summaryrefslogtreecommitdiffstats
path: root/LibOVR/Src/Kernel/OVR_Timer.cpp
blob: 3a75ec299c6aa9348479351a80897ade6dfccf44 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/************************************************************************************

Filename    :   OVR_Timer.cpp
Content     :   Provides static functions for precise timing
Created     :   September 19, 2012
Notes       : 

Copyright   :   Copyright 2014 Oculus VR, LLC All Rights reserved.

Licensed under the Oculus VR Rift SDK License Version 3.2 (the "License"); 
you may not use the Oculus VR Rift SDK except in compliance with the License, 
which is provided at the time of installation or download, or which 
otherwise accompanies this software in either electronic or hard copy form.

You may obtain a copy of the License at

http://www.oculusvr.com/licenses/LICENSE-3.2 

Unless required by applicable law or agreed to in writing, the Oculus VR SDK 
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

************************************************************************************/

#include "OVR_Timer.h"
#include "OVR_Log.h"

#if defined(OVR_OS_MS) && !defined(OVR_OS_MS_MOBILE)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <MMSystem.h>
#elif defined(OVR_OS_ANDROID)
#include <time.h>
#include <android/log.h>
#elif defined(OVR_OS_MAC)
#include <mach/mach_time.h>
#else
#include <time.h>
#include <sys/time.h>
#include <errno.h>
#endif


#if defined(OVR_BUILD_DEBUG) && defined(OVR_OS_WIN32)
    #ifndef NTSTATUS
        #define NTSTATUS DWORD
    #endif

    typedef NTSTATUS (NTAPI* NtQueryTimerResolutionType)(PULONG MaximumTime, PULONG MinimumTime, PULONG CurrentTime);
    NtQueryTimerResolutionType pNtQueryTimerResolution;
#endif



#if defined(OVR_OS_MS) && !defined(OVR_OS_WIN32) // Non-desktop Microsoft platforms...

// Add this alias here because we're not going to include OVR_CAPI.cpp
extern "C" {
    double ovr_GetTimeInSeconds()
    {
        return Timer::GetSeconds();
    }
}

#endif




namespace OVR {

// For recorded data playback
bool   Timer::useFakeSeconds = false;
double Timer::FakeSeconds    = 0;




//------------------------------------------------------------------------
// *** Android Specific Timer

#if defined(OVR_OS_ANDROID) // To consider: This implementation can also work on most Linux distributions

//------------------------------------------------------------------------
// *** Timer - Platform Independent functions

// Returns global high-resolution application timer in seconds.
double Timer::GetSeconds()
{
	if(useFakeSeconds)
		return FakeSeconds;

    // Choreographer vsync timestamp is based on.
    struct timespec tp;
    const int       status = clock_gettime(CLOCK_MONOTONIC, &tp);

#ifdef OVR_BUILD_DEBUG
    if (status != 0)
    {
        OVR_DEBUG_LOG(("clock_gettime status=%i", status ));
    }
#else
    OVR_UNUSED(status);
#endif

    return (double)tp.tv_sec;
}



uint64_t Timer::GetTicksNanos()
{
    if (useFakeSeconds)
        return (uint64_t) (FakeSeconds * NanosPerSecond);

    // Choreographer vsync timestamp is based on.
    struct timespec tp;
    const int       status = clock_gettime(CLOCK_MONOTONIC, &tp);

#ifdef OVR_BUILD_DEBUG
    if (status != 0)
    {
        OVR_DEBUG_LOG(("clock_gettime status=%i", status ));
    }
#else
    OVR_UNUSED(status);
#endif

    const uint64_t result = (uint64_t)tp.tv_sec * (uint64_t)(1000 * 1000 * 1000) + uint64_t(tp.tv_nsec);
    return result;
}


void Timer::initializeTimerSystem()
{
    // Empty for this platform.
}

void Timer::shutdownTimerSystem()
{
    // Empty for this platform.
}





//------------------------------------------------------------------------
// *** Win32 Specific Timer

#elif defined (OVR_OS_MS)


