename Array::ValueType ValueType;
    return QuickSortSlicedSafe(arr, 0, arr.GetSize(), OperatorLess<ValueType>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** InsertionSortSliced
//
// Sort any part of any array: plain, Array, ArrayPaged, ArrayUnsafe.
// The range is specified with start, end, where "end" is exclusive!
// The comparison predicate must be specified.
// Unlike Quick Sort, the Insertion Sort works much slower in average, 
// but may be much faster on almost sorted arrays. Besides, it guarantees
// that the elements will not be swapped if not necessary. For example, 
// an array with all equal elements will remain "untouched", while 
// Quick Sort will considerably shuffle the elements in this case.
template<class Array, class Less> 
void InsertionSortSliced(Array& arr, UPInt start, UPInt end, Less less)
{
    UPInt j = start;
    UPInt i = j + 1;
    UPInt limit = end;

    for(; i < limit; j = i, i++)
    {
        for(; less(arr[j + 1], arr[j]); j--)
        {
            Swap(arr[j + 1], arr[j]);
            if(j <= start)
            {
                break;
            }
        }
    }
}


//-----------------------------------------------------------------------------------
// ***** InsertionSortSliced
//
// Sort any part of any array: plain, Array, ArrayPaged, ArrayUnsafe.
// The range is specified with start, end, where "end" is exclusive!
// The data type must have a defined "<" operator.
template<class Array> 
void InsertionSortSliced(Array& arr, UPInt start, UPInt end)
{
    typedef typename Array::ValueType ValueType;
    InsertionSortSliced(arr, start, end, OperatorLess<ValueType>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** InsertionSort
//
// Sort an array Array, ArrayPaged, ArrayUnsafe.
// The array must have GetSize() function.
// The comparison predicate must be specified.

template<class Array, class Less> 
void InsertionSort(Array& arr, Less less)
{
    InsertionSortSliced(arr, 0, arr.GetSize(), less);
}

//-----------------------------------------------------------------------------------
// ***** InsertionSort
//
// Sort an array Array, ArrayPaged, ArrayUnsafe.
// The array must have GetSize() function.
// The data type must have a defined "<" operator.
template<class Array> 
void InsertionSort(Array& arr)
{
    typedef typename Array::ValueType ValueType;
    InsertionSortSliced(arr, 0, arr.GetSize(), OperatorLess<ValueType>::Compare);
}



//-----------------------------------------------------------------------------------
// ***** LowerBoundSliced
//
template<class Array, class Value, class Less>
UPInt LowerBoundSliced(const Array& arr, UPInt start, UPInt end, const Value& val, Less less)
{
    SPInt first = (SPInt)start;
    SPInt len   = (SPInt)(end - start);
    SPInt half;
    SPInt middle;
    
    while(len > 0) 
    {
        half = len >> 1;
        middle = first + half;
        if(less(arr[middle], val)) 
        {
            first = middle + 1;
            len   = len - half - 1;
        }
        else
        {
            len = half;
        }
    }
    return (UPInt)first;
}


//-----------------------------------------------------------------------------------
// ***** LowerBoundSliced
//
template<class Array, class Value>
UPInt LowerBoundSliced(const Array& arr, UPInt start, UPInt end, const Value& val)
{
    return LowerBoundSliced(arr, start, end, val, OperatorLess<Value>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** LowerBoundSized
//
template<class Array, class Value>
UPInt LowerBoundSized(const Array& arr, UPInt size, const Value& val)
{
    return LowerBoundSliced(arr, 0, size, val, OperatorLess<Value>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** LowerBound
//
template<class Array, class Value, class Less>
UPInt LowerBound(const Array& arr, const Value& val, Less less)
{
    return LowerBoundSliced(arr, 0, arr.GetSize(), val, less);
}


//-----------------------------------------------------------------------------------
// ***** LowerBound
//
template<class Array, class Value>
UPInt LowerBound(const Array& arr, const Value& val)
{
    return LowerBoundSliced(arr, 0, arr.GetSize(), val, OperatorLess<Value>::Compare);
}



//-----------------------------------------------------------------------------------
// ***** UpperBoundSliced
//
template<class Array, class Value, class Less>
UPInt UpperBoundSliced(const Array& arr, UPInt start, UPInt end, const Value& val, Less less)
{
    SPInt first = (SPInt)start;
    SPInt len   = (SPInt)(end - start);
    SPInt half;
    SPInt middle;
    
    while(len > 0) 
    {
        half = len >> 1;
        middle = first + half;
        if(less(val, arr[middle]))
        {
            len = half;
        }
        else 
        {
            first = middle + 1;
            len   = len - half - 1;
        }
    }
    return (UPInt)first;
}


