aboutsummaryrefslogtreecommitdiffstats
path: root/LibOVR/Src/OVR_CAPI.cpp
blob: 253bb3b123a438b48c970e2454b7485ad54ec7d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
/************************************************************************************

Filename    :   OVR_CAPI.cpp
Content     :   Experimental simple C interface to the HMD - version 1.
Created     :   November 30, 2013
Authors     :   Michael Antonov

Copyright   :   Copyright 2014 Oculus VR, Inc. All Rights reserved.

Licensed under the Oculus VR Rift SDK License Version 3.1 (the "License"); 
you may not use the Oculus VR Rift SDK except in compliance with the License, 
which is provided at the time of installation or download, or which 
otherwise accompanies this software in either electronic or hard copy form.

You may obtain a copy of the License at

http://www.oculusvr.com/licenses/LICENSE-3.1 

Unless required by applicable law or agreed to in writing, the Oculus VR SDK 
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

************************************************************************************/

#include "OVR_CAPI.h"
#include "Kernel/OVR_Timer.h"
#include "Kernel/OVR_Math.h"
#include "Kernel/OVR_System.h"
#include "OVR_Stereo.h"
#include "OVR_Profile.h"

#include "CAPI/CAPI_GlobalState.h"
#include "CAPI/CAPI_HMDState.h"
#include "CAPI/CAPI_FrameTimeManager.h"


using namespace OVR;
using namespace OVR::Util::Render;

//-------------------------------------------------------------------------------------
// Math
namespace OVR {


// ***** FovPort

// C-interop support: FovPort <-> ovrFovPort
FovPort::FovPort(const ovrFovPort &src)
    : UpTan(src.UpTan), DownTan(src.DownTan), LeftTan(src.LeftTan), RightTan(src.RightTan)
{ }    

FovPort::operator const ovrFovPort () const
{
    ovrFovPort result;
    result.LeftTan  = LeftTan;
    result.RightTan = RightTan;
    result.UpTan    = UpTan;
    result.DownTan  = DownTan;
    return result;
}

// Converts Fov Tan angle units to [-1,1] render target NDC space
Vector2f FovPort::TanAngleToRendertargetNDC(Vector2f const &tanEyeAngle)
{  
    ScaleAndOffset2D eyeToSourceNDC = CreateNDCScaleAndOffsetFromFov(*this);
    return tanEyeAngle * eyeToSourceNDC.Scale + eyeToSourceNDC.Offset;
}


// ***** SensorState

SensorState::SensorState(const ovrSensorState& s)
{
    Predicted       = s.Predicted;
    Recorded        = s.Recorded;
    Temperature     = s.Temperature;
    StatusFlags     = s.StatusFlags;
}

SensorState::operator const ovrSensorState() const
{
    ovrSensorState result;
    result.Predicted    = Predicted;
    result.Recorded     = Recorded;
    result.Temperature  = Temperature;
    result.StatusFlags  = StatusFlags;
    return result;
}


} // namespace OVR

//-------------------------------------------------------------------------------------

using namespace OVR::CAPI;

#ifdef __cplusplus 
extern "C" {
#endif


// Used to generate projection from ovrEyeDesc::Fov
OVR_EXPORT ovrMatrix4f ovrMatrix4f_Projection(ovrFovPort fov, float znear, float zfar, ovrBool rightHanded)
{
    return CreateProjection(rightHanded ? true : false, fov, znear, zfar);
}


OVR_EXPORT ovrMatrix4f ovrMatrix4f_OrthoSubProjection(ovrMatrix4f projection, ovrVector2f orthoScale,
                                                      float orthoDistance, float eyeViewAdjustX)
{

    float orthoHorizontalOffset = eyeViewAdjustX / orthoDistance;