// This helper class implements high-resolution wrapper that combines timeGetTime() output
// with QueryPerformanceCounter.  timeGetTime() is lower precision but drives the high bits,
// as it's tied to the system clock.
struct PerformanceTimer
{
    PerformanceTimer()
        : UsingVistaOrLater(false),
          TimeCS(),
          OldMMTimeMs(0), 
          MMTimeWrapCounter(0), 
          PerfFrequency(0),
          PerfFrequencyInverse(0),
          PerfFrequencyInverseNanos(0),
          PerfMinusTicksDeltaNanos(0),
          LastResultNanos(0)
    { }
    
    enum {
        MMTimerResolutionNanos = 1000000
    };
   
    void    Initialize();
    void    Shutdown();

    uint64_t  GetTimeSeconds();
    double    GetTimeSecondsDouble();
    uint64_t  GetTimeNanos();

    UINT64 getFrequency()
    {
        if (PerfFrequency == 0)
        {
            LARGE_INTEGER freq;
            QueryPerformanceFrequency(&freq);
            PerfFrequency = freq.QuadPart;
            PerfFrequencyInverse = 1.0 / (double)PerfFrequency;
            PerfFrequencyInverseNanos = 1000000000.0 / (double)PerfFrequency;
        }        
        return PerfFrequency;
    }
    
    double GetFrequencyInverse()
    {
        OVR_ASSERT(PerfFrequencyInverse != 0.0); // Assert that the frequency has been initialized.
        return PerfFrequencyInverse;
    }

	bool            UsingVistaOrLater;

    CRITICAL_SECTION TimeCS;
    // timeGetTime() support with wrap.
    uint32_t        OldMMTimeMs;
    uint32_t        MMTimeWrapCounter;
    // Cached performance frequency result.
    uint64_t        PerfFrequency;              // cycles per second, typically a large value like 3000000, but usually not the same as the CPU clock rate.
    double          PerfFrequencyInverse;       // seconds per cycle (will be a small fractional value).
    double          PerfFrequencyInverseNanos;  // nanoseconds per cycle.
    
    // Computed as (perfCounterNanos - ticksCounterNanos) initially,
    // and used to adjust timing.
    uint64_t        PerfMinusTicksDeltaNanos;
    // Last returned value in nanoseconds, to ensure we don't back-step in time.
    uint64_t        LastResultNanos;
};

static PerformanceTimer Win32_PerfTimer;


void PerformanceTimer::Initialize()
{
    #if defined(OVR_OS_WIN32) // Desktop Windows only
        // The following has the effect of setting the NT timer resolution (NtSetTimerResolution) to 1 millisecond.
        MMRESULT mmr = timeBeginPeriod(1);
        OVR_ASSERT(TIMERR_NOERROR == mmr);
        OVR_UNUSED(mmr);
    #endif

    InitializeCriticalSection(&TimeCS);
    MMTimeWrapCounter = 0;
    getFrequency();

    #if defined(OVR_OS_WIN32) // Desktop Windows only
	    // Set Vista flag.  On Vista, we can just use QPC() without all the extra work
        OSVERSIONINFOEX ver;
	    ZeroMemory(&ver, sizeof(OSVERSIONINFOEX));
	    ver.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
	    ver.dwMajorVersion = 6; // Vista+

        DWORDLONG condMask = 0;
        VER_SET_CONDITION(condMask, VER_MAJORVERSION, VER_GREATER_EQUAL);

	    // VerifyVersionInfo returns true if the OS meets the conditions set above
	    UsingVistaOrLater = VerifyVersionInfo(&ver, VER_MAJORVERSION, condMask) != 0;
    #else
        UsingVistaOrLater = true;
    #endif

	OVR_DEBUG_LOG(("PerformanceTimer UsingVistaOrLater = %d", (int)UsingVistaOrLater));

    #if defined(OVR_BUILD_DEBUG) && defined(OVR_OS_WIN32)
        HMODULE hNtDll = LoadLibrary(L"NtDll.dll");
        if (hNtDll)
        {
            pNtQueryTimerResolution = (NtQueryTimerResolutionType)GetProcAddress(hNtDll, "NtQueryTimerResolution");
          //pNtSetTimerResolution = (NtSetTimerResolutionType)GetProcAddress(hNtDll, "NtSetTimerResolution");

            if(pNtQueryTimerResolution)
            {
                ULONG MinimumResolution; // in 100-ns units
                ULONG MaximumResolution;
                ULONG ActualResolution;
                pNtQueryTimerResolution(&MinimumResolution, &MaximumResolution, &ActualResolution);
	            OVR_DEBUG_LOG(("NtQueryTimerResolution = Min %ld us, Max %ld us, Current %ld us", MinimumResolution / 10, MaximumResolution / 10, ActualResolution / 10));
            }

