summaryrefslogtreecommitdiffstats
path: root/LibOVR/Src/Kernel/OVR_Alg.h
blob: e03cea0f64b444dd7eeb4a42a6e31d3d2c180413 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710#define OVR_ASSERT_LOG(c, args)   do { if (!(c)) { OVR::LogAssert args; OVR_DEBUG_BREAK; } } while(0)

#else

    // If not in debug build, macros do nothing.
    #define OVR_DEBUG_LOG(args)         ((void)0)
    #define OVR_DEBUG_LOG_TEXT(args)    ((void)0)
    #define OVR_ASSERT_LOG(c, args)     ((void)0)

#endif

} // OVR 

#endif
href='#n737'>737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/************************************************************************************

PublicHeader:   OVR.h
Filename    :   OVR_Alg.h
Content     :   Simple general purpose algorithms: Sort, Binary Search, etc.
Created     :   September 19, 2012
Notes       : 

Copyright   :   Copyright 2014 Oculus VR, Inc. All Rights reserved.

Licensed under the Oculus VR Rift SDK License Version 3.1 (the "License"); 
you may not use the Oculus VR Rift SDK except in compliance with the License, 
which is provided at the time of installation or download, or which 
otherwise accompanies this software in either electronic or hard copy form.

You may obtain a copy of the License at

http://www.oculusvr.com/licenses/LICENSE-3.1 

Unless required by applicable law or agreed to in writing, the Oculus VR SDK 
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

************************************************************************************/

#ifndef OVR_Alg_h
#define OVR_Alg_h

#include "OVR_Types.h"
#include <string.h>

namespace OVR { namespace Alg {


//-----------------------------------------------------------------------------------
// ***** Operator extensions

template <typename T> OVR_FORCE_INLINE void Swap(T &a, T &b) 
{  T temp(a); a = b; b = temp; }


// ***** min/max are not implemented in Visual Studio 6 standard STL

template <typename T> OVR_FORCE_INLINE const T Min(const T a, const T b)
{ return (a < b) ? a : b; }

template <typename T> OVR_FORCE_INLINE const T Max(const T a, const T b)
{ return (b < a) ? a : b; }

template <typename T> OVR_FORCE_INLINE const T Clamp(const T v, const T minVal, const T maxVal)
{ return Max<T>(minVal, Min<T>(v, maxVal)); }

template <typename T> OVR_FORCE_INLINE int     Chop(T f)
{ return (int)f; }

template <typename T> OVR_FORCE_INLINE T       Lerp(T a, T b, T f) 
{ return (b - a) * f + a; }


// These functions stand to fix a stupid VC++ warning (with /Wp64 on):
// "warning C4267: 'argument' : conversion from 'size_t' to 'const unsigned', possible loss of data"
// Use these functions instead of gmin/gmax if the argument has size
// of the pointer to avoid the warning. Though, functionally they are
// absolutelly the same as regular gmin/gmax.
template <typename T>   OVR_FORCE_INLINE const T PMin(const T a, const T b)
{
    OVR_COMPILER_ASSERT(sizeof(T) == sizeof(UPInt));
    return (a < b) ? a : b;
}
template <typename T>   OVR_FORCE_INLINE const T PMax(const T a, const T b)
{
    OVR_COMPILER_ASSERT(sizeof(T) == sizeof(UPInt));
    return (b < a) ? a : b;
}


template <typename T>   OVR_FORCE_INLINE const T Abs(const T v)
{ return (v>=0) ? v : -v; }


//-----------------------------------------------------------------------------------
// ***** OperatorLess
//
template<class T> struct OperatorLess
{
    static bool Compare(const T& a, const T& b)
    {
        return a < b;
    }
};


//-----------------------------------------------------------------------------------
// ***** QuickSortSliced
//
// Sort any part of any array: plain, Array, ArrayPaged, ArrayUnsafe.
// The range is specified with start, end, where "end" is exclusive!
// The comparison predicate must be specified.
template<class Array, class Less> 
void QuickSortSliced(Array& arr, UPInt start, UPInt end, Less less)
{
    enum 
    {
        Threshold = 9
    };

    if(end - start <  2) return;