    // Current projection maps real-world vector (x,y,1) to the RT.
    // We want to find the projection that maps the range [-FovPixels/2,FovPixels/2] to
    // the physical [-orthoHalfFov,orthoHalfFov]
    // Note moving the offset from M[0][2]+M[1][2] to M[0][3]+M[1][3] - this means
    // we don't have to feed in Z=1 all the time.
    // The horizontal offset math is a little hinky because the destination is
    // actually [-orthoHalfFov+orthoHorizontalOffset,orthoHalfFov+orthoHorizontalOffset]
    // So we need to first map [-FovPixels/2,FovPixels/2] to
    //                         [-orthoHalfFov+orthoHorizontalOffset,orthoHalfFov+orthoHorizontalOffset]:
    // x1 = x0 * orthoHalfFov/(FovPixels/2) + orthoHorizontalOffset;
    //    = x0 * 2*orthoHalfFov/FovPixels + orthoHorizontalOffset;
    // But then we need the sam mapping as the existing projection matrix, i.e.
    // x2 = x1 * Projection.M[0][0] + Projection.M[0][2];
    //    = x0 * (2*orthoHalfFov/FovPixels + orthoHorizontalOffset) * Projection.M[0][0] + Projection.M[0][2];
    //    = x0 * Projection.M[0][0]*2*orthoHalfFov/FovPixels +
    //      orthoHorizontalOffset*Projection.M[0][0] + Projection.M[0][2];
    // So in the new projection matrix we need to scale by Projection.M[0][0]*2*orthoHalfFov/FovPixels and
    // offset by orthoHorizontalOffset*Projection.M[0][0] + Projection.M[0][2].

    Matrix4f ortho;
    ortho.M[0][0] = projection.M[0][0] * orthoScale.x;
    ortho.M[0][1] = 0.0f;
    ortho.M[0][2] = 0.0f;
    ortho.M[0][3] = -projection.M[0][2] + ( orthoHorizontalOffset * projection.M[0][0] );

    ortho.M[1][0] = 0.0f;
    ortho.M[1][1] = -projection.M[1][1] * orthoScale.y;       // Note sign flip (text rendering uses Y=down).
    ortho.M[1][2] = 0.0f;
    ortho.M[1][3] = -projection.M[1][2];

    /*
    if ( fabsf ( zNear - zFar ) < 0.001f )
    {
        ortho.M[2][0] = 0.0f;
        ortho.M[2][1] = 0.0f;
        ortho.M[2][2] = 0.0f;
        ortho.M[2][3] = zFar;
    }
    else
    {
        ortho.M[2][0] = 0.0f;
        ortho.M[2][1] = 0.0f;
        ortho.M[2][2] = zFar / (zNear - zFar);
        ortho.M[2][3] = (zFar * zNear) / (zNear - zFar);
    }
    */

    // MA: Undo effect of sign
    ortho.M[2][0] = 0.0f;
    ortho.M[2][1] = 0.0f;
    //ortho.M[2][2] = projection.M[2][2] * projection.M[3][2] * -1.0f; // reverse right-handedness
    ortho.M[2][2] = 0.0f;
    ortho.M[2][3] = 0.0f;
        //projection.M[2][3];

    // No perspective correction for ortho.
    ortho.M[3][0] = 0.0f;
    ortho.M[3][1] = 0.0f;
    ortho.M[3][2] = 0.0f;
    ortho.M[3][3] = 1.0f;

    return ortho;
}


OVR_EXPORT double ovr_GetTimeInSeconds()
{
    return Timer::GetSeconds();
}

// Waits until the specified absolute time.
OVR_EXPORT double ovr_WaitTillTime(double absTime)
{
    volatile int i;
    double       initialTime = ovr_GetTimeInSeconds();
    double       newTime     = initialTime;
    
    while(newTime < absTime)
    {
        for (int j = 0; j < 50; j++)
            i = 0;
        newTime = ovr_GetTimeInSeconds();
    }

    // How long we waited
    return newTime - initialTime;
}

//-------------------------------------------------------------------------------------

// 1. Init/shutdown.

static ovrBool CAPI_SystemInitCalled = FALSE;

OVR_EXPORT ovrBool ovr_Initialize()
{
    if (OVR::CAPI::GlobalState::pInstance)
        return TRUE;

    // We must set up the system for the plugin to work
    if (!OVR::System::IsInitialized())
    {        
        OVR::System::Init(OVR::Log::ConfigureDefaultLog(OVR::LogMask_All));
        CAPI_SystemInitCalled = TRUE;
    }

    // Constructor detects devices
    GlobalState::pInstance = new GlobalState;
    return TRUE;
}

OVR_EXPORT void ovr_Shutdown()
{
    if (!GlobalState::pInstance)
       return;

    delete GlobalState::pInstance;
    GlobalState::pInstance = 0;

    // We should clean up the system to be complete
    if (CAPI_SystemInitCalled)
    {
        OVR::System::Destroy();
        CAPI_SystemInitCalled = FALSE;
    }    
    return;
}


