aboutsummaryrefslogtreecommitdiffstats
path: root/LibOVR/Src/OVR_SensorFusion.cpp
blob: 78dd12865e03fe81cc8858f007f0567089eadcef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/************************************************************************************

Filename    :   OVR_SensorFusion.cpp
Content     :   Methods that determine head orientation from sensor data over time
Created     :   October 9, 2012
Authors     :   Michael Antonov, Steve LaValle

Copyright   :   Copyright 2012 Oculus VR, Inc. All Rights reserved.

Use of this software is subject to the terms of the Oculus license
agreement provided at the time of installation or download, or which
otherwise accompanies this software in either electronic or hard copy form.

*************************************************************************************/

#include "OVR_SensorFusion.h"
#include "Kernel/OVR_Log.h"
#include "Kernel/OVR_System.h"

namespace OVR {

//-------------------------------------------------------------------------------------
// ***** Sensor Fusion

SensorFusion::SensorFusion(SensorDevice* sensor)
  : Handler(getThis()), pDelegate(0),
    Gain(0.05f), YawMult(1), EnableGravity(true), Stage(0), DeltaT(0.001f),
	EnablePrediction(false), PredictionDT(0.03f),
    FRawMag(10), FAccW(20), FAngV(20),
    TiltCondCount(0), TiltErrorAngle(0), 
    TiltErrorAxis(0,1,0),
    MagCondCount(0), MagReady(false), MagCalibrated(false), MagReferenced(false), 
    MagRefQ(0, 0, 0, 1), MagRefM(0), MagRefYaw(0), YawErrorAngle(0), MagRefDistance(0.15f),
    YawErrorCount(0), YawCorrectionActivated(false), YawCorrectionInProgress(false), 
	EnableYawCorrection(false)
{
   if (sensor)
       AttachToSensor(sensor);
   MagCalibrationMatrix.SetIdentity();
}

SensorFusion::~SensorFusion()
{
}


bool SensorFusion::AttachToSensor(SensorDevice* sensor)
{
    
    if (sensor != NULL)
    {
        MessageHandler* pCurrentHandler = sensor->GetMessageHandler();

        if (pCurrentHandler == &Handler)
        {
            Reset();
            return true;
        }

        if (pCurrentHandler != NULL)
        {
            OVR_DEBUG_LOG(
                ("SensorFusion::AttachToSensor failed - sensor %p already has handler", sensor));
            return false;
        }
    }

    if (Handler.IsHandlerInstalled())
    {
        Handler.RemoveHandlerFromDevices();
    }

    if (sensor != NULL)
    {
        sensor->SetMessageHandler(&Handler);
    }

    Reset();
    return true;
}




void SensorFusion::handleMessage(const MessageBodyFrame& msg)
{
    if (msg.Type != Message_BodyFrame)
        return;
  
    // Put the sensor readings into convenient local variables
    Vector3f angVel    = msg.RotationRate; 
    Vector3f rawAccel  = msg.Acceleration;
    Vector3f mag       = msg.MagneticField;

    // Set variables accessible through the class API
	DeltaT = msg.TimeDelta;
    AngV = msg.RotationRate;
    AngV.y *= YawMult;  // Warning: If YawMult != 1, then AngV is not true angular velocity
    A = rawAccel;

    // Allow external access to uncalibrated magnetometer values
    RawMag = mag;  

    // Apply the calibration parameters to raw mag
    if (HasMagCalibration())
    {
        mag.x += MagCalibrationMatrix.M[0][3];
        mag.y += MagCalibrationMatrix.M[1][3];
        mag.z += MagCalibrationMatrix.M[2][3];
    }

    // Provide external access to calibrated mag values
    // (if the mag is not calibrated, then the raw value is returned)
    CalMag = mag;

    float angVelLength = angVel.Length();
    float accLength    = rawAccel.Length();


    // Acceleration in the world frame (Q is current HMD orientation)
    Vector3f accWorld  = Q.Rotate(rawAccel);

    // Keep track of time
    Stage++;
    float currentTime  = Stage * DeltaT; // Assumes uniform time spacing

    // Insert current sensor data into filter history
    FRawMag.AddElement(RawMag);
    FAccW.AddElement(accWorld);
    FAngV.AddElement(angVel);

    // Update orientation Q based on gyro outputs.  This technique is
    // based on direct properties of the angular velocity vector:
    // Its direction is the current rotation axis, and its magnitude
    // is the rotation rate (rad/sec) about that axis.  Our sensor
    // sampling rate is so fast that we need not worry about integral
    // approximation error (not yet, anyway).
    if (angVelLength > 0.0f)
    {
        Vector3f     rotAxis      = angVel / angVelLength;  
        float        halfRotAngle = angVelLength * DeltaT * 0.5f;
        float        sinHRA       = sin(halfRotAngle);
        Quatf        deltaQ(rotAxis.x*sinHRA, rotAxis.y*sinHRA, rotAxis.z*sinHRA, cos(halfRotAngle));

