1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
/************************************************************************************
PublicHeader: OVR.h
Filename : OVR_SensorFusion.h
Content : Methods that determine head orientation from sensor data over time
Created : October 9, 2012
Authors : Michael Antonov, Steve LaValle, Max Katsev
Copyright : Copyright 2012 Oculus VR, Inc. All Rights reserved.
Use of this software is subject to the terms of the Oculus license
agreement provided at the time of installation or download, or which
otherwise accompanies this software in either electronic or hard copy form.
*************************************************************************************/
#ifndef OVR_SensorFusion_h
#define OVR_SensorFusion_h
#include "OVR_Device.h"
#include "OVR_SensorFilter.h"
#include <time.h>
namespace OVR {
//-------------------------------------------------------------------------------------
// ***** SensorFusion
// SensorFusion class accumulates Sensor notification messages to keep track of
// orientation, which involves integrating the gyro and doing correction with gravity.
// Magnetometer based yaw drift correction is also supported; it is usually enabled
// automatically based on loaded magnetometer configuration.
// Orientation is reported as a quaternion, from which users can obtain either the
// rotation matrix or Euler angles.
//
// The class can operate in two ways:
// - By user manually passing MessageBodyFrame messages to the OnMessage() function.
// - By attaching SensorFusion to a SensorDevice, in which case it will
// automatically handle notifications from that device.
class SensorFusion : public NewOverrideBase
{
enum
{
MagMaxReferences = 1000
};
public:
SensorFusion(SensorDevice* sensor = 0);
~SensorFusion();
// *** Setup
// Attaches this SensorFusion to a sensor device, from which it will receive
// notification messages. If a sensor is attached, manual message notification
// is not necessary. Calling this function also resets SensorFusion state.
bool AttachToSensor(SensorDevice* sensor);
// Returns true if this Sensor fusion object is attached to a sensor.
bool IsAttachedToSensor() const { return Handler.IsHandlerInstalled(); }
// *** State Query
// Obtain the current accumulated orientation. Many apps will want to use GetPredictedOrientation
// instead to reduce latency.
Quatf GetOrientation() const { return lockedGet(&Q); }
// Get predicted orientaion in the near future; predictDt is lookahead amount in seconds.
Quatf GetPredictedOrientation(float predictDt);
Quatf GetPredictedOrientation() { return GetPredictedOrientation(PredictionDT); }
// Obtain the last absolute acceleration reading, in m/s^2.
Vector3f GetAcceleration() const { return lockedGet(&A); }
// Obtain the last angular velocity reading, in rad/s.
Vector3f GetAngularVelocity() const { return lockedGet(&AngV); }
// Obtain the last raw magnetometer reading, in Gauss
Vector3f GetMagnetometer() const { return lockedGet(&RawMag); }
// Obtain the calibrated magnetometer reading (direction and field strength)
Vector3f GetCalibratedMagnetometer() const { OVR_ASSERT(MagCalibrated); return lockedGet(&CalMag); }
// Resets the current orientation.
void Reset();
// *** Configuration
void EnableMotionTracking(bool enable = true) { MotionTrackingEnabled = enable; }
bool IsMotionTrackingEnabled() const { return MotionTrackingEnabled; }
// *** Prediction Control
// Prediction functions.
// Prediction delta specifes how much prediction should be applied in seconds; it should in
// general be under the average rendering latency. Call GetPredictedOrientation() to get
// predicted orientation.
float GetPredictionDelta() const { return PredictionDT; }
void SetPrediction(float dt, bool enable = true) { PredictionDT = dt; EnablePrediction = enable; }
void SetPredictionEnabled(bool enable = true) { EnablePrediction = enable; }
bool IsPredictionEnabled() { return EnablePrediction; }
// *** Accelerometer/Gravity Correction Control
// Enables/disables gravity correction (on by default).
void SetGravityEnabled(bool enableGravity) { EnableGravity = enableGravity; }
bool IsGravityEnabled() const { return EnableGravity;}
// Gain used to correct gyro with accel. Default value is appropriate for typical use.