// There is a thread safety issue with ovrHmd_Detect in that multiple calls from different
// threads can corrupt the global array state. This would lead to two problems:
//  a) Create(index) enumerator may miss or overshoot items. Probably not a big deal
//     as game logic can easily be written to only do Detect(s)/Creates in one place.
//     The alternative would be to return list handle.
//  b) TBD: Un-mutexed Detect access from two threads could lead to crash. We should
//         probably check this.
//

OVR_EXPORT int ovrHmd_Detect()
{
    if (!GlobalState::pInstance)
        return 0;
    return GlobalState::pInstance->EnumerateDevices();
}


// ovrHmd_Create us explicitly separated from StartSensor and Configure to allow creation of 
// a relatively light-weight handle that would reference the device going forward and would 
// survive future ovrHmd_Detect calls. That is once ovrHMD is returned, index is no longer
// necessary and can be changed by a ovrHmd_Detect call.

OVR_EXPORT ovrHmd ovrHmd_Create(int index)
{
    if (!GlobalState::pInstance)
        return 0;
    Ptr<HMDDevice> device = *GlobalState::pInstance->CreateDevice(index);
    if (!device)
        return 0;

    HMDState* hmds = new HMDState(device);
    if (!hmds)
        return 0;

    return hmds;
}

OVR_EXPORT ovrHmd ovrHmd_CreateDebug(ovrHmdType type)
{
    if (!GlobalState::pInstance)
        return 0;    

    HMDState* hmds = new HMDState(type);    
    return hmds;
}

OVR_EXPORT void ovrHmd_Destroy(ovrHmd hmd)
{
    if (!hmd)
        return;
    // TBD: Any extra shutdown?
    HMDState* hmds = (HMDState*)hmd;
        
    {   // Thread checker in its own scope, to avoid access after 'delete'.
        // Essentially just checks that no other RenderAPI function is executing.
        ThreadChecker::Scope checkScope(&hmds->RenderAPIThreadChecker, "ovrHmd_Destroy");
    }    

    delete (HMDState*)hmd;
}


OVR_EXPORT const char* ovrHmd_GetLastError(ovrHmd hmd)
{
    using namespace OVR;
    if (!hmd)
    {
        if (!GlobalState::pInstance)  
            return "LibOVR not initialized.";
        return GlobalState::pInstance->GetLastError();
    }
    HMDState* p = (HMDState*)hmd;
    return p->GetLastError();
}


//-------------------------------------------------------------------------------------
// *** Sensor

// Sensor APIs are separated from Create & Configure for several reasons:
//  - They need custom parameters that control allocation of heavy resources
//    such as Vision tracking, which you don't want to create unless necessary.
//  - A game may want to switch some sensor settings based on user input, 
//    or at lease enable/disable features such as Vision for debugging.
//  - The same or syntactically similar sensor interface is likely to be used if we 
//    introduce controllers.
//
//  - Sensor interface functions are all Thread-safe, unlike the frame/render API
//    functions that have different rules (all frame access functions
//    must be on render thread)

OVR_EXPORT ovrBool ovrHmd_StartSensor(ovrHmd hmd, unsigned int supportedCaps, unsigned int requiredCaps)
{
    HMDState* p = (HMDState*)hmd;
    // TBD: Decide if we null-check arguments.
    return p->StartSensor(supportedCaps, requiredCaps);
}

OVR_EXPORT void ovrHmd_StopSensor(ovrHmd hmd)
{
    HMDState* p = (HMDState*)hmd;
    p->StopSensor();
}

OVR_EXPORT void ovrHmd_ResetSensor(ovrHmd hmd)
{
    HMDState* p = (HMDState*)hmd;
    p->ResetSensor();
}

OVR_EXPORT ovrSensorState ovrHmd_GetSensorState(ovrHmd hmd, double absTime)
{
    HMDState* p = (HMDState*)hmd;
    return p->PredictedSensorState(absTime);
}

// Returns information about a sensor. Only valid after SensorStart.
OVR_EXPORT ovrBool ovrHmd_GetSensorDesc(ovrHmd hmd, ovrSensorDesc* descOut)
{
    HMDState* p = (HMDState*)hmd;
    return p->GetSensorDesc(descOut) ? TRUE : FALSE;
}



//-------------------------------------------------------------------------------------
// *** General Setup