    SPInt  stack[80];
    SPInt* top   = stack; 
    SPInt  base  = (SPInt)start;
    SPInt  limit = (SPInt)end;

    for(;;)
    {
        SPInt len = limit - base;
        SPInt i, j, pivot;

        if(len > Threshold)
        {
            // we use base + len/2 as the pivot
            pivot = base + len / 2;
            Swap(arr[base], arr[pivot]);

            i = base + 1;
            j = limit - 1;

            // now ensure that *i <= *base <= *j 
            if(less(arr[j],    arr[i])) Swap(arr[j],    arr[i]);
            if(less(arr[base], arr[i])) Swap(arr[base], arr[i]);
            if(less(arr[j], arr[base])) Swap(arr[j], arr[base]);

            for(;;)
            {
                do i++; while( less(arr[i], arr[base]) );
                do j--; while( less(arr[base], arr[j]) );

                if( i > j )
                {
                    break;
                }

                Swap(arr[i], arr[j]);
            }

            Swap(arr[base], arr[j]);

            // now, push the largest sub-array
            if(j - base > limit - i)
            {
                top[0] = base;
                top[1] = j;
                base   = i;
            }
            else
            {
                top[0] = i;
                top[1] = limit;
                limit  = j;
            }
            top += 2;
        }
        else
        {
            // the sub-array is small, perform insertion sort
            j = base;
            i = j + 1;

            for(; i < limit; j = i, i++)
            {
                for(; less(arr[j + 1], arr[j]); j--)
                {
                    Swap(arr[j + 1], arr[j]);
                    if(j == base)
                    {
                        break;
                    }
                }
            }
            if(top > stack)
            {
                top  -= 2;
                base  = top[0];
                limit = top[1];
            }
            else
            {
                break;
            }
        }
    }
}


//-----------------------------------------------------------------------------------
// ***** QuickSortSliced
//
// Sort any part of any array: plain, Array, ArrayPaged, ArrayUnsafe.
// The range is specified with start, end, where "end" is exclusive!
// The data type must have a defined "<" operator.
template<class Array> 
void QuickSortSliced(Array& arr, UPInt start, UPInt end)
{
    typedef typename Array::ValueType ValueType;
    QuickSortSliced(arr, start, end, OperatorLess<ValueType>::Compare);
}

// Same as corresponding G_QuickSortSliced but with checking array limits to avoid
// crash in the case of wrong comparator functor.
template<class Array, class Less> 
bool QuickSortSlicedSafe(Array& arr, UPInt start, UPInt end, Less less)
{
    enum 
    {
        Threshold = 9
    };

    if(end - start <  2) return true;

    SPInt  stack[80];
    SPInt* top   = stack; 
    SPInt  base  = (SPInt)start;
    SPInt  limit = (SPInt)end;

    for(;;)
    {
        SPInt len = limit - base;
        SPInt i, j, pivot;

        if(len > Threshold)
        {
            // we use base + len/2 as the pivot
            pivot = base + len / 2;
            Swap(arr[base], arr[pivot]);

            i = base + 1;
            j = limit - 1;

            // now ensure that *i <= *base <= *j 
            if(less(arr[j],    arr[i])) Swap(arr[j],    arr[i]);
            if(less(arr[base], arr[i])) Swap(arr[base], arr[i]);
            if(less(arr[j], arr[base])) Swap(arr[j], arr[base]);

            for(;;)
            {
                do 
                {   
                    i++; 
                    if (i >= limit)
                        return false;
                } while( less(arr[i], arr[base]) );
                do 
                {
                    j--; 
                    if (j < 0)
                        return false;
                } while( less(arr[base], arr[j]) );

                if( i > j )
                {
                    break;
                }

                Swap(arr[i], arr[j]);
            }

            Swap(arr[base], arr[j]);

            // now, push the largest sub-array
            if(j - base > limit - i)
            {
                top[0] = base;
                top[1] = j;
                base   = i;
            }
            else
            {
                top[0] = i;
                top[1] = limit;
                limit  = j;
            }
            top += 2;
        }
        else
        {
            // the sub-array is small, perform insertion sort
            j = base;
            i = j + 1;

            for(; i < limit; j = i, i++)
            {
                for(; less(arr[j + 1], arr[j]); j--)
                {
                    Swap(arr[j + 1], arr[j]);
                    if(j == base)
                    {
                        break;
                    }
                }
            }
            if(top > stack)
            {
                top  -= 2;
                base  = top[0];
                limit = top[1];
            }
            else
            {
                break;
            }
        }
    }
    return true;
}

template<class Array> 
bool QuickSortSlicedSafe(Array& arr, UPInt start, UPInt end)
{
    typedef typename Array::ValueType ValueType;
    return QuickSortSlicedSafe(arr, start, end, OperatorLess<ValueType>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** QuickSort
//
// Sort an array Array, ArrayPaged, ArrayUnsafe.
// The array must have GetSize() function.
// The comparison predicate must be specified.
template<class Array, class Less> 
void QuickSort(Array& arr, Less less)
{
    QuickSortSliced(arr, 0, arr.GetSize(), less);
}

