1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
/************************************************************************************
Filename : OVR_Timer.cpp
Content : Provides static functions for precise timing
Created : September 19, 2012
Notes :
Copyright : Copyright 2014 Oculus VR, Inc. All Rights reserved.
Licensed under the Oculus VR Rift SDK License Version 3.1 (the "License");
you may not use the Oculus VR Rift SDK except in compliance with the License,
which is provided at the time of installation or download, or which
otherwise accompanies this software in either electronic or hard copy form.
You may obtain a copy of the License at
http://www.oculusvr.com/licenses/LICENSE-3.1
Unless required by applicable law or agreed to in writing, the Oculus VR SDK
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
************************************************************************************/
#include "OVR_Timer.h"
#include "OVR_Log.h"
#if defined (OVR_OS_WIN32)
#include <windows.h>
#elif defined(OVR_OS_ANDROID)
#include <time.h>
#include <android/log.h>
#else
#include <sys/time.h>
#endif
namespace OVR {
// For recorded data playback
bool Timer::useFakeSeconds = false;
double Timer::FakeSeconds = 0;
//------------------------------------------------------------------------
// *** Timer - Platform Independent functions
// Returns global high-resolution application timer in seconds.
double Timer::GetSeconds()
{
if(useFakeSeconds)
return FakeSeconds;
return double(Timer::GetTicksNanos()) * 0.000000001;
}
#ifndef OVR_OS_WIN32
// Unused on OSs other then Win32.
void Timer::initializeTimerSystem()
{
}
void Timer::shutdownTimerSystem()
{
}
#endif
//------------------------------------------------------------------------
// *** Android Specific Timer
#if defined(OVR_OS_ANDROID)
UInt64 Timer::GetTicksNanos()
{
if (useFakeSeconds)
return (UInt64) (FakeSeconds * NanosPerSecond);
// Choreographer vsync timestamp is based on.
struct timespec tp;
const int status = clock_gettime(CLOCK_MONOTONIC, &tp);
if (status != 0)
{
OVR_DEBUG_LOG(("clock_gettime status=%i", status ));
}
const UInt64 result = (UInt64)tp.tv_sec * (UInt64)(1000 * 1000 * 1000) + UInt64(tp.tv_nsec);
return result;
}
//------------------------------------------------------------------------
// *** Win32 Specific Timer
#elif defined (OVR_OS_WIN32)
// This helper class implements high-resolution wrapper that combines timeGetTime() output
// with QueryPerformanceCounter. timeGetTime() is lower precision but drives the high bits,
// as it's tied to the system clock.
struct PerformanceTimer
{
PerformanceTimer()
: OldMMTimeMs(0), MMTimeWrapCounter(0), PrefFrequency(0),
LastResultNanos(0), PerfMinusTicksDeltaNanos(0)
{ }
enum {
MMTimerResolutionNanos = 1000000
};
void Initialize();
void Shutdown();
UInt64 GetTimeNanos();
UINT64 getFrequency()
{
if (PrefFrequency == 0)
{
LARGE_INTEGER freq;
QueryPerformanceFrequency(&freq);
PrefFrequency = freq.QuadPart;
}
return PrefFrequency;
}
CRITICAL_SECTION TimeCS;
// timeGetTime() support with wrap.
UInt32 OldMMTimeMs;
UInt32 MMTimeWrapCounter;
// Cached performance frequency result.
UInt64 PrefFrequency;
// Computed as (perfCounterNanos - ticksCounterNanos) initially,
// and used to adjust timing.
UInt64 PerfMinusTicksDeltaNanos;
// Last returned value in nanoseconds, to ensure we don't back-step in time.
UInt64 LastResultNanos;
};
PerformanceTimer Win32_PerfTimer;
void PerformanceTimer::Initialize()
{
timeBeginPeriod(1);
InitializeCriticalSection(&TimeCS);
MMTimeWrapCounter = 0;
getFrequency();
}
void PerformanceTimer::Shutdown()
{
DeleteCriticalSection(&TimeCS);
timeEndPeriod(1);
}
UInt64 PerformanceTimer::GetTimeNanos()
{
UInt64 resultNanos;
LARGE_INTEGER li;
DWORD mmTimeMs;
// On Win32 QueryPerformanceFrequency is unreliable due to SMP and
// performance levels, so use this logic to detect wrapping and track
// high bits.