//-----------------------------------------------------------------------------------
// ***** UpperBoundSliced
//
template<class Array, class Value>
UPInt UpperBoundSliced(const Array& arr, UPInt start, UPInt end, const Value& val)
{
    return UpperBoundSliced(arr, start, end, val, OperatorLess<Value>::Compare);
}


//-----------------------------------------------------------------------------------
// ***** UpperBoundSized
//
template<class Array, class Value>
UPInt UpperBoundSized(const Array& arr, UPInt size, const Value& val)
{
    return UpperBoundSliced(arr, 0, size, val, OperatorLess<Value>::Compare);
}


//-----------------------------------------------------------------------------------
// ***** UpperBound
//
template<class Array, class Value, class Less>
UPInt UpperBound(const Array& arr, const Value& val, Less less)
{
    return UpperBoundSliced(arr, 0, arr.GetSize(), val, less);
}


//-----------------------------------------------------------------------------------
// ***** UpperBound
//
template<class Array, class Value>
UPInt UpperBound(const Array& arr, const Value& val)
{
    return UpperBoundSliced(arr, 0, arr.GetSize(), val, OperatorLess<Value>::Compare);
}


//-----------------------------------------------------------------------------------
// ***** ReverseArray
//
template<class Array> void ReverseArray(Array& arr)
{
    SPInt from = 0;
    SPInt to   = arr.GetSize() - 1;
    while(from < to)
    {
        Swap(arr[from], arr[to]);
        ++from;
        --to;
    }
}


// ***** AppendArray
//
template<class CDst, class CSrc> 
void AppendArray(CDst& dst, const CSrc& src)
{
    UPInt i;
    for(i = 0; i < src.GetSize(); i++) 
        dst.PushBack(src[i]);
}

//-----------------------------------------------------------------------------------
// ***** ArrayAdaptor
//
// A simple adapter that provides the GetSize() method and overloads 
// operator []. Used to wrap plain arrays in QuickSort and such.
template<class T> class ArrayAdaptor
{
public:
    typedef T ValueType;
    ArrayAdaptor() : Data(0), Size(0) {}
    ArrayAdaptor(T* ptr, UPInt size) : Data(ptr), Size(size) {}
    UPInt GetSize() const { return Size; }
    const T& operator [] (UPInt i) const { return Data[i]; }
          T& operator [] (UPInt i)       { return Data[i]; }
private:
    T*      Data;
    UPInt   Size;
};


//-----------------------------------------------------------------------------------
// ***** GConstArrayAdaptor
//
// A simple const adapter that provides the GetSize() method and overloads 
// operator []. Used to wrap plain arrays in LowerBound and such.
template<class T> class ConstArrayAdaptor
{
public:
    typedef T ValueType;
    ConstArrayAdaptor() : Data(0), Size(0) {}
    ConstArrayAdaptor(const T* ptr, UPInt size) : Data(ptr), Size(size) {}
    UPInt GetSize() const { return Size; }
    const T& operator [] (UPInt i) const { return Data[i]; }
private:
    const T* Data;
    UPInt    Size;
};



//-----------------------------------------------------------------------------------
extern const UByte UpperBitTable[256];
extern const UByte LowerBitTable[256];



//-----------------------------------------------------------------------------------
inline UByte UpperBit(UPInt val)
{
#ifndef OVR_64BIT_POINTERS

    if (val & 0xFFFF0000)
    {
        return (val & 0xFF000000) ? 
            UpperBitTable[(val >> 24)       ] + 24: 
            UpperBitTable[(val >> 16) & 0xFF] + 16;
    }
    return (val & 0xFF00) ?
        UpperBitTable[(val >> 8) & 0xFF] + 8:
        UpperBitTable[(val     ) & 0xFF];

