1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
|
/************************************************************************************
Filename : OVR_SensorImpl.cpp
Content : Oculus Sensor device implementation.
Created : March 7, 2013
Authors : Lee Cooper
Copyright : Copyright 2013 Oculus VR, Inc. All Rights reserved.
Licensed under the Oculus VR SDK License Version 2.0 (the "License");
you may not use the Oculus VR SDK except in compliance with the License,
which is provided at the time of installation or download, or which
otherwise accompanies this software in either electronic or hard copy form.
You may obtain a copy of the License at
http://www.oculusvr.com/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, the Oculus VR SDK
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*************************************************************************************/
#include "OVR_SensorImpl.h"
// HMDDeviceDesc can be created/updated through Sensor carrying DisplayInfo.
#include "Kernel/OVR_Timer.h"
namespace OVR {
//-------------------------------------------------------------------------------------
// ***** Oculus Sensor-specific packet data structures
enum {
Sensor_VendorId = Oculus_VendorId,
Sensor_ProductId = 0x0001,
// ST's VID used originally; should be removed in the future
Sensor_OldVendorId = 0x0483,
Sensor_OldProductId = 0x5750,
Sensor_BootLoader = 0x1001,
Sensor_DefaultReportRate = 500, // Hz
Sensor_MaxReportRate = 1000 // Hz
};
// Reported data is little-endian now
static UInt16 DecodeUInt16(const UByte* buffer)
{
return (UInt16(buffer[1]) << 8) | UInt16(buffer[0]);
}
static SInt16 DecodeSInt16(const UByte* buffer)
{
return (SInt16(buffer[1]) << 8) | SInt16(buffer[0]);
}
static UInt32 DecodeUInt32(const UByte* buffer)
{
return (buffer[0]) | UInt32(buffer[1] << 8) | UInt32(buffer[2] << 16) | UInt32(buffer[3] << 24);
}
static float DecodeFloat(const UByte* buffer)
{
union {
UInt32 U;
float F;
};
U = DecodeUInt32(buffer);
return F;
}
static void UnpackSensor(const UByte* buffer, SInt32* x, SInt32* y, SInt32* z)
{
// Sign extending trick
// from http://graphics.stanford.edu/~seander/bithacks.html#FixedSignExtend
struct {SInt32 x:21;} s;
*x = s.x = (buffer[0] << 13) | (buffer[1] << 5) | ((buffer[2] & 0xF8) >> 3);
*y = s.x = ((buffer[2] & 0x07) << 18) | (buffer[3] << 10) | (buffer[4] << 2) |
((buffer[5] & 0xC0) >> 6);
*z = s.x = ((buffer[5] & 0x3F) << 15) | (buffer[6] << 7) | (buffer[7] >> 1);
}
// Messages we care for
enum TrackerMessageType
{
TrackerMessage_None = 0,
TrackerMessage_Sensors = 1,
TrackerMessage_Unknown = 0x100,
TrackerMessage_SizeError = 0x101,
};
struct TrackerSample
{
SInt32 AccelX, AccelY, AccelZ;
SInt32 GyroX, GyroY, GyroZ;
};
struct TrackerSensors
{
UByte SampleCount;
UInt16 Timestamp;
UInt16 LastCommandID;
SInt16 Temperature;
TrackerSample Samples[3];
SInt16 MagX, MagY, MagZ;
TrackerMessageType Decode(const UByte* buffer, int size)
{
if (size < 62)
return TrackerMessage_SizeError;
SampleCount = buffer[1];
Timestamp = DecodeUInt16(buffer + 2);
LastCommandID = DecodeUInt16(buffer + 4);
Temperature = DecodeSInt16(buffer + 6);
//if (SampleCount > 2)
// OVR_DEBUG_LOG_TEXT(("TackerSensor::Decode SampleCount=%d\n", SampleCount));
// Only unpack as many samples as there actually are
UByte iterationCount = (SampleCount > 2) ? 3 : SampleCount;
for (UByte i = 0; i < iterationCount; i++)
{
UnpackSensor(buffer + 8 + 16 * i, &Samples[i].AccelX, &Samples[i].AccelY, &Samples[i].AccelZ);
UnpackSensor(buffer + 16 + 16 * i, &Samples[i].GyroX, &Samples[i].GyroY, &Samples[i].GyroZ);
}
MagX = DecodeSInt16(buffer + 56);
MagY = DecodeSInt16(buffer + 58);
MagZ = DecodeSInt16(buffer + 60);
return TrackerMessage_Sensors;
}
};
struct TrackerMessage
{
TrackerMessageType Type;
TrackerSensors Sensors;
};
bool DecodeTrackerMessage(TrackerMessage* message, UByte* buffer, int size)
{
memset(message, 0, sizeof(TrackerMessage));
if (size < 4)
{
message->Type = TrackerMessage_SizeError;
return false;
}
switch (buffer[0])
{
case TrackerMessage_Sensors:
message->Type = message->Sensors.Decode(buffer, size);
break;
default:
message->Type = TrackerMessage_Unknown;
break;
}
return (message->Type < TrackerMessage_Unknown) && (message->Type != TrackerMessage_None);
}
// ***** SensorRangeImpl Implementation
// Sensor HW only accepts specific maximum range values, used to maximize
// the 16-bit sensor outputs. Use these ramps to specify and report appropriate values.
