1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
|
/************************************************************************************
Filename : OVR_SensorFusion.cpp
Content : Methods that determine head orientation from sensor data over time
Created : October 9, 2012
Authors : Michael Antonov, Steve LaValle
Copyright : Copyright 2012 Oculus VR, Inc. All Rights reserved.
Use of this software is subject to the terms of the Oculus license
agreement provided at the time of installation or download, or which
otherwise accompanies this software in either electronic or hard copy form.
*************************************************************************************/
#include "OVR_SensorFusion.h"
#include "Kernel/OVR_Log.h"
#include "Kernel/OVR_System.h"
namespace OVR {
//-------------------------------------------------------------------------------------
// ***** Sensor Fusion
SensorFusion::SensorFusion(SensorDevice* sensor)
: Handler(getThis()), pDelegate(0),
Gain(0.05f), YawMult(1), EnableGravity(true), Stage(0), RunningTime(0), DeltaT(0.001f),
EnablePrediction(true), PredictionDT(0.03f), PredictionTimeIncrement(0.001f),
FRawMag(10), FAccW(20), FAngV(20),
TiltCondCount(0), TiltErrorAngle(0),
TiltErrorAxis(0,1,0),
MagCondCount(0), MagCalibrated(false), MagRefQ(0, 0, 0, 1),
MagRefM(0), MagRefYaw(0), YawErrorAngle(0), MagRefDistance(0.5f),
YawErrorCount(0), YawCorrectionActivated(false), YawCorrectionInProgress(false),
EnableYawCorrection(false), MagNumReferences(0), MagHasNearbyReference(false)
{
if (sensor)
AttachToSensor(sensor);
MagCalibrationMatrix.SetIdentity();
}
SensorFusion::~SensorFusion()
{
}
bool SensorFusion::AttachToSensor(SensorDevice* sensor)
{
if (sensor != NULL)
{
MessageHandler* pCurrentHandler = sensor->GetMessageHandler();
if (pCurrentHandler == &Handler)
{
Reset();
return true;
}
if (pCurrentHandler != NULL)
{
OVR_DEBUG_LOG(
("SensorFusion::AttachToSensor failed - sensor %p already has handler", sensor));
return false;
}
}
if (Handler.IsHandlerInstalled())
{
Handler.RemoveHandlerFromDevices();
}
if (sensor != NULL)
{
sensor->SetMessageHandler(&Handler);
}
Reset();
return true;
}
// Resets the current orientation
void SensorFusion::Reset()
{
Lock::Locker lockScope(Handler.GetHandlerLock());
Q = Quatf();
QUncorrected = Quatf();
Stage = 0;
RunningTime = 0;
MagNumReferences = 0;
MagHasNearbyReference = false;
}
void SensorFusion::handleMessage(const MessageBodyFrame& msg)
{
if (msg.Type != Message_BodyFrame)
return;
// Put the sensor readings into convenient local variables
Vector3f angVel = msg.RotationRate;
Vector3f rawAccel = msg.Acceleration;
Vector3f mag = msg.MagneticField;
// Set variables accessible through the class API
DeltaT = msg.TimeDelta;
AngV = msg.RotationRate;
AngV.y *= YawMult; // Warning: If YawMult != 1, then AngV is not true angular velocity
A = rawAccel;
// Allow external access to uncalibrated magnetometer values
RawMag = mag;
// Apply the calibration parameters to raw mag
if (HasMagCalibration())
{
mag.x += MagCalibrationMatrix.M[0][3];
mag.y += MagCalibrationMatrix.M[1][3];
mag.z += MagCalibrationMatrix.M[2][3];
}
// Provide external access to calibrated mag values
// (if the mag is not calibrated, then the raw value is returned)
CalMag = mag;
float angVelLength = angVel.Length();
float accLength = rawAccel.Length();
// Acceleration in the world frame (Q is current HMD orientation)
Vector3f accWorld = Q.Rotate(rawAccel);
// Keep track of time
Stage++;
RunningTime += DeltaT;
// Insert current sensor data into filter history
FRawMag.AddElement(RawMag);
FAccW.AddElement(accWorld);
FAngV.AddElement(angVel);
// Update orientation Q based on gyro outputs. This technique is
// based on direct properties of the angular velocity vector:
// Its direction is the current rotation axis, and its magnitude
// is the rotation rate (rad/sec) about that axis. Our sensor
// sampling rate is so fast that we need not worry about integral
// approximation error (not yet, anyway).