#else

    if (val & 0xFFFFFFFF00000000)
    {
        if (val & 0xFFFF000000000000)
        {
            return (val & 0xFF00000000000000) ?
                UpperBitTable[(val >> 56)       ] + 56: 
                UpperBitTable[(val >> 48) & 0xFF] + 48;
        }
        return (val & 0xFF0000000000) ?
            UpperBitTable[(val >> 40) & 0xFF] + 40:
            UpperBitTable[(val >> 32) & 0xFF] + 32;
    }
    else
    {
        if (val & 0xFFFF0000)
        {
            return (val & 0xFF000000) ? 
                UpperBitTable[(val >> 24)       ] + 24: 
                UpperBitTable[(val >> 16) & 0xFF] + 16;
        }
        return (val & 0xFF00) ?
            UpperBitTable[(val >> 8) & 0xFF] + 8:
            UpperBitTable[(val     ) & 0xFF];
    }

#endif
}

//-----------------------------------------------------------------------------------
inline UByte LowerBit(UPInt val)
{
#ifndef OVR_64BIT_POINTERS

    if (val & 0xFFFF)
    {
        return (val & 0xFF) ?
            LowerBitTable[ val & 0xFF]:
            LowerBitTable[(val >> 8) & 0xFF] + 8;
    }
    return (val & 0xFF0000) ?
            LowerBitTable[(val >> 16) & 0xFF] + 16:
            LowerBitTable[(val >> 24) & 0xFF] + 24;

#else

    if (val & 0xFFFFFFFF)
    {
        if (val & 0xFFFF)
        {
            return (val & 0xFF) ?
                LowerBitTable[ val & 0xFF]:
                LowerBitTable[(val >> 8) & 0xFF] + 8;
        }
        return (val & 0xFF0000) ?
                LowerBitTable[(val >> 16) & 0xFF] + 16:
                LowerBitTable[(val >> 24) & 0xFF] + 24;
    }
    else
    {
        if (val & 0xFFFF00000000)
        {
             return (val & 0xFF00000000) ?
                LowerBitTable[(val >> 32) & 0xFF] + 32:
                LowerBitTable[(val >> 40) & 0xFF] + 40;
        }
        return (val & 0xFF000000000000) ?
            LowerBitTable[(val >> 48) & 0xFF] + 48:
            LowerBitTable[(val >> 56) & 0xFF] + 56;
    }

#endif
}



// ******* Special (optimized) memory routines
// Note: null (bad) pointer is not tested
class MemUtil
{
public:
                                    
    // Memory compare
    static int      Cmp  (const void* p1, const void* p2, UPInt byteCount)      { return memcmp(p1, p2, byteCount); }
    static int      Cmp16(const void* p1, const void* p2, UPInt int16Count);
    static int      Cmp32(const void* p1, const void* p2, UPInt int32Count);
    static int      Cmp64(const void* p1, const void* p2, UPInt int64Count); 
};

// ** Inline Implementation

inline int MemUtil::Cmp16(const void* p1, const void* p2, UPInt int16Count)
{
    SInt16*  pa  = (SInt16*)p1; 
    SInt16*  pb  = (SInt16*)p2;
    unsigned ic  = 0;
    if (int16Count == 0)
        return 0;
    while (pa[ic] == pb[ic])
        if (++ic==int16Count)
            return 0;
    return pa[ic] > pb[ic] ? 1 : -1;
}
inline int MemUtil::Cmp32(const void* p1, const void* p2, UPInt int32Count)
{
    SInt32*  pa  = (SInt32*)p1;
    SInt32*  pb  = (SInt32*)p2;
    unsigned ic  = 0;
    if (int32Count == 0)
        return 0;
    while (pa[ic] == pb[ic])
        if (++ic==int32Count)
            return 0;
    return pa[ic] > pb[ic] ? 1 : -1;
}
inline int MemUtil::Cmp64(const void* p1, const void* p2, UPInt int64Count)
{
    SInt64*  pa  = (SInt64*)p1;
    SInt64*  pb  = (SInt64*)p2;
    unsigned ic  = 0;
    if (int64Count == 0)
        return 0;
    while (pa[ic] == pb[ic])
        if (++ic==int64Count)
            return 0;
    return pa[ic] > pb[ic] ? 1 : -1;
}

// ** End Inline Implementation


//-----------------------------------------------------------------------------------
// ******* Byte Order Conversions
namespace ByteUtil {

    // *** Swap Byte Order

    // Swap the byte order of a byte array
    inline void     SwapOrder(void* pv, int size)
    {
        UByte*  pb = (UByte*)pv;
        UByte   temp;
        for (int i = 0; i < size>>1; i++)
        { 
            temp            = pb[size-1-i];
            pb[size-1-i]    = pb[i];
            pb[i]           = temp; 
        }
    }