static const UInt16 AccelRangeRamp[] = { 2, 4, 8, 16 };
static const UInt16 GyroRangeRamp[] = { 250, 500, 1000, 2000 };
static const UInt16 MagRangeRamp[] = { 880, 1300, 1900, 2500 };
static UInt16 SelectSensorRampValue(const UInt16* ramp, unsigned count,
float val, float factor, const char* label)
{
UInt16 threshold = (UInt16)(val * factor);
for (unsigned i = 0; i<count; i++)
{
if (ramp[i] >= threshold)
return ramp[i];
}
OVR_DEBUG_LOG(("SensorDevice::SetRange - %s clamped to %0.4f",
label, float(ramp[count-1]) / factor));
OVR_UNUSED2(factor, label);
return ramp[count-1];
}
// SensorScaleImpl provides buffer packing logic for the Sensor Range
// record that can be applied to DK1 sensor through Get/SetFeature. We expose this
// through SensorRange class, which has different units.
struct SensorRangeImpl
{
enum { PacketSize = 8 };
UByte Buffer[PacketSize];
UInt16 CommandId;
UInt16 AccelScale;
UInt16 GyroScale;
UInt16 MagScale;
SensorRangeImpl(const SensorRange& r, UInt16 commandId = 0)
{
SetSensorRange(r, commandId);
}
void SetSensorRange(const SensorRange& r, UInt16 commandId = 0)
{
CommandId = commandId;
AccelScale = SelectSensorRampValue(AccelRangeRamp, sizeof(AccelRangeRamp)/sizeof(AccelRangeRamp[0]),
r.MaxAcceleration, (1.0f / 9.81f), "MaxAcceleration");
GyroScale = SelectSensorRampValue(GyroRangeRamp, sizeof(GyroRangeRamp)/sizeof(GyroRangeRamp[0]),
r.MaxRotationRate, Math<float>::RadToDegreeFactor, "MaxRotationRate");
MagScale = SelectSensorRampValue(MagRangeRamp, sizeof(MagRangeRamp)/sizeof(MagRangeRamp[0]),
r.MaxMagneticField, 1000.0f, "MaxMagneticField");
Pack();
}
void GetSensorRange(SensorRange* r)
{
r->MaxAcceleration = AccelScale * 9.81f;
r->MaxRotationRate = DegreeToRad((float)GyroScale);
r->MaxMagneticField= MagScale * 0.001f;
}
static SensorRange GetMaxSensorRange()
{
return SensorRange(AccelRangeRamp[sizeof(AccelRangeRamp)/sizeof(AccelRangeRamp[0]) - 1] * 9.81f,
GyroRangeRamp[sizeof(GyroRangeRamp)/sizeof(GyroRangeRamp[0]) - 1] *
Math<float>::DegreeToRadFactor,
MagRangeRamp[sizeof(MagRangeRamp)/sizeof(MagRangeRamp[0]) - 1] * 0.001f);
}
void Pack()
{
Buffer[0] = 4;
Buffer[1] = UByte(CommandId & 0xFF);
Buffer[2] = UByte(CommandId >> 8);
Buffer[3] = UByte(AccelScale);
Buffer[4] = UByte(GyroScale & 0xFF);
Buffer[5] = UByte(GyroScale >> 8);
Buffer[6] = UByte(MagScale & 0xFF);
Buffer[7] = UByte(MagScale >> 8);
}
void Unpack()
{
CommandId = Buffer[1] | (UInt16(Buffer[2]) << 8);
AccelScale= Buffer[3];
GyroScale = Buffer[4] | (UInt16(Buffer[5]) << 8);
MagScale = Buffer[6] | (UInt16(Buffer[7]) << 8);
}
};
// Sensor configuration command, ReportId == 2.