OVR_EXPORT void ovrHmd_GetDesc(ovrHmd hmd, ovrHmdDesc* desc)
{
    HMDState* hmds = (HMDState*)hmd;    
    *desc = hmds->RenderState.GetDesc();
    desc->Handle = hmd;
}

// Per HMD -> calculateIdealPixelSize
OVR_EXPORT ovrSizei ovrHmd_GetFovTextureSize(ovrHmd hmd, ovrEyeType eye, ovrFovPort fov,
                                             float pixelsPerDisplayPixel)
{
    if (!hmd) return Sizei(0);
    
    HMDState* hmds = (HMDState*)hmd;
    return hmds->RenderState.GetFOVTextureSize(eye, fov, pixelsPerDisplayPixel);
}


//-------------------------------------------------------------------------------------


OVR_EXPORT 
ovrBool ovrHmd_ConfigureRendering( ovrHmd hmd,
                                   const ovrRenderAPIConfig* apiConfig,
                                   unsigned int hmdCaps,
                                   unsigned int distortionCaps,
                                   const ovrEyeDesc eyeDescIn[2],
                                   ovrEyeRenderDesc eyeRenderDescOut[2] )
{
    if (!hmd) return FALSE;
    return ((HMDState*)hmd)->ConfigureRendering(eyeRenderDescOut, eyeDescIn,
                                                apiConfig, hmdCaps, distortionCaps);
}



// TBD: MA - Deprecated, need alternative
void ovrHmd_SetVsync(ovrHmd hmd, ovrBool vsync)
{
    if (!hmd) return;

    return ((HMDState*)hmd)->TimeManager.SetVsync(vsync? true : false);
}


OVR_EXPORT ovrFrameTiming ovrHmd_BeginFrame(ovrHmd hmd, unsigned int frameIndex)
{           
    HMDState* hmds = (HMDState*)hmd;
    if (!hmds)
    {
        ovrFrameTiming f;
        memset(&f, 0, sizeof(f));
        return f;
    }

    // Check: Proper configure and threading state for the call.
    hmds->checkRenderingConfigured("ovrHmd_BeginFrame");
    OVR_ASSERT_LOG(hmds->BeginFrameCalled == false, ("ovrHmd_BeginFrame called multiple times."));
    ThreadChecker::Scope checkScope(&hmds->RenderAPIThreadChecker, "ovrHmd_BeginFrame");
    
    hmds->BeginFrameCalled   = true;
    hmds->BeginFrameThreadId = OVR::GetCurrentThreadId();

    return ovrHmd_BeginFrameTiming(hmd, frameIndex);
}


// Renders textures to frame buffer
OVR_EXPORT void ovrHmd_EndFrame(ovrHmd hmd)
{
    HMDState* hmds = (HMDState*)hmd;
    if (!hmds) return;

    // Debug state checks: Must be in BeginFrame, on the same thread.
    hmds->checkBeginFrameScope("ovrHmd_EndFrame");
    ThreadChecker::Scope checkScope(&hmds->RenderAPIThreadChecker, "ovrHmd_EndFrame");  

    // TBD: Move directly into renderer
    bool dk2LatencyTest = (hmds->HMDInfo.HmdType == HmdType_DK2) &&
                           (hmds->SensorCaps & ovrHmdCap_LatencyTest);
    if (dk2LatencyTest)
    {
        hmds->LatencyTest2DrawColor[0] = hmds->TimeManager.GetFrameLatencyTestDrawColor();
        hmds->LatencyTest2DrawColor[1] = hmds->LatencyTest2DrawColor[0];
        hmds->LatencyTest2DrawColor[2] = hmds->LatencyTest2DrawColor[0];
    }

    if (hmds->pRenderer)
    {
        hmds->pRenderer->EndFrame(true,
                                  hmds->LatencyTestActive ? hmds->LatencyTestDrawColor : NULL,
                            
                                  // MA: Use this color since we are running DK2 test all the time.
                                  dk2LatencyTest ? hmds->LatencyTest2DrawColor : 0
                                  //hmds->LatencyTest2Active ? hmds->LatencyTest2DrawColor : NULL
                                  );
    }
    // Call after present
    ovrHmd_EndFrameTiming(hmd);

    if (dk2LatencyTest)
    {
        hmds->TimeManager.UpdateFrameLatencyTrackingAfterEndFrame(
            hmds->LatencyTest2DrawColor[0], hmds->LatencyUtil2.GetLocklessState());
    }