// checks for boundaries
template<class Array, class Less> 
bool QuickSortSafe(Array& arr, Less less)
{
    return QuickSortSlicedSafe(arr, 0, arr.GetSize(), less);
}


//-----------------------------------------------------------------------------------
// ***** QuickSort
//
// Sort an array Array, ArrayPaged, ArrayUnsafe.
// The array must have GetSize() function.
// The data type must have a defined "<" operator.
template<class Array> 
void QuickSort(Array& arr)
{
    typedef typename Array::ValueType ValueType;
    QuickSortSliced(arr, 0, arr.GetSize(), OperatorLess<ValueType>::Compare);
}

template<class Array> 
bool QuickSortSafe(Array& arr)
{
    typedef typename Array::ValueType ValueType;
    return QuickSortSlicedSafe(arr, 0, arr.GetSize(), OperatorLess<ValueType>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** InsertionSortSliced
//
// Sort any part of any array: plain, Array, ArrayPaged, ArrayUnsafe.
// The range is specified with start, end, where "end" is exclusive!
// The comparison predicate must be specified.
// Unlike Quick Sort, the Insertion Sort works much slower in average, 
// but may be much faster on almost sorted arrays. Besides, it guarantees
// that the elements will not be swapped if not necessary. For example, 
// an array with all equal elements will remain "untouched", while 
// Quick Sort will considerably shuffle the elements in this case.
template<class Array, class Less> 
void InsertionSortSliced(Array& arr, UPInt start, UPInt end, Less less)
{
    UPInt j = start;
    UPInt i = j + 1;
    UPInt limit = end;

    for(; i < limit; j = i, i++)
    {
        for(; less(arr[j + 1], arr[j]); j--)
        {
            Swap(arr[j + 1], arr[j]);
            if(j <= start)
            {
                break;
            }
        }
    }
}


//-----------------------------------------------------------------------------------
// ***** InsertionSortSliced
//
// Sort any part of any array: plain, Array, ArrayPaged, ArrayUnsafe.
// The range is specified with start, end, where "end" is exclusive!
// The data type must have a defined "<" operator.
template<class Array> 
void InsertionSortSliced(Array& arr, UPInt start, UPInt end)
{
    typedef typename Array::ValueType ValueType;
    InsertionSortSliced(arr, start, end, OperatorLess<ValueType>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** InsertionSort
//
// Sort an array Array, ArrayPaged, ArrayUnsafe.
// The array must have GetSize() function.
// The comparison predicate must be specified.

template<class Array, class Less> 
void InsertionSort(Array& arr, Less less)
{
    InsertionSortSliced(arr, 0, arr.GetSize(), less);
}

//-----------------------------------------------------------------------------------
// ***** InsertionSort
//
// Sort an array Array, ArrayPaged, ArrayUnsafe.
// The array must have GetSize() function.
// The data type must have a defined "<" operator.
template<class Array> 
void InsertionSort(Array& arr)
{
    typedef typename Array::ValueType ValueType;
    InsertionSortSliced(arr, 0, arr.GetSize(), OperatorLess<ValueType>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** Median
// Returns a median value of the input array.
// Caveats: partially sorts the array, returns a reference to the array element
// TBD: This needs to be optimized and generalized
//
template<class Array> 
typename Array::ValueType& Median(Array& arr)
{
    UPInt count = arr.GetSize();
    UPInt mid = (count - 1) / 2;
    OVR_ASSERT(count > 0);

	for (UPInt j = 0; j <= mid; j++)
    {
		UPInt min = j;
		for (UPInt k = j + 1; k < count; k++)
            if (arr[k] < arr[min]) 
                min = k;
        Swap(arr[j], arr[min]);
    }
    return arr[mid];
}