        Q =  Q * deltaQ;
    }
    
    // The quaternion magnitude may slowly drift due to numerical error,
    // so it is periodically normalized.
    if (Stage % 5000 == 0)
        Q.Normalize();
    
	// Maintain the uncorrected orientation for later use by predictive filtering
	QUncorrected = Q;

    // Perform tilt correction using the accelerometer data. This enables 
    // drift errors in pitch and roll to be corrected. Note that yaw cannot be corrected
    // because the rotation axis is parallel to the gravity vector.
    if (EnableGravity)
    {
        // Correcting for tilt error by using accelerometer data
        const float  gravityEpsilon = 0.4f;
        const float  angVelEpsilon  = 0.1f; // Relatively slow rotation
        const int    tiltPeriod     = 50;   // Req'd time steps of stability
        const float  maxTiltError   = 0.05f;
        const float  minTiltError   = 0.01f;

        // This condition estimates whether the only measured acceleration is due to gravity 
        // (the Rift is not linearly accelerating).  It is often wrong, but tends to average
        // out well over time.
        if ((fabs(accLength - 9.81f) < gravityEpsilon) &&
            (angVelLength < angVelEpsilon))
            TiltCondCount++;
        else
            TiltCondCount = 0;
    
        // After stable measurements have been taken over a sufficiently long period,
        // estimate the amount of tilt error and calculate the tilt axis for later correction.
        if (TiltCondCount >= tiltPeriod)
        {   // Update TiltErrorEstimate
            TiltCondCount = 0;
            // Use an average value to reduce noice (could alternatively use an LPF)
            Vector3f accWMean = FAccW.Mean();
            // Project the acceleration vector into the XZ plane
            Vector3f xzAcc = Vector3f(accWMean.x, 0.0f, accWMean.z);
            // The unit normal of xzAcc will be the rotation axis for tilt correction
            Vector3f tiltAxis = Vector3f(xzAcc.z, 0.0f, -xzAcc.x).Normalized();
            Vector3f yUp = Vector3f(0.0f, 1.0f, 0.0f);
            // This is the amount of rotation
            float    tiltAngle = yUp.Angle(accWMean);
            // Record values if the tilt error is intolerable
            if (tiltAngle > maxTiltError) 
            {
                TiltErrorAngle = tiltAngle;
                TiltErrorAxis = tiltAxis;
            }
        }

        // This part performs the actual tilt correction as needed
        if (TiltErrorAngle > minTiltError) 
        {
            if ((TiltErrorAngle > 0.4f)&&(Stage < 8000))
            {   // Tilt completely to correct orientation
                Q = Quatf(TiltErrorAxis, -TiltErrorAngle) * Q;
                TiltErrorAngle = 0.0f;
            }
            else 
            {
                //LogText("Performing tilt correction  -  Angle: %f   Axis: %f %f %f\n",
                //        TiltErrorAngle,TiltErrorAxis.x,TiltErrorAxis.y,TiltErrorAxis.z);
                //float deltaTiltAngle = -Gain*TiltErrorAngle*0.005f;
                // This uses agressive correction steps while your head is moving fast
                float deltaTiltAngle = -Gain*TiltErrorAngle*0.005f*(5.0f*angVelLength+1.0f);
                // Incrementally "untilt" by a small step size
                Q = Quatf(TiltErrorAxis, deltaTiltAngle) * Q;
                TiltErrorAngle += deltaTiltAngle;
            }
        }
    }

    // Yaw drift correction based on magnetometer data.  This corrects the part of the drift
    // that the accelerometer cannot handle.
    // This will only work if the magnetometer has been enabled, calibrated, and a reference
    // point has been set.
    const float maxAngVelLength = 3.0f;
    const int   magWindow = 5;
    const float yawErrorMax = 0.1f;
    const float yawErrorMin = 0.01f;
    const int   yawErrorCountLimit = 50;
    const float yawRotationStep = 0.00002f;

    if (angVelLength < maxAngVelLength)
        MagCondCount++;
    else
        MagCondCount = 0;

	YawCorrectionInProgress = false;
    if (EnableYawCorrection && MagReady && (currentTime > 2.0f) && (MagCondCount >= magWindow) &&
        (Q.Distance(MagRefQ) < MagRefDistance))
    {
        // Use rotational invariance to bring reference mag value into global frame
        Vector3f grefmag = MagRefQ.Rotate(GetCalibratedMagValue(MagRefM));
        // Bring current (averaged) mag reading into global frame
        Vector3f gmag = Q.Rotate(GetCalibratedMagValue(FRawMag.Mean()));
        // Calculate the reference yaw in the global frame
        float gryaw = atan2(grefmag.x,grefmag.z);
        // Calculate the current yaw in the global frame
        float gyaw = atan2(gmag.x,gmag.z);
        //LogText("Yaw error estimate: %f\n",YawErrorAngle);
        // The difference between reference and current yaws is the perceived error
        YawErrorAngle = AngleDifference(gyaw,gryaw);
        // If the perceived error is large, keep count
        if ((fabs(YawErrorAngle) > yawErrorMax) && (!YawCorrectionActivated))
            YawErrorCount++;
        // After enough iterations of high perceived error, start the correction process
        if (YawErrorCount > yawErrorCountLimit)
            YawCorrectionActivated = true;
        // If the perceived error becomes small, turn off the yaw correction
        if ((fabs(YawErrorAngle) < yawErrorMin) && YawCorrectionActivated) 
        {
            YawCorrectionActivated = false;
            YawErrorCount = 0;
        }
        // Perform the actual yaw correction, due to previously detected, large yaw error
        if (YawCorrectionActivated) 
        {
			YawCorrectionInProgress = true;
            int sign = (YawErrorAngle > 0.0f) ? 1 : -1;
            // Incrementally "unyaw" by a small step size
            Q = Quatf(Vector3f(0.0f,1.0f,0.0f), -yawRotationStep * sign) * Q;
        }
    }
}