    // Swap the byte order of primitive types
    inline UByte    SwapOrder(UByte v)      { return v; }
    inline SByte    SwapOrder(SByte v)      { return v; }
    inline UInt16   SwapOrder(UInt16 v)     { return UInt16(v>>8)|UInt16(v<<8); }
    inline SInt16   SwapOrder(SInt16 v)     { return SInt16((UInt16(v)>>8)|(v<<8)); }
    inline UInt32   SwapOrder(UInt32 v)     { return (v>>24)|((v&0x00FF0000)>>8)|((v&0x0000FF00)<<8)|(v<<24); }
    inline SInt32   SwapOrder(SInt32 p)     { return (SInt32)SwapOrder(UInt32(p)); }
    inline UInt64   SwapOrder(UInt64 v)
    { 
        return   (v>>56) |
                 ((v&UInt64(0x00FF000000000000))>>40) |
                 ((v&UInt64(0x0000FF0000000000))>>24) |
                 ((v&UInt64(0x000000FF00000000))>>8)  |
                 ((v&UInt64(0x00000000FF000000))<<8)  |
                 ((v&UInt64(0x0000000000FF0000))<<24) |
                 ((v&UInt64(0x000000000000FF00))<<40) |
                 (v<<56); 
    }
    inline SInt64   SwapOrder(SInt64 v)     { return (SInt64)SwapOrder(UInt64(v)); }
    inline float    SwapOrder(float p)      
    { 
        union {
            float p;
            UInt32 v;
        } u;
        u.p = p;
        u.v = SwapOrder(u.v);
        return u.p;
    }

    inline double   SwapOrder(double p)
    { 
        union {
            double p;
            UInt64 v;
        } u;
        u.p = p;
        u.v = SwapOrder(u.v);
        return u.p;
    }
    
    // *** Byte-order conversion

#if (OVR_BYTE_ORDER == OVR_LITTLE_ENDIAN)
    // Little Endian to System (LE)
    inline UByte    LEToSystem(UByte  v)    { return v; }
    inline SByte    LEToSystem(SByte  v)    { return v; }
    inline UInt16   LEToSystem(UInt16 v)    { return v; }
    inline SInt16   LEToSystem(SInt16 v)    { return v; }
    inline UInt32   LEToSystem(UInt32 v)    { return v; }
    inline SInt32   LEToSystem(SInt32 v)    { return v; }
    inline UInt64   LEToSystem(UInt64 v)    { return v; }
    inline SInt64   LEToSystem(SInt64 v)    { return v; }
    inline float    LEToSystem(float  v)    { return v; }
    inline double   LEToSystem(double v)    { return v; }

    // Big Endian to System (LE)
    inline UByte    BEToSystem(UByte  v)    { return SwapOrder(v); }
    inline SByte    BEToSystem(SByte  v)    { return SwapOrder(v); }
    inline UInt16   BEToSystem(UInt16 v)    { return SwapOrder(v); }
    inline SInt16   BEToSystem(SInt16 v)    { return SwapOrder(v); }
    inline UInt32   BEToSystem(UInt32 v)    { return SwapOrder(v); }
    inline SInt32   BEToSystem(SInt32 v)    { return SwapOrder(v); }
    inline UInt64   BEToSystem(UInt64 v)    { return SwapOrder(v); }
    inline SInt64   BEToSystem(SInt64 v)    { return SwapOrder(v); }
    inline float    BEToSystem(float  v)    { return SwapOrder(v); }
    inline double   BEToSystem(double v)    { return SwapOrder(v); }

    // System (LE) to Little Endian
    inline UByte    SystemToLE(UByte  v)    { return v; }
    inline SByte    SystemToLE(SByte  v)    { return v; }
    inline UInt16   SystemToLE(UInt16 v)    { return v; }
    inline SInt16   SystemToLE(SInt16 v)    { return v; }
    inline UInt32   SystemToLE(UInt32 v)    { return v; }
    inline SInt32   SystemToLE(SInt32 v)    { return v; }
    inline UInt64   SystemToLE(UInt64 v)    { return v; }
    inline SInt64   SystemToLE(SInt64 v)    { return v; }
    inline float    SystemToLE(float  v)    { return v; }
    inline double   SystemToLE(double v)    { return v; }   