            FreeLibrary(hNtDll);
        }
    #endif
}

void PerformanceTimer::Shutdown()
{
    DeleteCriticalSection(&TimeCS);

    #if defined(OVR_OS_WIN32) // Desktop Windows only
        MMRESULT mmr = timeEndPeriod(1);
        OVR_ASSERT(TIMERR_NOERROR == mmr);
        OVR_UNUSED(mmr);
    #endif
}


uint64_t PerformanceTimer::GetTimeSeconds()
{
	if (UsingVistaOrLater)
	{
        LARGE_INTEGER li;
		QueryPerformanceCounter(&li);
        OVR_ASSERT(PerfFrequencyInverse != 0); // Initialize should have been called earlier.
        return (uint64_t)(li.QuadPart * PerfFrequencyInverse);
    }

    return (uint64_t)(GetTimeNanos() * .0000000001);
}


double PerformanceTimer::GetTimeSecondsDouble()
{
	if (UsingVistaOrLater)
	{
        LARGE_INTEGER li;
		QueryPerformanceCounter(&li);
        OVR_ASSERT(PerfFrequencyInverse != 0);
        return (li.QuadPart * PerfFrequencyInverse);
    }

    return (GetTimeNanos() * .0000000001);
}


uint64_t PerformanceTimer::GetTimeNanos()
{
    uint64_t      resultNanos;
    LARGE_INTEGER li;

    OVR_ASSERT(PerfFrequencyInverseNanos != 0); // Initialize should have been called earlier.

    if (UsingVistaOrLater) // Includes non-desktop platforms
	{
		// Then we can use QPC() directly without all that extra work
		QueryPerformanceCounter(&li);
        resultNanos = (uint64_t)(li.QuadPart * PerfFrequencyInverseNanos);
	}
	else
	{
        // On Win32 QueryPerformanceFrequency is unreliable due to SMP and
        // performance levels, so use this logic to detect wrapping and track
        // high bits.
        ::EnterCriticalSection(&TimeCS);

        // Get raw value and perf counter "At the same time".
        QueryPerformanceCounter(&li);

        DWORD mmTimeMs = timeGetTime();
        if (OldMMTimeMs > mmTimeMs)
            MMTimeWrapCounter++;
        OldMMTimeMs = mmTimeMs;

        // Normalize to nanoseconds.
        uint64_t  perfCounterNanos   = (uint64_t)(li.QuadPart * PerfFrequencyInverseNanos);
        uint64_t  mmCounterNanos     = ((uint64_t(MMTimeWrapCounter) << 32) | mmTimeMs) * 1000000;
        if (PerfMinusTicksDeltaNanos == 0)
            PerfMinusTicksDeltaNanos = perfCounterNanos - mmCounterNanos;
 
        // Compute result before snapping. 
        //
        // On first call, this evaluates to:
        //          resultNanos = mmCounterNanos.    
        // Next call, assuming no wrap:
        //          resultNanos = prev_mmCounterNanos + (perfCounterNanos - prev_perfCounterNanos).        
        // After wrap, this would be:
        //          resultNanos = snapped(prev_mmCounterNanos +/- 1ms) + (perfCounterNanos - prev_perfCounterNanos).
        //
        resultNanos = perfCounterNanos - PerfMinusTicksDeltaNanos;    

        // Snap the range so that resultNanos never moves further apart then its target resolution.
        // It's better to allow more slack on the high side as timeGetTime() may be updated at sporadically 
        // larger then 1 ms intervals even when 1 ms resolution is requested.
        if (resultNanos > (mmCounterNanos + MMTimerResolutionNanos*2))
        {
            resultNanos = mmCounterNanos + MMTimerResolutionNanos*2;
            if (resultNanos < LastResultNanos)
                resultNanos = LastResultNanos;
            PerfMinusTicksDeltaNanos = perfCounterNanos - resultNanos;
        }
        else if (resultNanos < (mmCounterNanos - MMTimerResolutionNanos))
        {
            resultNanos = mmCounterNanos - MMTimerResolutionNanos;
            if (resultNanos < LastResultNanos)
                resultNanos = LastResultNanos;
            PerfMinusTicksDeltaNanos = perfCounterNanos - resultNanos;
        }

        LastResultNanos = resultNanos;
        ::LeaveCriticalSection(&TimeCS);
	}

	//Tom's addition, to keep precision
	//static uint64_t    initial_time = 0;
	//if (!initial_time) initial_time = resultNanos;
	//resultNanos -= initial_time;
	// FIXME: This cannot be used for cross-process timestamps

    return resultNanos;
}


//------------------------------------------------------------------------
// *** Timer - Platform Independent functions