if (angVelLength > 0.0f)
{
Vector3f rotAxis = angVel / angVelLength;
float halfRotAngle = angVelLength * DeltaT * 0.5f;
float sinHRA = sin(halfRotAngle);
Quatf deltaQ(rotAxis.x*sinHRA, rotAxis.y*sinHRA, rotAxis.z*sinHRA, cos(halfRotAngle));
Q = Q * deltaQ;
}
// The quaternion magnitude may slowly drift due to numerical error,
// so it is periodically normalized.
if (Stage % 5000 == 0)
Q.Normalize();
// Maintain the uncorrected orientation for later use by predictive filtering
QUncorrected = Q;
// Perform tilt correction using the accelerometer data. This enables
// drift errors in pitch and roll to be corrected. Note that yaw cannot be corrected
// because the rotation axis is parallel to the gravity vector.
if (EnableGravity)
{
// Correcting for tilt error by using accelerometer data
const float gravityEpsilon = 0.4f;
const float angVelEpsilon = 0.1f; // Relatively slow rotation
const int tiltPeriod = 50; // Required time steps of stability
const float maxTiltError = 0.05f;
const float minTiltError = 0.01f;
// This condition estimates whether the only measured acceleration is due to gravity
// (the Rift is not linearly accelerating). It is often wrong, but tends to average
// out well over time.
if ((fabs(accLength - 9.81f) < gravityEpsilon) &&
(angVelLength < angVelEpsilon))
TiltCondCount++;
else
TiltCondCount = 0;
// After stable measurements have been taken over a sufficiently long period,
// estimate the amount of tilt error and calculate the tilt axis for later correction.
if (TiltCondCount >= tiltPeriod)
{ // Update TiltErrorEstimate
TiltCondCount = 0;
// Use an average value to reduce noise (could alternatively use an LPF)
Vector3f accWMean = FAccW.Mean();
// Project the acceleration vector into the XZ plane
Vector3f xzAcc = Vector3f(accWMean.x, 0.0f, accWMean.z);
// The unit normal of xzAcc will be the rotation axis for tilt correction
Vector3f tiltAxis = Vector3f(xzAcc.z, 0.0f, -xzAcc.x).Normalized();
Vector3f yUp = Vector3f(0.0f, 1.0f, 0.0f);
// This is the amount of rotation
float tiltAngle = yUp.Angle(accWMean);
// Record values if the tilt error is intolerable
if (tiltAngle > maxTiltError)
{
TiltErrorAngle = tiltAngle;
TiltErrorAxis = tiltAxis;
}
}
// This part performs the actual tilt correction as needed
if (TiltErrorAngle > minTiltError)
{
if ((TiltErrorAngle > 0.4f)&&(RunningTime < 8.0f))
{ // Tilt completely to correct orientation
Q = Quatf(TiltErrorAxis, -TiltErrorAngle) * Q;
TiltErrorAngle = 0.0f;
}
else
{
//LogText("Performing tilt correction - Angle: %f Axis: %f %f %f\n",
// TiltErrorAngle,TiltErrorAxis.x,TiltErrorAxis.y,TiltErrorAxis.z);
//float deltaTiltAngle = -Gain*TiltErrorAngle*0.005f;
// This uses aggressive correction steps while your head is moving fast
float deltaTiltAngle = -Gain*TiltErrorAngle*0.005f*(5.0f*angVelLength+1.0f);
// Incrementally "un-tilt" by a small step size
Q = Quatf(TiltErrorAxis, deltaTiltAngle) * Q;
TiltErrorAngle += deltaTiltAngle;
}
}
}
// Yaw drift correction based on magnetometer data. This corrects the part of the drift
// that the accelerometer cannot handle.