struct SensorConfigImpl
{
enum { PacketSize = 7 };
UByte Buffer[PacketSize];
// Flag values for Flags.
enum {
Flag_RawMode = 0x01,
Flag_CallibrationTest = 0x02, // Internal test mode
Flag_UseCallibration = 0x04,
Flag_AutoCallibration = 0x08,
Flag_MotionKeepAlive = 0x10,
Flag_CommandKeepAlive = 0x20,
Flag_SensorCoordinates = 0x40
};
UInt16 CommandId;
UByte Flags;
UInt16 PacketInterval;
UInt16 KeepAliveIntervalMs;
SensorConfigImpl() : CommandId(0), Flags(0), PacketInterval(0), KeepAliveIntervalMs(0)
{
memset(Buffer, 0, PacketSize);
Buffer[0] = 2;
}
void SetSensorCoordinates(bool sensorCoordinates)
{ Flags = (Flags & ~Flag_SensorCoordinates) | (sensorCoordinates ? Flag_SensorCoordinates : 0); }
bool IsUsingSensorCoordinates() const
{ return (Flags & Flag_SensorCoordinates) != 0; }
void Pack()
{
Buffer[0] = 2;
Buffer[1] = UByte(CommandId & 0xFF);
Buffer[2] = UByte(CommandId >> 8);
Buffer[3] = Flags;
Buffer[4] = UByte(PacketInterval);
Buffer[5] = UByte(KeepAliveIntervalMs & 0xFF);
Buffer[6] = UByte(KeepAliveIntervalMs >> 8);
}
void Unpack()
{
CommandId = Buffer[1] | (UInt16(Buffer[2]) << 8);
Flags = Buffer[3];
PacketInterval = Buffer[4];
KeepAliveIntervalMs= Buffer[5] | (UInt16(Buffer[6]) << 8);
}
};
// SensorKeepAlive - feature report that needs to be sent at regular intervals for sensor
// to receive commands.
struct SensorKeepAliveImpl
{
enum { PacketSize = 5 };
UByte Buffer[PacketSize];
UInt16 CommandId;
UInt16 KeepAliveIntervalMs;
SensorKeepAliveImpl(UInt16 interval = 0, UInt16 commandId = 0)
: CommandId(commandId), KeepAliveIntervalMs(interval)
{
Pack();
}
void Pack()
{
Buffer[0] = 8;
Buffer[1] = UByte(CommandId & 0xFF);
Buffer[2] = UByte(CommandId >> 8);
Buffer[3] = UByte(KeepAliveIntervalMs & 0xFF);
Buffer[4] = UByte(KeepAliveIntervalMs >> 8);
}
void Unpack()
{
CommandId = Buffer[1] | (UInt16(Buffer[2]) << 8);
KeepAliveIntervalMs= Buffer[3] | (UInt16(Buffer[4]) << 8);
}
};
//-------------------------------------------------------------------------------------
// ***** SensorDisplayInfoImpl
SensorDisplayInfoImpl::SensorDisplayInfoImpl()
: CommandId(0), DistortionType(Base_None)
{
memset(Buffer, 0, PacketSize);
Buffer[0] = 9;
}
void SensorDisplayInfoImpl::Unpack()
{
CommandId = Buffer[1] | (UInt16(Buffer[2]) << 8);
DistortionType = Buffer[3];
HResolution = DecodeUInt16(Buffer+4);
VResolution = DecodeUInt16(Buffer+6);
HScreenSize = DecodeUInt32(Buffer+8) * (1/1000000.f);
VScreenSize = DecodeUInt32(Buffer+12) * (1/1000000.f);
VCenter = DecodeUInt32(Buffer+16) * (1/1000000.f);
LensSeparation = DecodeUInt32(Buffer+20) * (1/1000000.f);
EyeToScreenDistance[0] = DecodeUInt32(Buffer+24) * (1/1000000.f);
EyeToScreenDistance[1] = DecodeUInt32(Buffer+28) * (1/1000000.f);
DistortionK[0] = DecodeFloat(Buffer+32);
DistortionK[1] = DecodeFloat(Buffer+36);
DistortionK[2] = DecodeFloat(Buffer+40);
DistortionK[3] = DecodeFloat(Buffer+44);
DistortionK[4] = DecodeFloat(Buffer+48);