// Returns global high-resolution application timer in seconds.
double Timer::GetSeconds()
{
	if(useFakeSeconds)
		return FakeSeconds;

    return Win32_PerfTimer.GetTimeSecondsDouble();
}



// Delegate to PerformanceTimer.
uint64_t Timer::GetTicksNanos()
{
    if (useFakeSeconds)
        return (uint64_t) (FakeSeconds * NanosPerSecond);

    return Win32_PerfTimer.GetTimeNanos();
}
void Timer::initializeTimerSystem()
{
    Win32_PerfTimer.Initialize();
}
void Timer::shutdownTimerSystem()
{
    Win32_PerfTimer.Shutdown();
}



#elif defined(OVR_OS_MAC)


double Timer::TimeConvertFactorNanos   = 0.0;
double Timer::TimeConvertFactorSeconds = 0.0;


//------------------------------------------------------------------------
// *** Standard OS Timer     

// Returns global high-resolution application timer in seconds.
double Timer::GetSeconds()
{
	if(useFakeSeconds)
		return FakeSeconds;
    
    OVR_ASSERT(TimeConvertFactorNanos != 0.0);
    return (double)mach_absolute_time() * TimeConvertFactorNanos;
}


uint64_t Timer::GetTicksNanos()
{
    if (useFakeSeconds)
        return (uint64_t) (FakeSeconds * NanosPerSecond);
    
    OVR_ASSERT(TimeConvertFactorSeconds != 0.0);
    return (uint64_t)(mach_absolute_time() * TimeConvertFactorSeconds);
}

void Timer::initializeTimerSystem()
{
    mach_timebase_info_data_t timeBase;
    mach_timebase_info(&timeBase);
    TimeConvertFactorSeconds = ((double)timeBase.numer / (double)timeBase.denom);
    TimeConvertFactorNanos   = TimeConvertFactorSeconds / 1000000000.0;
}

void Timer::shutdownTimerSystem()
{
    // Empty for this platform.
}


#else // Posix platforms (e.g. Linux, BSD Unix)


bool Timer::MonotonicClockAvailable = false;


// Returns global high-resolution application timer in seconds.
double Timer::GetSeconds()
{
	if(useFakeSeconds)
		return FakeSeconds;

    // http://linux/die/netman3/clock_gettime
    #if defined(CLOCK_MONOTONIC) // If we can use clock_gettime, which has nanosecond precision...
        if(MonotonicClockAvailable)
        {
            timespec ts;
            clock_gettime(CLOCK_MONOTONIC, &ts); // Better to use CLOCK_MONOTONIC than CLOCK_REALTIME.
            return static_cast<double>(ts.tv_sec) + static_cast<double>(ts.tv_nsec) / 1E9;
        }
    #endif

    // We cannot use rdtsc because its frequency changes at runtime.
    struct timeval tv;
    gettimeofday(&tv, 0);

    return static_cast<double>(tv.tv_sec) + static_cast<double>(tv.tv_usec) / 1E6;
}


uint64_t Timer::GetTicksNanos()
{
    if (useFakeSeconds)
        return (uint64_t) (FakeSeconds * NanosPerSecond);

    #if defined(CLOCK_MONOTONIC) // If we can use clock_gettime, which has nanosecond precision...
        if(MonotonicClockAvailable)
        {
            timespec ts;
            clock_gettime(CLOCK_MONOTONIC, &ts);
            return ((uint64_t)ts.tv_sec * 1000000000ULL) + (uint64_t)ts.tv_nsec;
        }
    #endif


    // We cannot use rdtsc because its frequency changes at runtime.
	uint64_t result;

    // Return microseconds.
    struct timeval tv;

    gettimeofday(&tv, 0);

    result = (uint64_t)tv.tv_sec * 1000000;
    result += tv.tv_usec;

    return result * 1000;
}


void Timer::initializeTimerSystem()
{
    #if defined(CLOCK_MONOTONIC)
        timespec ts; // We could also check for the availability of CLOCK_MONOTONIC with sysconf(_SC_MONOTONIC_CLOCK)
        int result = clock_gettime(CLOCK_MONOTONIC, &ts);
        MonotonicClockAvailable = (result == 0);
    #endif
}

void Timer::shutdownTimerSystem()
{
    // Empty for this platform.
}



#endif  // OS-specific



} // OVR