// This will only work if the magnetometer has been enabled, calibrated, and a reference
// point has been set.
const float maxAngVelLength = 3.0f;
const int magWindow = 5;
const float yawErrorMax = 0.1f;
const float yawErrorMin = 0.01f;
const int yawErrorCountLimit = 50;
const float yawRotationStep = 0.00002f;
if (angVelLength < maxAngVelLength)
MagCondCount++;
else
MagCondCount = 0;
// Find, create, and utilize reference points for the magnetometer
// Need to be careful not to set reference points while there is significant tilt error
if ((EnableYawCorrection && MagCalibrated)&&(RunningTime > 10.0f)&&(TiltErrorAngle < 0.2f))
{
if (MagNumReferences == 0)
{
SetMagReference(); // Use the current direction
}
else if (Q.Distance(MagRefQ) > MagRefDistance)
{
MagHasNearbyReference = false;
float bestDist = 100000.0f;
int bestNdx = 0;
float dist;
for (int i = 0; i < MagNumReferences; i++)
{
dist = Q.Distance(MagRefTableQ[i]);
if (dist < bestDist)
{
bestNdx = i;
bestDist = dist;
}
}
if (bestDist < MagRefDistance)
{
MagHasNearbyReference = true;
MagRefQ = MagRefTableQ[bestNdx];
MagRefM = MagRefTableM[bestNdx];
MagRefYaw = MagRefTableYaw[bestNdx];
//LogText("Using reference %d\n",bestNdx);
}
else if (MagNumReferences < MagMaxReferences)
SetMagReference();
}
}
YawCorrectionInProgress = false;
if (EnableYawCorrection && MagCalibrated && (RunningTime > 2.0f) && (MagCondCount >= magWindow) &&
MagHasNearbyReference)
{
// Use rotational invariance to bring reference mag value into global frame
Vector3f grefmag = MagRefQ.Rotate(GetCalibratedMagValue(MagRefM));
// Bring current (averaged) mag reading into global frame
Vector3f gmag = Q.Rotate(GetCalibratedMagValue(FRawMag.Mean()));
// Calculate the reference yaw in the global frame
Anglef gryaw = Anglef(atan2(grefmag.x,grefmag.z));
// Calculate the current yaw in the global frame
Anglef gyaw = Anglef(atan2(gmag.x,gmag.z));
// The difference between reference and current yaws is the perceived error
Anglef YawErrorAngle = gyaw - gryaw;
//LogText("Yaw error estimate: %f\n",YawErrorAngle.Get());
// If the perceived error is large, keep count
if ((YawErrorAngle.Abs() > yawErrorMax) && (!YawCorrectionActivated))
YawErrorCount++;
// After enough iterations of high perceived error, start the correction process
if (YawErrorCount > yawErrorCountLimit)
YawCorrectionActivated = true;
// If the perceived error becomes small, turn off the yaw correction
if ((YawErrorAngle.Abs() < yawErrorMin) && YawCorrectionActivated)
{
YawCorrectionActivated = false;
YawErrorCount = 0;
}
// Perform the actual yaw correction, due to previously detected, large yaw error
if (YawCorrectionActivated)
{
YawCorrectionInProgress = true;
// Incrementally "unyaw" by a small step size
Q = Quatf(Vector3f(0.0f,1.0f,0.0f), -yawRotationStep * YawErrorAngle.Sign()) * Q;
}
}
}
// Simple predictive filters based on extrapolating the smoothed, current angular velocity
// or using smooth time derivative information. The argument is the amount of time into
// the future to predict.