    // Out of BeginFrame
    hmds->BeginFrameThreadId = 0;
    hmds->BeginFrameCalled   = false;
}


OVR_EXPORT ovrPosef ovrHmd_BeginEyeRender(ovrHmd hmd, ovrEyeType eye)
{
    HMDState* hmds = (HMDState*)hmd;
    if (!hmds) return ovrPosef();
    return hmds->BeginEyeRender(eye);
}

OVR_EXPORT void ovrHmd_EndEyeRender(ovrHmd hmd, ovrEyeType eye,
                                    ovrPosef renderPose, ovrTexture* eyeTexture)
{
    HMDState* hmds = (HMDState*)hmd;
    if (!hmds) return;
    hmds->EndEyeRender(eye, renderPose, eyeTexture);
}


//-------------------------------------------------------------------------------------
// ***** Frame Timing logic


OVR_EXPORT ovrFrameTiming ovrHmd_GetFrameTiming(ovrHmd hmd, unsigned int frameIndex)
{
    ovrFrameTiming f;
    memset(&f, 0, sizeof(f));

    HMDState* hmds = (HMDState*)hmd;
    if (hmds)
    {
        FrameTimeManager::Timing frameTiming = hmds->TimeManager.GetFrameTiming(frameIndex);

        f.ThisFrameSeconds     = frameTiming.ThisFrameTime;
        f.NextFrameSeconds       = frameTiming.NextFrameTime;
        f.TimewarpPointSeconds  = frameTiming.TimewarpPointTime;
        f.ScanoutMidpointSeconds= frameTiming.MidpointTime;
        f.EyeScanoutSeconds[0]  = frameTiming.EyeRenderTimes[0];
        f.EyeScanoutSeconds[1]  = frameTiming.EyeRenderTimes[1];

         // Compute DeltaSeconds.
        f.DeltaSeconds = (hmds->LastGetFrameTimeSeconds == 0.0f) ? 0.0f :
                         (float) (f.ThisFrameSeconds - hmds->LastFrameTimeSeconds);    
        hmds->LastGetFrameTimeSeconds = f.ThisFrameSeconds;
        if (f.DeltaSeconds > 1.0f)
            f.DeltaSeconds = 1.0f;
    }
        
    return f;
}

OVR_EXPORT ovrFrameTiming ovrHmd_BeginFrameTiming(ovrHmd hmd, unsigned int frameIndex)
{
    ovrFrameTiming f;
    memset(&f, 0, sizeof(f));

    HMDState* hmds = (HMDState*)hmd;
    if (!hmds) return f;

    // Check: Proper state for the call.    
    OVR_ASSERT_LOG(hmds->BeginFrameTimingCalled == false,
                    ("ovrHmd_BeginFrameTiming called multiple times."));    
    hmds->BeginFrameTimingCalled = true;

    double thisFrameTime = hmds->TimeManager.BeginFrame(frameIndex);        

    const FrameTimeManager::Timing &frameTiming = hmds->TimeManager.GetFrameTiming();

    f.ThisFrameSeconds     = thisFrameTime;
    f.NextFrameSeconds       = frameTiming.NextFrameTime;
    f.TimewarpPointSeconds  = frameTiming.TimewarpPointTime;
    f.ScanoutMidpointSeconds= frameTiming.MidpointTime;
    f.EyeScanoutSeconds[0]  = frameTiming.EyeRenderTimes[0];
    f.EyeScanoutSeconds[1]  = frameTiming.EyeRenderTimes[1];

    // Compute DeltaSeconds.
    f.DeltaSeconds = (hmds->LastFrameTimeSeconds == 0.0f) ? 0.0f :
                     (float) (thisFrameTime - hmds->LastFrameTimeSeconds);    
    hmds->LastFrameTimeSeconds = thisFrameTime;
    if (f.DeltaSeconds > 1.0f)
        f.DeltaSeconds = 1.0f;

    return f;
}


OVR_EXPORT void ovrHmd_EndFrameTiming(ovrHmd hmd)
{
    HMDState* hmds = (HMDState*)hmd;
    if (!hmds) return;