float GetAccelGain() const { return Gain; }
void SetAccelGain(float ag) { Gain = ag; }
// *** Magnetometer and Yaw Drift Correction Control
// Methods to load and save a mag calibration. Calibrations can optionally
// be specified by name to differentiate multiple calibrations under different conditions
// If LoadMagCalibration succeeds, it will override YawCorrectionEnabled based on
// saved calibration setting.
bool SaveMagCalibration(const char* calibrationName = NULL) const;
bool LoadMagCalibration(const char* calibrationName = NULL);
// Enables/disables magnetometer based yaw drift correction. Must also have mag calibration
// data for this correction to work.
void SetYawCorrectionEnabled(bool enable) { EnableYawCorrection = enable; }
// Determines if yaw correction is enabled.
bool IsYawCorrectionEnabled() const { return EnableYawCorrection;}
// Store the calibration matrix for the magnetometer
void SetMagCalibration(const Matrix4f& m)
{
MagCalibrationMatrix = m;
time(&MagCalibrationTime); // time stamp the calibration
MagCalibrated = true;
}
// Retrieves the magnetometer calibration matrix
Matrix4f GetMagCalibration() const { return MagCalibrationMatrix; }
// Retrieve the time of the calibration
time_t GetMagCalibrationTime() const { return MagCalibrationTime; }
// True only if the mag has calibration values stored
bool HasMagCalibration() const { return MagCalibrated;}
// Force the mag into the uncalibrated state
void ClearMagCalibration() { MagCalibrated = false; }
// These refer to reference points that associate mag readings with orientations
void ClearMagReferences() { MagNumReferences = 0; }
Vector3f GetCalibratedMagValue(const Vector3f& rawMag) const;
// *** Message Handler Logic
// Notifies SensorFusion object about a new BodyFrame message from a sensor.
// Should be called by user if not attaching to a sensor.
void OnMessage(const MessageBodyFrame& msg)
{
OVR_ASSERT(!IsAttachedToSensor());
handleMessage(msg);
}
void SetDelegateMessageHandler(MessageHandler* handler)
{ pDelegate = handler; }
private:
SensorFusion* getThis() { return this; }
// Helper used to read and return value within a Lock.
template<class C>
C lockedGet(const C* p) const
{
Lock::Locker lockScope(Handler.GetHandlerLock());
return *p;
}
// Internal handler for messages; bypasses error checking.
void handleMessage(const MessageBodyFrame& msg);
// Set the magnetometer's reference orientation for use in yaw correction
// The supplied mag is an uncalibrated value
void setMagReference(const Quatf& q, const Vector3f& rawMag);
// Default to current HMD orientation
void setMagReference() { setMagReference(Q, RawMag); }
class BodyFrameHandler : public MessageHandler
{
SensorFusion* pFusion;
public:
BodyFrameHandler(SensorFusion* fusion) : pFusion(fusion) { }
~BodyFrameHandler();
virtual void OnMessage(const Message& msg);
virtual bool SupportsMessageType(MessageType type) const;
};
SensorInfo CachedSensorInfo;
Quatf Q;
Quatf QUncorrected;
Vector3f A;
Vector3f AngV;
Vector3f CalMag;
Vector3f RawMag;
unsigned int Stage;
float RunningTime;
float DeltaT;
BodyFrameHandler Handler;
MessageHandler* pDelegate;
float Gain;
volatile bool EnableGravity;
bool EnablePrediction;
float PredictionDT;
float PredictionTimeIncrement;
SensorFilter FRawMag;
SensorFilter FAngV;
Vector3f GyroOffset;
SensorFilterBase<float> TiltAngleFilter;
bool EnableYawCorrection;
bool MagCalibrated;
Matrix4f MagCalibrationMatrix;
time_t MagCalibrationTime;
int MagNumReferences;
Vector3f MagRefsInBodyFrame[MagMaxReferences];
Vector3f MagRefsInWorldFrame[MagMaxReferences];
int MagRefIdx;
int MagRefScore;
bool MotionTrackingEnabled;
};
} // namespace OVR
#endif
|