DistortionK[5] = DecodeFloat(Buffer+52);
}
//-------------------------------------------------------------------------------------
// ***** SensorDeviceFactory
SensorDeviceFactory SensorDeviceFactory::Instance;
void SensorDeviceFactory::EnumerateDevices(EnumerateVisitor& visitor)
{
class SensorEnumerator : public HIDEnumerateVisitor
{
// Assign not supported; suppress MSVC warning.
void operator = (const SensorEnumerator&) { }
DeviceFactory* pFactory;
EnumerateVisitor& ExternalVisitor;
public:
SensorEnumerator(DeviceFactory* factory, EnumerateVisitor& externalVisitor)
: pFactory(factory), ExternalVisitor(externalVisitor) { }
virtual bool MatchVendorProduct(UInt16 vendorId, UInt16 productId)
{
return pFactory->MatchVendorProduct(vendorId, productId);
}
virtual void Visit(HIDDevice& device, const HIDDeviceDesc& desc)
{
if (desc.ProductId == Sensor_BootLoader)
{ // If we find a sensor in boot loader mode then notify the app
// about the existence of the device, but don't allow the app
// to create or access the device
BootLoaderDeviceCreateDesc createDesc(pFactory, desc);
ExternalVisitor.Visit(createDesc);
return;
}
SensorDeviceCreateDesc createDesc(pFactory, desc);
ExternalVisitor.Visit(createDesc);
// Check if the sensor returns DisplayInfo. If so, try to use it to override potentially
// mismatching monitor information (in case wrong EDID is reported by splitter),
// or to create a new "virtualized" HMD Device.
SensorDisplayInfoImpl displayInfo;
if (device.GetFeatureReport(displayInfo.Buffer, SensorDisplayInfoImpl::PacketSize))
{
displayInfo.Unpack();
// If we got display info, try to match / create HMDDevice as well
// so that sensor settings give preference.
if (displayInfo.DistortionType & SensorDisplayInfoImpl::Mask_BaseFmt)
{
SensorDeviceImpl::EnumerateHMDFromSensorDisplayInfo(displayInfo, ExternalVisitor);
}
}
}
};
//double start = Timer::GetProfileSeconds();
SensorEnumerator sensorEnumerator(this, visitor);
GetManagerImpl()->GetHIDDeviceManager()->Enumerate(&sensorEnumerator);
//double totalSeconds = Timer::GetProfileSeconds() - start;
}
bool SensorDeviceFactory::MatchVendorProduct(UInt16 vendorId, UInt16 productId) const
{
// search for a tracker sensor or a tracker boot loader device
return ((vendorId == Sensor_VendorId) && (productId == Sensor_ProductId)) ||
((vendorId == Sensor_OldVendorId) && (productId == Sensor_OldProductId)) ||
((vendorId == Sensor_VendorId) && (productId == Sensor_BootLoader));
}
bool SensorDeviceFactory::DetectHIDDevice(DeviceManager* pdevMgr, const HIDDeviceDesc& desc)
{
if (MatchVendorProduct(desc.VendorId, desc.ProductId))
{
if (desc.ProductId == Sensor_BootLoader)
{ // If we find a sensor in boot loader mode then notify the app
// about the existence of the device, but don't allow them
// to create or access the device
BootLoaderDeviceCreateDesc createDesc(this, desc);
pdevMgr->AddDevice_NeedsLock(createDesc);