//-----------------------------------------------------------------------------------
// ***** LowerBoundSliced
//
template<class Array, class Value, class Less>
UPInt LowerBoundSliced(const Array& arr, UPInt start, UPInt end, const Value& val, Less less)
{
    SPInt first = (SPInt)start;
    SPInt len   = (SPInt)(end - start);
    SPInt half;
    SPInt middle;
    
    while(len > 0) 
    {
        half = len >> 1;
        middle = first + half;
        if(less(arr[middle], val)) 
        {
            first = middle + 1;
            len   = len - half - 1;
        }
        else
        {
            len = half;
        }
    }
    return (UPInt)first;
}


//-----------------------------------------------------------------------------------
// ***** LowerBoundSliced
//
template<class Array, class Value>
UPInt LowerBoundSliced(const Array& arr, UPInt start, UPInt end, const Value& val)
{
    return LowerBoundSliced(arr, start, end, val, OperatorLess<Value>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** LowerBoundSized
//
template<class Array, class Value>
UPInt LowerBoundSized(const Array& arr, UPInt size, const Value& val)
{
    return LowerBoundSliced(arr, 0, size, val, OperatorLess<Value>::Compare);
}

//-----------------------------------------------------------------------------------
// ***** LowerBound
//
template<class Array, class Value, class Less>
UPInt LowerBound(const Array& arr, const Value& val, Less less)
{
    return LowerBoundSliced(arr, 0, arr.GetSize(), val, less);
}


//-----------------------------------------------------------------------------------
// ***** LowerBound
//
template<class Array, class Value>
UPInt LowerBound(const Array& arr, const Value& val)
{
    return LowerBoundSliced(arr, 0, arr.GetSize(), val, OperatorLess<Value>::Compare);
}



//-----------------------------------------------------------------------------------
// ***** UpperBoundSliced
//
template<class Array, class Value, class Less>
UPInt UpperBoundSliced(const Array& arr, UPInt start, UPInt end, const Value& val, Less less)
{
    SPInt first = (SPInt)start;
    SPInt len   = (SPInt)(end - start);
    SPInt half;
    SPInt middle;
    
    while(len > 0) 
    {
        half = len >> 1;
        middle = first + half;
        if(less(val, arr[middle]))
        {
            len = half;
        }
        else 
        {
            first = middle + 1;
            len   = len - half - 1;
        }
    }
    return (UPInt)first;
}


//-----------------------------------------------------------------------------------
// ***** UpperBoundSliced
//
template<class Array, class Value>
UPInt UpperBoundSliced(const Array& arr, UPInt start, UPInt end, const Value& val)
{
    return UpperBoundSliced(arr, start, end, val, OperatorLess<Value>::Compare);
}


//-----------------------------------------------------------------------------------
// ***** UpperBoundSized
//
template<class Array, class Value>
UPInt UpperBoundSized(const Array& arr, UPInt size, const Value& val)
{
    return UpperBoundSliced(arr, 0, size, val, OperatorLess<Value>::Compare);
}


//-----------------------------------------------------------------------------------
// ***** UpperBound
//
template<class Array, class Value, class Less>
UPInt UpperBound(const Array& arr, const Value& val, Less less)
{
    return UpperBoundSliced(arr, 0, arr.GetSize(), val, less);
}


//-----------------------------------------------------------------------------------
// ***** UpperBound
//
template<class Array, class Value>
UPInt UpperBound(const Array& arr, const Value& val)
{
    return UpperBoundSliced(arr, 0, arr.GetSize(), val, OperatorLess<Value>::Compare);
}


//-----------------------------------------------------------------------------------
// ***** ReverseArray
//
template<class Array> void ReverseArray(Array& arr)
{
    SPInt from = 0;
    SPInt to   = arr.GetSize() - 1;
    while(from < to)
    {
        Swap(arr[from], arr[to]);
        ++from;
        --to;
    }
}


// ***** AppendArray
//
template<class CDst, class CSrc> 
void AppendArray(CDst& dst, const CSrc& src)
{
    UPInt i;
    for(i = 0; i < src.GetSize(); i++) 
        dst.PushBack(src[i]);
}