    // System (LE) to Big Endian
    inline UByte    SystemToBE(UByte  v)    { return SwapOrder(v); }
    inline SByte    SystemToBE(SByte  v)    { return SwapOrder(v); }
    inline UInt16   SystemToBE(UInt16 v)    { return SwapOrder(v); }
    inline SInt16   SystemToBE(SInt16 v)    { return SwapOrder(v); }
    inline UInt32   SystemToBE(UInt32 v)    { return SwapOrder(v); }
    inline SInt32   SystemToBE(SInt32 v)    { return SwapOrder(v); }
    inline UInt64   SystemToBE(UInt64 v)    { return SwapOrder(v); }
    inline SInt64   SystemToBE(SInt64 v)    { return SwapOrder(v); }
    inline float    SystemToBE(float  v)    { return SwapOrder(v); }
    inline double   SystemToBE(double v)    { return SwapOrder(v); }

#elif (OVR_BYTE_ORDER == OVR_BIG_ENDIAN)
    // Little Endian to System (BE)
    inline UByte    LEToSystem(UByte  v)    { return SwapOrder(v); }
    inline SByte    LEToSystem(SByte  v)    { return SwapOrder(v); }
    inline UInt16   LEToSystem(UInt16 v)    { return SwapOrder(v); }
    inline SInt16   LEToSystem(SInt16 v)    { return SwapOrder(v); }
    inline UInt32   LEToSystem(UInt32 v)    { return SwapOrder(v); }
    inline SInt32   LEToSystem(SInt32 v)    { return SwapOrder(v); }
    inline UInt64   LEToSystem(UInt64 v)    { return SwapOrder(v); }
    inline SInt64   LEToSystem(SInt64 v)    { return SwapOrder(v); }
    inline float    LEToSystem(float  v)    { return SwapOrder(v); }
    inline double   LEToSystem(double v)    { return SwapOrder(v); }

    // Big Endian to System (BE)
    inline UByte    BEToSystem(UByte  v)    { return v; }
    inline SByte    BEToSystem(SByte  v)    { return v; }
    inline UInt16   BEToSystem(UInt16 v)    { return v; }
    inline SInt16   BEToSystem(SInt16 v)    { return v; }
    inline UInt32   BEToSystem(UInt32 v)    { return v; }
    inline SInt32   BEToSystem(SInt32 v)    { return v; }
    inline UInt64   BEToSystem(UInt64 v)    { return v; }
    inline SInt64   BEToSystem(SInt64 v)    { return v; }
    inline float    BEToSystem(float  v)    { return v; }
    inline double   BEToSystem(double v)    { return v; }

    // System (BE) to Little Endian
    inline UByte    SystemToLE(UByte  v)    { return SwapOrder(v); }
    inline SByte    SystemToLE(SByte  v)    { return SwapOrder(v); }
    inline UInt16   SystemToLE(UInt16 v)    { return SwapOrder(v); }
    inline SInt16   SystemToLE(SInt16 v)    { return SwapOrder(v); }
    inline UInt32   SystemToLE(UInt32 v)    { return SwapOrder(v); }
    inline SInt32   SystemToLE(SInt32 v)    { return SwapOrder(v); }
    inline UInt64   SystemToLE(UInt64 v)    { return SwapOrder(v); }
    inline SInt64   SystemToLE(SInt64 v)    { return SwapOrder(v); }
    inline float    SystemToLE(float  v)    { return SwapOrder(v); }
    inline double   SystemToLE(double v)    { return SwapOrder(v); }

    // System (BE) to Big Endian
    inline UByte    SystemToBE(UByte  v)    { return v; }
    inline SByte    SystemToBE(SByte  v)    { return v; }
    inline UInt16   SystemToBE(UInt16 v)    { return v; }
    inline SInt16   SystemToBE(SInt16 v)    { return v; }
    inline UInt32   SystemToBE(UInt32 v)    { return v; }
    inline SInt32   SystemToBE(SInt32 v)    { return v; }
    inline UInt64   SystemToBE(UInt64 v)    { return v; }
    inline SInt64   SystemToBE(SInt64 v)    { return v; }
    inline float    SystemToBE(float  v)    { return v; }
    inline double   SystemToBE(double v)    { return v; }

#else
    #error "OVR_BYTE_ORDER must be defined to OVR_LITTLE_ENDIAN or OVR_BIG_ENDIAN"
#endif

} // namespace ByteUtil



}} // OVR::Alg

#endif