return false; // return false to allow upstream boot loader factories to catch the device
}
else
{
SensorDeviceCreateDesc createDesc(this, desc);
return pdevMgr->AddDevice_NeedsLock(createDesc).GetPtr() != NULL;
}
}
return false;
}
//-------------------------------------------------------------------------------------
// ***** SensorDeviceCreateDesc
DeviceBase* SensorDeviceCreateDesc::NewDeviceInstance()
{
return new SensorDeviceImpl(this);
}
bool SensorDeviceCreateDesc::GetDeviceInfo(DeviceInfo* info) const
{
if ((info->InfoClassType != Device_Sensor) &&
(info->InfoClassType != Device_None))
return false;
OVR_strcpy(info->ProductName, DeviceInfo::MaxNameLength, HIDDesc.Product.ToCStr());
OVR_strcpy(info->Manufacturer, DeviceInfo::MaxNameLength, HIDDesc.Manufacturer.ToCStr());
info->Type = Device_Sensor;
if (info->InfoClassType == Device_Sensor)
{
SensorInfo* sinfo = (SensorInfo*)info;
sinfo->VendorId = HIDDesc.VendorId;
sinfo->ProductId = HIDDesc.ProductId;
sinfo->Version = HIDDesc.VersionNumber;
sinfo->MaxRanges = SensorRangeImpl::GetMaxSensorRange();
OVR_strcpy(sinfo->SerialNumber, sizeof(sinfo->SerialNumber),HIDDesc.SerialNumber.ToCStr());
}
return true;
}
//-------------------------------------------------------------------------------------
// ***** SensorDevice
SensorDeviceImpl::SensorDeviceImpl(SensorDeviceCreateDesc* createDesc)
: OVR::HIDDeviceImpl<OVR::SensorDevice>(createDesc, 0),
Coordinates(SensorDevice::Coord_Sensor),
HWCoordinates(SensorDevice::Coord_HMD), // HW reports HMD coordinates by default.
NextKeepAliveTicks(0),
MaxValidRange(SensorRangeImpl::GetMaxSensorRange())
{
SequenceValid = false;
LastSampleCount= 0;
LastTimestamp = 0;
OldCommandId = 0;
}
SensorDeviceImpl::~SensorDeviceImpl()
{
// Check that Shutdown() was called.
OVR_ASSERT(!pCreateDesc->pDevice);
}
// Internal creation APIs.
bool SensorDeviceImpl::Initialize(DeviceBase* parent)
{
if (HIDDeviceImpl<OVR::SensorDevice>::Initialize(parent))
{
openDevice();
LogText("OVR::SensorDevice initialized.\n");
return true;
}
return false;
}
void SensorDeviceImpl::openDevice()
{
// Read the currently configured range from sensor.
SensorRangeImpl sr(SensorRange(), 0);
if (GetInternalDevice()->GetFeatureReport(sr.Buffer, SensorRangeImpl::PacketSize))
{
sr.Unpack();
sr.GetSensorRange(&CurrentRange);
// Increase the magnetometer range, since the default value is not enough in practice
CurrentRange.MaxMagneticField = 2.5f;
setRange(CurrentRange);
}
// If the sensor has "DisplayInfo" data, use HMD coordinate frame by default.
SensorDisplayInfoImpl displayInfo;
if (GetInternalDevice()->GetFeatureReport(displayInfo.Buffer, SensorDisplayInfoImpl::PacketSize))
{
displayInfo.Unpack();
Coordinates = (displayInfo.DistortionType & SensorDisplayInfoImpl::Mask_BaseFmt) ?
Coord_HMD : Coord_Sensor;
}
// Read/Apply sensor config.
setCoordinateFrame(Coordinates);
setReportRate(Sensor_DefaultReportRate);
// Set Keep-alive at 10 seconds.