//-----------------------------------------------------------------------------------
// ***** ArrayAdaptor
//
// A simple adapter that provides the GetSize() method and overloads 
// operator []. Used to wrap plain arrays in QuickSort and such.
template<class T> class ArrayAdaptor
{
public:
    typedef T ValueType;
    ArrayAdaptor() : Data(0), Size(0) {}
    ArrayAdaptor(T* ptr, UPInt size) : Data(ptr), Size(size) {}
    UPInt GetSize() const { return Size; }
    const T& operator [] (UPInt i) const { return Data[i]; }
          T& operator [] (UPInt i)       { return Data[i]; }
private:
    T*      Data;
    UPInt   Size;
};


//-----------------------------------------------------------------------------------
// ***** GConstArrayAdaptor
//
// A simple const adapter that provides the GetSize() method and overloads 
// operator []. Used to wrap plain arrays in LowerBound and such.
template<class T> class ConstArrayAdaptor
{
public:
    typedef T ValueType;
    ConstArrayAdaptor() : Data(0), Size(0) {}
    ConstArrayAdaptor(const T* ptr, UPInt size) : Data(ptr), Size(size) {}
    UPInt GetSize() const { return Size; }
    const T& operator [] (UPInt i) const { return Data[i]; }
private:
    const T* Data;
    UPInt    Size;
};



//-----------------------------------------------------------------------------------
extern const UByte UpperBitTable[256];
extern const UByte LowerBitTable[256];



//-----------------------------------------------------------------------------------
inline UByte UpperBit(UPInt val)
{
#ifndef OVR_64BIT_POINTERS

    if (val & 0xFFFF0000)
    {
        return (val & 0xFF000000) ? 
            UpperBitTable[(val >> 24)       ] + 24: 
            UpperBitTable[(val >> 16) & 0xFF] + 16;
    }
    return (val & 0xFF00) ?
        UpperBitTable[(val >> 8) & 0xFF] + 8:
        UpperBitTable[(val     ) & 0xFF];

#else

    if (val & 0xFFFFFFFF00000000)
    {
        if (val & 0xFFFF000000000000)
        {
            return (val & 0xFF00000000000000) ?
                UpperBitTable[(val >> 56)       ] + 56: 
                UpperBitTable[(val >> 48) & 0xFF] + 48;
        }
        return (val & 0xFF0000000000) ?
            UpperBitTable[(val >> 40) & 0xFF] + 40:
            UpperBitTable[(val >> 32) & 0xFF] + 32;
    }
    else
    {
        if (val & 0xFFFF0000)
        {
            return (val & 0xFF000000) ? 
                UpperBitTable[(val >> 24)       ] + 24: 
                UpperBitTable[(val >> 16) & 0xFF] + 16;
        }
        return (val & 0xFF00) ?
            UpperBitTable[(val >> 8) & 0xFF] + 8:
            UpperBitTable[(val     ) & 0xFF];
    }

#endif
}

//-----------------------------------------------------------------------------------
inline UByte LowerBit(UPInt val)
{
#ifndef OVR_64BIT_POINTERS

    if (val & 0xFFFF)
    {
        return (val & 0xFF) ?
            LowerBitTable[ val & 0xFF]:
            LowerBitTable[(val >> 8) & 0xFF] + 8;
    }
    return (val & 0xFF0000) ?
            LowerBitTable[(val >> 16) & 0xFF] + 16:
            LowerBitTable[(val >> 24) & 0xFF] + 24;

#else

    if (val & 0xFFFFFFFF)
    {
        if (val & 0xFFFF)
        {
            return (val & 0xFF) ?
                LowerBitTable[ val & 0xFF]:
                LowerBitTable[(val >> 8) & 0xFF] + 8;
        }
        return (val & 0xFF0000) ?
                LowerBitTable[(val >> 16) & 0xFF] + 16:
                LowerBitTable[(val >> 24) & 0xFF] + 24;
    }
    else
    {
        if (val & 0xFFFF00000000)
        {
             return (val & 0xFF00000000) ?
                LowerBitTable[(val >> 32) & 0xFF] + 32:
                LowerBitTable[(val >> 40) & 0xFF] + 40;
        }
        return (val & 0xFF000000000000) ?
            LowerBitTable[(val >> 48) & 0xFF] + 48:
            LowerBitTable[(val >> 56) & 0xFF] + 56;
    }

#endif
}



// ******* Special (optimized) memory routines
// Note: null (bad) pointer is not tested
class MemUtil
{
public:
                                    