    // Debug state checks: Must be in BeginFrameTiming, on the same thread.
    hmds->checkBeginFrameTimingScope("ovrHmd_EndTiming");
   // MA TBD: Correct chek or not?
   // ThreadChecker::Scope checkScope(&hmds->RenderAPIThreadChecker, "ovrHmd_EndFrame");

    hmds->TimeManager.EndFrame();   
    hmds->BeginFrameTimingCalled = false;
}


OVR_EXPORT void ovrHmd_ResetFrameTiming(ovrHmd hmd,  unsigned int frameIndex, bool vsync) 
{
    HMDState* hmds = (HMDState*)hmd;
    if (!hmds) return;
    
    hmds->TimeManager.ResetFrameTiming(frameIndex, vsync, false,
                                       hmds->RenderingConfigured);
    hmds->LastFrameTimeSeconds    = 0.0;
    hmds->LastGetFrameTimeSeconds = 0.0;
}



OVR_EXPORT ovrPosef ovrHmd_GetEyePose(ovrHmd hmd, ovrEyeType eye)
{
    HMDState* hmds = (HMDState*)hmd;
    if (!hmds) return ovrPosef();    

    hmds->checkBeginFrameTimingScope("ovrHmd_GetEyePose");
    return hmds->TimeManager.GetEyePredictionPose(hmd, eye);
}


OVR_EXPORT void ovrHmd_GetEyeTimewarpMatrices(ovrHmd hmd, ovrEyeType eye,
                                              ovrPosef renderPose, ovrMatrix4f twmOut[2])
{
    HMDState* hmds = (HMDState*)hmd;
    if (!hmd)
        return;

    // Debug checks: BeginFrame was called, on the same thread.
    hmds->checkBeginFrameTimingScope("ovrHmd_GetTimewarpEyeMatrices");   

    hmds->TimeManager.GetTimewarpMatrices(hmd, eye, renderPose, twmOut);

    /*
    // MA: Took this out because new latency test approach just sames
    //     the sample times in FrameTimeManager.
    // TODO: if no timewarp, then test latency in begin eye render
    if (eye == 0)
    {        
        hmds->ProcessLatencyTest2(hmds->LatencyTest2DrawColor, -1.0f);
    }
    */
}



OVR_EXPORT ovrEyeRenderDesc ovrHmd_GetRenderDesc(ovrHmd hmd, const ovrEyeDesc eyeDesc)
{
    ovrEyeRenderDesc erd;
   
    HMDState* hmds = (HMDState*)hmd;
    if (!hmds)
    {
        memset(&erd, 0, sizeof(erd));
        return erd;
    }

    return hmds->RenderState.calcRenderDesc(eyeDesc);
}



#define OVR_OFFSET_OF(s, field) ((size_t)&((s*)0)->field)



// Generate distortion mesh per eye.
// scaleAndOffsetOut - this will be needed for shader
OVR_EXPORT ovrBool ovrHmd_CreateDistortionMesh( ovrHmd hmd, ovrEyeDesc eyeDesc,
                                                unsigned int distortionCaps,
                                                ovrVector2f uvScaleOffsetOut[2], 
                                                ovrDistortionMesh *meshData )
{
    if (!meshData)
        return FALSE;
    HMDState* hmds = (HMDState*)hmd;

    // Not used now, but Chromatic flag or others could possibly be checked for in the future.
    OVR_UNUSED1(distortionCaps); 
    
    // TBD: We should probably be sharing some C API structures with C++ to avoid this mess...
    OVR_COMPILER_ASSERT(sizeof(DistortionMeshVertexData)                       == sizeof(ovrDistortionVertex));
    OVR_COMPILER_ASSERT(OVR_OFFSET_OF(DistortionMeshVertexData, ScreenPosNDC)  == OVR_OFFSET_OF(ovrDistortionVertex, Pos));
    OVR_COMPILER_ASSERT(OVR_OFFSET_OF(DistortionMeshVertexData, TimewarpLerp)  == OVR_OFFSET_OF(ovrDistortionVertex, TimeWarpFactor));
    OVR_COMPILER_ASSERT(OVR_OFFSET_OF(DistortionMeshVertexData, Shade)         == OVR_OFFSET_OF(ovrDistortionVertex, VignetteFactor));
    OVR_COMPILER_ASSERT(OVR_OFFSET_OF(DistortionMeshVertexData, TanEyeAnglesR) == OVR_OFFSET_OF(ovrDistortionVertex, TexR));
    OVR_COMPILER_ASSERT(OVR_OFFSET_OF(DistortionMeshVertexData, TanEyeAnglesG) == OVR_OFFSET_OF(ovrDistortionVertex, TexG));
    OVR_COMPILER_ASSERT(OVR_OFFSET_OF(DistortionMeshVertexData, TanEyeAnglesB) == OVR_OFFSET_OF(ovrDistortionVertex, TexB));