SensorKeepAliveImpl skeepAlive(10 * 1000);
GetInternalDevice()->SetFeatureReport(skeepAlive.Buffer, SensorKeepAliveImpl::PacketSize);
}
void SensorDeviceImpl::closeDeviceOnError()
{
LogText("OVR::SensorDevice - Lost connection to '%s'\n", getHIDDesc()->Path.ToCStr());
NextKeepAliveTicks = 0;
}
void SensorDeviceImpl::Shutdown()
{
HIDDeviceImpl<OVR::SensorDevice>::Shutdown();
LogText("OVR::SensorDevice - Closed '%s'\n", getHIDDesc()->Path.ToCStr());
}
void SensorDeviceImpl::OnInputReport(UByte* pData, UInt32 length)
{
bool processed = false;
if (!processed)
{
TrackerMessage message;
if (DecodeTrackerMessage(&message, pData, length))
{
processed = true;
onTrackerMessage(&message);
}
}
}
UInt64 SensorDeviceImpl::OnTicks(UInt64 ticksMks)
{
if (ticksMks >= NextKeepAliveTicks)
{
// Use 3-seconds keep alive by default.
UInt64 keepAliveDelta = Timer::MksPerSecond * 3;
// Set Keep-alive at 10 seconds.
SensorKeepAliveImpl skeepAlive(10 * 1000);
// OnTicks is called from background thread so we don't need to add this to the command queue.
GetInternalDevice()->SetFeatureReport(skeepAlive.Buffer, SensorKeepAliveImpl::PacketSize);
// Emit keep-alive every few seconds.
NextKeepAliveTicks = ticksMks + keepAliveDelta;
}
return NextKeepAliveTicks - ticksMks;
}
bool SensorDeviceImpl::SetRange(const SensorRange& range, bool waitFlag)
{
bool result = 0;
ThreadCommandQueue * threadQueue = GetManagerImpl()->GetThreadQueue();
if (!waitFlag)
{
return threadQueue->PushCall(this, &SensorDeviceImpl::setRange, range);
}
if (!threadQueue->PushCallAndWaitResult(this,
&SensorDeviceImpl::setRange,
&result,
range))
{
return false;
}
return result;
}
void SensorDeviceImpl::GetRange(SensorRange* range) const
{
Lock::Locker lockScope(GetLock());
*range = CurrentRange;
}
bool SensorDeviceImpl::setRange(const SensorRange& range)
{
SensorRangeImpl sr(range);
if (GetInternalDevice()->SetFeatureReport(sr.Buffer, SensorRangeImpl::PacketSize))
{
Lock::Locker lockScope(GetLock());
sr.GetSensorRange(&CurrentRange);
return true;
}
return false;
}
void SensorDeviceImpl::SetCoordinateFrame(CoordinateFrame coordframe)
{
// Push call with wait.
GetManagerImpl()->GetThreadQueue()->
PushCall(this, &SensorDeviceImpl::setCoordinateFrame, coordframe, true);
}
SensorDevice::CoordinateFrame SensorDeviceImpl::GetCoordinateFrame() const
{
return Coordinates;
}
Void SensorDeviceImpl::setCoordinateFrame(CoordinateFrame coordframe)
{
Coordinates = coordframe;
// Read the original coordinate frame, then try to change it.
SensorConfigImpl scfg;
if (GetInternalDevice()->GetFeatureReport(scfg.Buffer, SensorConfigImpl::PacketSize))
{
scfg.Unpack();
}
scfg.SetSensorCoordinates(coordframe == Coord_Sensor);
scfg.Pack();
GetInternalDevice()->SetFeatureReport(scfg.Buffer, SensorConfigImpl::PacketSize);
// Re-read the state, in case of older firmware that doesn't support Sensor coordinates.
if (GetInternalDevice()->GetFeatureReport(scfg.Buffer, SensorConfigImpl::PacketSize))
{
scfg.Unpack();
HWCoordinates = scfg.IsUsingSensorCoordinates() ? Coord_Sensor : Coord_HMD;
}
else
{
HWCoordinates = Coord_HMD;
}
return 0;
}
void SensorDeviceImpl::SetReportRate(unsigned rateHz)
{
// Push call with wait.