    // Memory compare
    static int      Cmp  (const void* p1, const void* p2, UPInt byteCount)      { return memcmp(p1, p2, byteCount); }
    static int      Cmp16(const void* p1, const void* p2, UPInt int16Count);
    static int      Cmp32(const void* p1, const void* p2, UPInt int32Count);
    static int      Cmp64(const void* p1, const void* p2, UPInt int64Count); 
};

// ** Inline Implementation

inline int MemUtil::Cmp16(const void* p1, const void* p2, UPInt int16Count)
{
    SInt16*  pa  = (SInt16*)p1; 
    SInt16*  pb  = (SInt16*)p2;
    unsigned ic  = 0;
    if (int16Count == 0)
        return 0;
    while (pa[ic] == pb[ic])
        if (++ic==int16Count)
            return 0;
    return pa[ic] > pb[ic] ? 1 : -1;
}
inline int MemUtil::Cmp32(const void* p1, const void* p2, UPInt int32Count)
{
    SInt32*  pa  = (SInt32*)p1;
    SInt32*  pb  = (SInt32*)p2;
    unsigned ic  = 0;
    if (int32Count == 0)
        return 0;
    while (pa[ic] == pb[ic])
        if (++ic==int32Count)
            return 0;
    return pa[ic] > pb[ic] ? 1 : -1;
}
inline int MemUtil::Cmp64(const void* p1, const void* p2, UPInt int64Count)
{
    SInt64*  pa  = (SInt64*)p1;
    SInt64*  pb  = (SInt64*)p2;
    unsigned ic  = 0;
    if (int64Count == 0)
        return 0;
    while (pa[ic] == pb[ic])
        if (++ic==int64Count)
            return 0;
    return pa[ic] > pb[ic] ? 1 : -1;
}

// ** End Inline Implementation


//-----------------------------------------------------------------------------------
// ******* Byte Order Conversions
namespace ByteUtil {

    // *** Swap Byte Order

    // Swap the byte order of a byte array
    inline void     SwapOrder(void* pv, int size)
    {
        UByte*  pb = (UByte*)pv;
        UByte   temp;
        for (int i = 0; i < size>>1; i++)
        { 
            temp            = pb[size-1-i];
            pb[size-1-i]    = pb[i];
            pb[i]           = temp; 
        }
    }

    // Swap the byte order of primitive types
    inline UByte    SwapOrder(UByte v)      { return v; }
    inline SByte    SwapOrder(SByte v)      { return v; }
    inline UInt16   SwapOrder(UInt16 v)     { return UInt16(v>>8)|UInt16(v<<8); }
    inline SInt16   SwapOrder(SInt16 v)     { return SInt16((UInt16(v)>>8)|(v<<8)); }
    inline UInt32   SwapOrder(UInt32 v)     { return (v>>24)|((v&0x00FF0000)>>8)|((v&0x0000FF00)<<8)|(v<<24); }
    inline SInt32   SwapOrder(SInt32 p)     { return (SInt32)SwapOrder(UInt32(p)); }
    inline UInt64   SwapOrder(UInt64 v)
    { 
        return   (v>>56) |
                 ((v&UInt64(0x00FF000000000000ULL))>>40) |
                 ((v&UInt64(0x0000FF0000000000ULL))>>24) |
                 ((v&UInt64(0x000000FF00000000ULL))>>8)  |
                 ((v&UInt64(0x00000000FF000000ULL))<<8)  |
                 ((v&UInt64(0x0000000000FF0000ULL))<<24) |
                 ((v&UInt64(0x000000000000FF00ULL))<<40) |
                 (v<<56); 
    }
    inline SInt64   SwapOrder(SInt64 v)     { return (SInt64)SwapOrder(UInt64(v)); }
    inline float    SwapOrder(float p)      
    { 
        union {
            float p;
            UInt32 v;
        } u;
        u.p = p;
        u.v = SwapOrder(u.v);
        return u.p;
    }

    inline double   SwapOrder(double p)
    { 
        union {
            double p;
            UInt64 v;
        } u;
        u.p = p;
        u.v = SwapOrder(u.v);
        return u.p;
    }
    