    // *** Calculate a part of "StereoParams" needed for mesh generation

    // Note that mesh distortion generation is invariant of RenderTarget UVs, allowing
    // render target size and location to be changed after the fact dynamically. 
    // eyeToSourceUV is computed here for convenience, so that users don't need
    // to call ovrHmd_GetRenderScaleAndOffset unless changing RT dynamically.

    
    const HmdRenderInfo&  hmdri          = hmds->RenderState.RenderInfo;    
    StereoEye             stereoEye      = (eyeDesc.Eye == ovrEye_Left) ? StereoEye_Left : StereoEye_Right;

    const DistortionRenderDesc& distortion = hmds->RenderState.Distortion[eyeDesc.Eye];

    // Find the mapping from TanAngle space to target NDC space.
    ScaleAndOffset2D      eyeToSourceNDC = CreateNDCScaleAndOffsetFromFov(eyeDesc.Fov);
    // Find the mapping from TanAngle space to textureUV space.
    ScaleAndOffset2D      eyeToSourceUV  = CreateUVScaleAndOffsetfromNDCScaleandOffset(
                                            eyeToSourceNDC,
                                            Recti(eyeDesc.RenderViewport), eyeDesc.TextureSize );

    uvScaleOffsetOut[0] = eyeToSourceUV.Scale;
    uvScaleOffsetOut[1] = eyeToSourceUV.Offset;

    int triangleCount = 0;
    int vertexCount = 0;

    DistortionMeshCreate((DistortionMeshVertexData**)&meshData->pVertexData, (UInt16**)&meshData->pIndexData,
                          &vertexCount, &triangleCount,
                          (stereoEye == StereoEye_Right),
                          hmdri, distortion, eyeToSourceNDC);

    if (meshData->pVertexData)
    {
        // Convert to index
        meshData->IndexCount = triangleCount * 3;
        meshData->VertexCount = vertexCount;
        return TRUE;
    }

    return FALSE;
}


// Frees distortion mesh allocated by ovrHmd_GenerateDistortionMesh. meshData elements
// are set to null and 0s after the call.
OVR_EXPORT void ovrHmd_DestroyDistortionMesh(ovrDistortionMesh* meshData)
{
    if (meshData->pVertexData)
        DistortionMeshDestroy((DistortionMeshVertexData*)meshData->pVertexData,
                              meshData->pIndexData);
    meshData->pVertexData = 0;
    meshData->pIndexData  = 0;
    meshData->VertexCount = 0;
    meshData->IndexCount  = 0;
}



// Computes updated 'uvScaleOffsetOut' to be used with a distortion if render target size or
// viewport changes after the fact. This can be used to adjust render size every frame, if desired.
OVR_EXPORT void ovrHmd_GetRenderScaleAndOffset( ovrHmd hmd, ovrEyeDesc eyeDesc,
                                                unsigned int distortionCaps,
                                                ovrVector2f uvScaleOffsetOut[2] )
{        
    OVR_UNUSED2(hmd, distortionCaps);
    // TBD: We could remove dependency on HMD here, but what if we need it in the future?
    //HMDState*        hmds = (HMDState*)hmd;

    // Find the mapping from TanAngle space to target NDC space.
    ScaleAndOffset2D  eyeToSourceNDC = CreateNDCScaleAndOffsetFromFov(eyeDesc.Fov);
    // Find the mapping from TanAngle space to textureUV space.
    ScaleAndOffset2D  eyeToSourceUV  = CreateUVScaleAndOffsetfromNDCScaleandOffset(
                                         eyeToSourceNDC,
                                         eyeDesc.RenderViewport, eyeDesc.TextureSize );

    uvScaleOffsetOut[0] = eyeToSourceUV.Scale;
    uvScaleOffsetOut[1] = eyeToSourceUV.Offset;
}


//-------------------------------------------------------------------------------------
// ***** Latency Test interface

OVR_EXPORT ovrBool ovrHmd_GetLatencyTestDrawColor(ovrHmd hmd, unsigned char rgbColorOut[3])
{
    HMDState* p = (HMDState*)hmd;
    rgbColorOut[0] = p->LatencyTestDrawColor[0];
    rgbColorOut[1] = p->LatencyTestDrawColor[1];
    rgbColorOut[2] = p->LatencyTestDrawColor[2];
    return p->LatencyTestActive;
}