::EnterCriticalSection(&TimeCS);
// Get raw value and perf counter "At the same time".
mmTimeMs = timeGetTime();
QueryPerformanceCounter(&li);
if (OldMMTimeMs > mmTimeMs)
MMTimeWrapCounter++;
OldMMTimeMs = mmTimeMs;
// Normalize to nanoseconds.
UInt64 mmCounterNanos = ((UInt64(MMTimeWrapCounter) << 32) | mmTimeMs) * 1000000;
UInt64 frequency = getFrequency();
UInt64 perfCounterSeconds = UInt64(li.QuadPart) / frequency;
UInt64 perfRemainderNanos = ( (UInt64(li.QuadPart) - perfCounterSeconds * frequency) *
Timer::NanosPerSecond ) / frequency;
UInt64 perfCounterNanos = perfCounterSeconds * Timer::NanosPerSecond + perfRemainderNanos;
if (PerfMinusTicksDeltaNanos == 0)
PerfMinusTicksDeltaNanos = perfCounterNanos - mmCounterNanos;
// Compute result before snapping.
//
// On first call, this evaluates to:
// resultNanos = mmCounterNanos.
// Next call, assuming no wrap:
// resultNanos = prev_mmCounterNanos + (perfCounterNanos - prev_perfCounterNanos).
// After wrap, this would be:
// resultNanos = snapped(prev_mmCounterNanos +/- 1ms) + (perfCounterNanos - prev_perfCounterNanos).
//
resultNanos = perfCounterNanos - PerfMinusTicksDeltaNanos;
// Snap the range so that resultNanos never moves further apart then its target resolution.
// It's better to allow more slack on the high side as timeGetTime() may be updated at sporadically
// larger then 1 ms intervals even when 1 ms resolution is requested.
if (resultNanos > (mmCounterNanos + MMTimerResolutionNanos*2))
{
resultNanos = mmCounterNanos + MMTimerResolutionNanos*2;
if (resultNanos < LastResultNanos)
resultNanos = LastResultNanos;
PerfMinusTicksDeltaNanos = perfCounterNanos - resultNanos;
}
else if (resultNanos < (mmCounterNanos - MMTimerResolutionNanos))
{
resultNanos = mmCounterNanos - MMTimerResolutionNanos;
if (resultNanos < LastResultNanos)
resultNanos = LastResultNanos;
PerfMinusTicksDeltaNanos = perfCounterNanos - resultNanos;
}
LastResultNanos = resultNanos;
::LeaveCriticalSection(&TimeCS);
//Tom's addition, to keep precision
static UInt64 initial_time = 0;
if (!initial_time) initial_time = resultNanos;
resultNanos -= initial_time;
return resultNanos;
}
// Delegate to PerformanceTimer.
UInt64 Timer::GetTicksNanos()
{
if (useFakeSeconds)
return (UInt64) (FakeSeconds * NanosPerSecond);
return Win32_PerfTimer.GetTimeNanos();
}
void Timer::initializeTimerSystem()
{
Win32_PerfTimer.Initialize();
}
void Timer::shutdownTimerSystem()
{
Win32_PerfTimer.Shutdown();
}
#else // !OVR_OS_WIN32 && !OVR_OS_ANDROID
//------------------------------------------------------------------------
// *** Standard OS Timer
UInt64 Timer::GetTicksNanos()
{
if (useFakeSeconds)
return (UInt64) (FakeSeconds * NanosPerSecond);
// TODO: prefer rdtsc when available?
UInt64 result;
// Return microseconds.
struct timeval tv;
gettimeofday(&tv, 0);
result = (UInt64)tv.tv_sec * 1000000;
result += tv.tv_usec;
return result * 1000;
}
#endif // OS-specific
} // OVR
|