    // *** Byte-order conversion

#if (OVR_BYTE_ORDER == OVR_LITTLE_ENDIAN)
    // Little Endian to System (LE)
    inline UByte    LEToSystem(UByte  v)    { return v; }
    inline SByte    LEToSystem(SByte  v)    { return v; }
    inline UInt16   LEToSystem(UInt16 v)    { return v; }
    inline SInt16   LEToSystem(SInt16 v)    { return v; }
    inline UInt32   LEToSystem(UInt32 v)    { return v; }
    inline SInt32   LEToSystem(SInt32 v)    { return v; }
    inline UInt64   LEToSystem(UInt64 v)    { return v; }
    inline SInt64   LEToSystem(SInt64 v)    { return v; }
    inline float    LEToSystem(float  v)    { return v; }
    inline double   LEToSystem(double v)    { return v; }

    // Big Endian to System (LE)
    inline UByte    BEToSystem(UByte  v)    { return SwapOrder(v); }
    inline SByte    BEToSystem(SByte  v)    { return SwapOrder(v); }
    inline UInt16   BEToSystem(UInt16 v)    { return SwapOrder(v); }
    inline SInt16   BEToSystem(SInt16 v)    { return SwapOrder(v); }
    inline UInt32   BEToSystem(UInt32 v)    { return SwapOrder(v); }
    inline SInt32   BEToSystem(SInt32 v)    { return SwapOrder(v); }
    inline UInt64   BEToSystem(UInt64 v)    { return SwapOrder(v); }
    inline SInt64   BEToSystem(SInt64 v)    { return SwapOrder(v); }
    inline float    BEToSystem(float  v)    { return SwapOrder(v); }
    inline double   BEToSystem(double v)    { return SwapOrder(v); }

    // System (LE) to Little Endian
    inline UByte    SystemToLE(UByte  v)    { return v; }
    inline SByte    SystemToLE(SByte  v)    { return v; }
    inline UInt16   SystemToLE(UInt16 v)    { return v; }
    inline SInt16   SystemToLE(SInt16 v)    { return v; }
    inline UInt32   SystemToLE(UInt32 v)    { return v; }
    inline SInt32   SystemToLE(SInt32 v)    { return v; }
    inline UInt64   SystemToLE(UInt64 v)    { return v; }
    inline SInt64   SystemToLE(SInt64 v)    { return v; }
    inline float    SystemToLE(float  v)    { return v; }
    inline double   SystemToLE(double v)    { return v; }   

    // System (LE) to Big Endian
    inline UByte    SystemToBE(UByte  v)    { return SwapOrder(v); }
    inline SByte    SystemToBE(SByte  v)    { return SwapOrder(v); }
    inline UInt16   SystemToBE(UInt16 v)    { return SwapOrder(v); }
    inline SInt16   SystemToBE(SInt16 v)    { return SwapOrder(v); }
    inline UInt32   SystemToBE(UInt32 v)    { return SwapOrder(v); }
    inline SInt32   SystemToBE(SInt32 v)    { return SwapOrder(v); }
    inline UInt64   SystemToBE(UInt64 v)    { return SwapOrder(v); }
    inline SInt64   SystemToBE(SInt64 v)    { return SwapOrder(v); }
    inline float    SystemToBE(float  v)    { return SwapOrder(v); }
    inline double   SystemToBE(double v)    { return SwapOrder(v); }

#elif (OVR_BYTE_ORDER == OVR_BIG_ENDIAN)
    // Little Endian to System (BE)
    inline UByte    LEToSystem(UByte  v)    { return SwapOrder(v); }
    inline SByte    LEToSystem(SByte  v)    { return SwapOrder(v); }
    inline UInt16   LEToSystem(UInt16 v)    { return SwapOrder(v); }
    inline SInt16   LEToSystem(SInt16 v)    { return SwapOrder(v); }
    inline UInt32   LEToSystem(UInt32 v)    { return SwapOrder(v); }
    inline SInt32   LEToSystem(SInt32 v)    { return SwapOrder(v); }
    inline UInt64   LEToSystem(UInt64 v)    { return SwapOrder(v); }
    inline SInt64   LEToSystem(SInt64 v)    { return SwapOrder(v); }
    inline float    LEToSystem(float  v)    { return SwapOrder(v); }
    inline double   LEToSystem(double v)    { return SwapOrder(v); }