        // This is a simple predictive filter based only on extrapolating the smoothed, current angular velocity.
        // Note that both QP (the predicted future orientation) and Q (the current orientation) are both maintained.
Quatf       SensorFusion::GetPredictedOrientation()
{		
	Lock::Locker lockScope(Handler.GetHandlerLock());
	Quatf qP = QUncorrected;
	if (EnablePrediction) {
#if 1
	    Vector3f angVelF  = FAngV.SavitzkyGolaySmooth8();
        float    angVelFL = angVelF.Length();
            
        if (angVelFL > 0.001f)
        {
            Vector3f    rotAxisP      = angVelF / angVelFL;  
            float       halfRotAngleP = angVelFL * PredictionDT * 0.5f;
            float       sinaHRAP      = sin(halfRotAngleP);
		    Quatf       deltaQP(rotAxisP.x*sinaHRAP, rotAxisP.y*sinaHRAP,
                                rotAxisP.z*sinaHRAP, cos(halfRotAngleP));
            qP = QUncorrected * deltaQP;
        }
#else
        Quatd qpd = Quatd(Q.x,Q.y,Q.z,Q.w);
        int predictionStages = (int)(PredictionDT / DeltaT);
        Vector3f  aa = FAngV.SavitzkyGolayDerivative12();
        Vector3d  aad     = Vector3d(aa.x,aa.y,aa.z);
        Vector3f angVelF  = FAngV.SavitzkyGolaySmooth8();
        Vector3d  avkd    = Vector3d(angVelF.x,angVelF.y,angVelF.z);
        for (int i = 0; i < predictionStages; i++)
        {
            double angVelLengthd = avkd.Length();
            Vector3d rotAxisd      = avkd / angVelLengthd;
            double halfRotAngled = angVelLengthd * DeltaT * 0.5;
            double sinHRAd       = sin(halfRotAngled);
            Quatd  deltaQd       = Quatd(rotAxisd.x*sinHRAd, rotAxisd.y*sinHRAd, rotAxisd.z*sinHRAd,
                                         cos(halfRotAngled));
            qpd =  qpd * deltaQd;
            // Update vel
            avkd += aad;
        }
        qP = Quatf((float)qpd.x,(float)qpd.y,(float)qpd.z,(float)qpd.w);
#endif
	}
    return qP;
}    


Vector3f    SensorFusion::GetCalibratedMagValue(const Vector3f& rawMag) const
{
    Vector3f mag = rawMag;
    OVR_ASSERT(HasMagCalibration());
    mag.x += MagCalibrationMatrix.M[0][3];
    mag.y += MagCalibrationMatrix.M[1][3];
    mag.z += MagCalibrationMatrix.M[2][3];
    return mag;
}


void SensorFusion::SetMagReference(const Quatf& q, const Vector3f& rawMag) 
{
        MagRefQ = q;
        MagRefM = rawMag;

        float pitch, roll, yaw;
        Q.GetEulerAngles<Axis_X, Axis_Z, Axis_Y>(&pitch, &roll, &yaw);
        MagRefYaw = yaw;
		MagReferenced = true;
        if (MagCalibrated)
            MagReady = true;
}


float SensorFusion::AngleDifference(float theta1, float theta2)
{
    float x = theta1 - theta2;
    if (x > Math<float>::Pi)
        return x - Math<float>::TwoPi;
    if (x < -Math<float>::Pi)
        return x + Math<float>::TwoPi;
    return x;
}


SensorFusion::BodyFrameHandler::~BodyFrameHandler()
{
    RemoveHandlerFromDevices();
}

void SensorFusion::BodyFrameHandler::OnMessage(const Message& msg)
{
    if (msg.Type == Message_BodyFrame)
        pFusion->handleMessage(static_cast<const MessageBodyFrame&>(msg));
    if (pFusion->pDelegate)
        pFusion->pDelegate->OnMessage(msg);
}

bool SensorFusion::BodyFrameHandler::SupportsMessageType(MessageType type) const
{
    return (type == Message_BodyFrame);
}


} // namespace OVR