Quatf SensorFusion::GetPredictedOrientation(float pdt)
{
Lock::Locker lockScope(Handler.GetHandlerLock());
Quatf qP = QUncorrected;
if (EnablePrediction)
{
#if 1
// This method assumes a constant angular velocity
Vector3f angVelF = FAngV.SavitzkyGolaySmooth8();
float angVelFL = angVelF.Length();
if (angVelFL > 0.001f)
{
Vector3f rotAxisP = angVelF / angVelFL;
float halfRotAngleP = angVelFL * pdt * 0.5f;
float sinaHRAP = sin(halfRotAngleP);
Quatf deltaQP(rotAxisP.x*sinaHRAP, rotAxisP.y*sinaHRAP,
rotAxisP.z*sinaHRAP, cos(halfRotAngleP));
qP = QUncorrected * deltaQP;
}
#else
// This method estimates angular acceleration, conservatively
OVR_ASSERT(pdt >= 0);
int predictionStages = (int)(pdt / PredictionTimeIncrement + 0.5f);
Quatd qpd = Quatd(Q.x,Q.y,Q.z,Q.w);
Vector3f aa = FAngV.SavitzkyGolayDerivative12();
Vector3d aad = Vector3d(aa.x,aa.y,aa.z);
Vector3f angVelF = FAngV.SavitzkyGolaySmooth8();
Vector3d avkd = Vector3d(angVelF.x,angVelF.y,angVelF.z);
Vector3d rotAxisd = Vector3d(0,1,0);
for (int i = 0; i < predictionStages; i++)
{
double angVelLengthd = avkd.Length();
if (angVelLengthd > 0)
rotAxisd = avkd / angVelLengthd;
double halfRotAngled = angVelLengthd * PredictionTimeIncrement * 0.5;
double sinHRAd = sin(halfRotAngled);
Quatd deltaQd = Quatd(rotAxisd.x*sinHRAd, rotAxisd.y*sinHRAd, rotAxisd.z*sinHRAd,
cos(halfRotAngled));
qpd = qpd * deltaQd;
// Update angular velocity by using the angular acceleration estimate
avkd += aad;
}
qP = Quatf((float)qpd.x,(float)qpd.y,(float)qpd.z,(float)qpd.w);
#endif
}
return qP;
}
Vector3f SensorFusion::GetCalibratedMagValue(const Vector3f& rawMag) const
{
Vector3f mag = rawMag;
OVR_ASSERT(HasMagCalibration());
mag.x += MagCalibrationMatrix.M[0][3];
mag.y += MagCalibrationMatrix.M[1][3];
mag.z += MagCalibrationMatrix.M[2][3];
return mag;
}
void SensorFusion::SetMagReference(const Quatf& q, const Vector3f& rawMag)
{
if (MagNumReferences < MagMaxReferences)
{
MagRefTableQ[MagNumReferences] = q;
MagRefTableM[MagNumReferences] = rawMag; //FRawMag.Mean();
//LogText("Inserting reference %d\n",MagNumReferences);
MagRefQ = q;
MagRefM = rawMag;
float pitch, roll, yaw;
Quatf q2 = q;
q2.GetEulerAngles<Axis_X, Axis_Z, Axis_Y>(&pitch, &roll, &yaw);
MagRefTableYaw[MagNumReferences] = yaw;
MagRefYaw = yaw;
MagNumReferences++;
MagHasNearbyReference = true;
}
}
SensorFusion::BodyFrameHandler::~BodyFrameHandler()
{
RemoveHandlerFromDevices();
}
void SensorFusion::BodyFrameHandler::OnMessage(const Message& msg)
{
if (msg.Type == Message_BodyFrame)
pFusion->handleMessage(static_cast<const MessageBodyFrame&>(msg));
if (pFusion->pDelegate)
pFusion->pDelegate->OnMessage(msg);
}
bool SensorFusion::BodyFrameHandler::SupportsMessageType(MessageType type) const
{
return (type == Message_BodyFrame);
}
} // namespace OVR
|