    // Big Endian to System (BE)
    inline UByte    BEToSystem(UByte  v)    { return v; }
    inline SByte    BEToSystem(SByte  v)    { return v; }
    inline UInt16   BEToSystem(UInt16 v)    { return v; }
    inline SInt16   BEToSystem(SInt16 v)    { return v; }
    inline UInt32   BEToSystem(UInt32 v)    { return v; }
    inline SInt32   BEToSystem(SInt32 v)    { return v; }
    inline UInt64   BEToSystem(UInt64 v)    { return v; }
    inline SInt64   BEToSystem(SInt64 v)    { return v; }
    inline float    BEToSystem(float  v)    { return v; }
    inline double   BEToSystem(double v)    { return v; }

    // System (BE) to Little Endian
    inline UByte    SystemToLE(UByte  v)    { return SwapOrder(v); }
    inline SByte    SystemToLE(SByte  v)    { return SwapOrder(v); }
    inline UInt16   SystemToLE(UInt16 v)    { return SwapOrder(v); }
    inline SInt16   SystemToLE(SInt16 v)    { return SwapOrder(v); }
    inline UInt32   SystemToLE(UInt32 v)    { return SwapOrder(v); }
    inline SInt32   SystemToLE(SInt32 v)    { return SwapOrder(v); }
    inline UInt64   SystemToLE(UInt64 v)    { return SwapOrder(v); }
    inline SInt64   SystemToLE(SInt64 v)    { return SwapOrder(v); }
    inline float    SystemToLE(float  v)    { return SwapOrder(v); }
    inline double   SystemToLE(double v)    { return SwapOrder(v); }

    // System (BE) to Big Endian
    inline UByte    SystemToBE(UByte  v)    { return v; }
    inline SByte    SystemToBE(SByte  v)    { return v; }
    inline UInt16   SystemToBE(UInt16 v)    { return v; }
    inline SInt16   SystemToBE(SInt16 v)    { return v; }
    inline UInt32   SystemToBE(UInt32 v)    { return v; }
    inline SInt32   SystemToBE(SInt32 v)    { return v; }
    inline UInt64   SystemToBE(UInt64 v)    { return v; }
    inline SInt64   SystemToBE(SInt64 v)    { return v; }
    inline float    SystemToBE(float  v)    { return v; }
    inline double   SystemToBE(double v)    { return v; }

#else
    #error "OVR_BYTE_ORDER must be defined to OVR_LITTLE_ENDIAN or OVR_BIG_ENDIAN"
#endif

} // namespace ByteUtil



// Used primarily for hardware interfacing such as sensor reports, firmware, etc.
// Reported data is all little-endian.
inline UInt16 DecodeUInt16(const UByte* buffer)
{
    return ByteUtil::LEToSystem ( *(const UInt16*)buffer );
}

inline SInt16 DecodeSInt16(const UByte* buffer)
{
    return ByteUtil::LEToSystem ( *(const SInt16*)buffer );
}

inline UInt32 DecodeUInt32(const UByte* buffer)
{    
    return ByteUtil::LEToSystem ( *(const UInt32*)buffer );
}

inline SInt32 DecodeSInt32(const UByte* buffer)
{    
    return ByteUtil::LEToSystem ( *(const SInt32*)buffer );
}

inline float DecodeFloat(const UByte* buffer)
{
    union {
        UInt32 U;
        float  F;
    };

    U = DecodeUInt32(buffer);
    return F;
}

inline void EncodeUInt16(UByte* buffer, UInt16 val)
{
    *(UInt16*)buffer = ByteUtil::SystemToLE ( val );
}

inline void EncodeSInt16(UByte* buffer, SInt16 val)
{
    *(SInt16*)buffer = ByteUtil::SystemToLE ( val );
}

inline void EncodeUInt32(UByte* buffer, UInt32 val)
{
    *(UInt32*)buffer = ByteUtil::SystemToLE ( val );
}

inline void EncodeSInt32(UByte* buffer, SInt32 val)
{
    *(SInt32*)buffer = ByteUtil::SystemToLE ( val );
}

inline void EncodeFloat(UByte* buffer, float val)
{
    union {
        UInt32 U;
        float  F;
    };

    F = val;
    EncodeUInt32(buffer, U);
}

// Converts an 8-bit binary-coded decimal
inline SByte DecodeBCD(UByte byte)
{
    UByte digit1 = (byte >> 4) & 0x0f;
    UByte digit2 = byte & 0x0f;
    int decimal = digit1 * 10 + digit2;   // maximum value = 99
    return (SByte)decimal;
}


}} // OVR::Alg

#endif