OVR_EXPORT const char*  ovrHmd_GetLatencyTestResult(ovrHmd hmd)
{
    HMDState* p = (HMDState*)hmd;
    return p->LatencyUtil.GetResultsString();
}

OVR_EXPORT double ovrHmd_GetMeasuredLatencyTest2(ovrHmd hmd)
{
    HMDState* p = (HMDState*)hmd;

    // MA Test
    float latencies[3];
    p->TimeManager.GetLatencyTimings(latencies);
    return latencies[2];
  //  return p->LatencyUtil2.GetMeasuredLatency();
}


// -----------------------------------------------------------------------------------
// ***** Property Access

OVR_EXPORT float ovrHmd_GetFloat(ovrHmd hmd, const char* propertyName, float defaultVal)
{
    HMDState* hmds = (HMDState*)hmd;
    if (hmds)
	{
		return hmds->getFloatValue(propertyName, defaultVal);
	}

    return defaultVal;
}

OVR_EXPORT ovrBool ovrHmd_SetFloat(ovrHmd hmd, const char* propertyName, float value)
{
    HMDState* hmds = (HMDState*)hmd;
    if (hmds)
    {
        return hmds->setFloatValue(propertyName, value);
    }
    return false;
}



OVR_EXPORT unsigned int ovrHmd_GetFloatArray(ovrHmd hmd, const char* propertyName,
                              float values[], unsigned int arraySize)
{
    HMDState* hmds = (HMDState*)hmd;
    if (hmds)
    {       
		return hmds->getFloatArray(propertyName, values, arraySize);
    }

    return 0;
}


// Modify float[] property; false if property doesn't exist or is readonly.
OVR_EXPORT ovrBool ovrHmd_SetFloatArray(ovrHmd hmd, const char* propertyName,
                                        float values[], unsigned int arraySize)
{
    HMDState* hmds = (HMDState*)hmd;
    if (hmds)
    {       
        return hmds->setFloatArray(propertyName, values, arraySize);
    }

    return 0;
}

OVR_EXPORT const char* ovrHmd_GetString(ovrHmd hmd, const char* propertyName,
                                        const char* defaultVal)
{
    HMDState* hmds = (HMDState*)hmd;
    if (hmds)
    {
		return hmds->getString(propertyName, defaultVal);
    }

    return defaultVal;
}
 
/* Not needed yet.

// Get array of strings, i.e. const char* [] property.
// Returns the number of elements filled in, 0 if property doesn't exist.
// Maximum of arraySize elements will be written.
// String memory is guaranteed to exist until next call to GetString or GetStringArray, or HMD is destroyed.
OVR_EXPORT 
unsigned int ovrHmd_GetStringArray(ovrHmd hmd, const char* propertyName,
                               const char* values[], unsigned int arraySize)
{
    HMDState* hmds = (HMDState*)hmd;
    if (hmds && hmds->pHMD && arraySize)
    {        
        Profile* p = hmds->pHMD->GetProfile();

        hmds->LastGetStringValue[0] = 0;
        if (p && p->GetValue(propertyName, hmds->LastGetStringValue, sizeof(hmds->LastGetStringValue)))
        {
            values[0] = hmds->LastGetStringValue;
            return 1;
        }
    }

    return 0;
}
*/

// Returns array size of a property, 0 if property doesn't exist.
// Can be used to check existence of a property.
OVR_EXPORT unsigned int ovrHmd_GetArraySize(ovrHmd hmd, const char* propertyName)
{
    HMDState* hmds = (HMDState*)hmd;
    if (hmds && hmds->pHMD)
    {
        // For now, just access the profile.
        Profile* p = hmds->pHMD->GetProfile();
        
        if (p)
            return p->GetNumValues(propertyName);
    }
    return 0;
}


#ifdef __cplusplus 
} // extern "C"
#endif


//-------------------------------------------------------------------------------------
// ****** Special access for VRConfig

// Return the sensor fusion object for the purposes of magnetometer calibration.  The
// function is private and is only exposed through VRConfig header declarations
OVR::SensorFusion* ovrHmd_GetSensorFusion(ovrHmd hmd)
{
    HMDState* p = (HMDState*)hmd;
    return &p->SFusion;
}