GetManagerImpl()->GetThreadQueue()->
PushCall(this, &SensorDeviceImpl::setReportRate, rateHz, true);
}
unsigned SensorDeviceImpl::GetReportRate() const
{
// Read the original configuration
SensorConfigImpl scfg;
if (GetInternalDevice()->GetFeatureReport(scfg.Buffer, SensorConfigImpl::PacketSize))
{
scfg.Unpack();
return Sensor_MaxReportRate / (scfg.PacketInterval + 1);
}
return 0; // error
}
Void SensorDeviceImpl::setReportRate(unsigned rateHz)
{
// Read the original configuration
SensorConfigImpl scfg;
if (GetInternalDevice()->GetFeatureReport(scfg.Buffer, SensorConfigImpl::PacketSize))
{
scfg.Unpack();
}
if (rateHz > Sensor_MaxReportRate)
rateHz = Sensor_MaxReportRate;
else if (rateHz == 0)
rateHz = Sensor_DefaultReportRate;
scfg.PacketInterval = UInt16((Sensor_MaxReportRate / rateHz) - 1);
scfg.Pack();
GetInternalDevice()->SetFeatureReport(scfg.Buffer, SensorConfigImpl::PacketSize);
return 0;
}
void SensorDeviceImpl::SetMessageHandler(MessageHandler* handler)
{
if (handler)
{
SequenceValid = false;
DeviceBase::SetMessageHandler(handler);
}
else
{
DeviceBase::SetMessageHandler(handler);
}
}
// Sensor reports data in the following coordinate system:
// Accelerometer: 10^-4 m/s^2; X forward, Y right, Z Down.
// Gyro: 10^-4 rad/s; X positive roll right, Y positive pitch up; Z positive yaw right.
// We need to convert it to the following RHS coordinate system:
// X right, Y Up, Z Back (out of screen)
//
Vector3f AccelFromBodyFrameUpdate(const TrackerSensors& update, UByte sampleNumber,
bool convertHMDToSensor = false)
{
const TrackerSample& sample = update.Samples[sampleNumber];
float ax = (float)sample.AccelX;
float ay = (float)sample.AccelY;
float az = (float)sample.AccelZ;
Vector3f val = convertHMDToSensor ? Vector3f(ax, az, -ay) : Vector3f(ax, ay, az);
return val * 0.0001f;
}
Vector3f MagFromBodyFrameUpdate(const TrackerSensors& update,
bool convertHMDToSensor = false)
{
// Note: Y and Z are swapped in comparison to the Accel.
// This accounts for DK1 sensor firmware axis swap, which should be undone in future releases.
if (!convertHMDToSensor)
{
return Vector3f( (float)update.MagX,
(float)update.MagZ,
(float)update.MagY) * 0.0001f;
}
return Vector3f( (float)update.MagX,
(float)update.MagY,
-(float)update.MagZ) * 0.0001f;
}
Vector3f EulerFromBodyFrameUpdate(const TrackerSensors& update, UByte sampleNumber,
bool convertHMDToSensor = false)
{
const TrackerSample& sample = update.Samples[sampleNumber];
float gx = (float)sample.GyroX;
float gy = (float)sample.GyroY;
float gz = (float)sample.GyroZ;
Vector3f val = convertHMDToSensor ? Vector3f(gx, gz, -gy) : Vector3f(gx, gy, gz);
return val * 0.0001f;
}
void SensorDeviceImpl::onTrackerMessage(TrackerMessage* message)
{
if (message->Type != TrackerMessage_Sensors)
return;
const float timeUnit = (1.0f / 1000.f);
TrackerSensors& s = message->Sensors;
// Call OnMessage() within a lock to avoid conflicts with handlers.
Lock::Locker scopeLock(HandlerRef.GetLock());
if (SequenceValid)
{
unsigned timestampDelta;
if (s.Timestamp < LastTimestamp)
timestampDelta = ((((int)s.Timestamp) + 0x10000) - (int)LastTimestamp);
else
timestampDelta = (s.Timestamp - LastTimestamp);
// If we missed a small number of samples, replicate the last sample.
if ((timestampDelta > LastSampleCount) && (timestampDelta <= 254))
{
if (HandlerRef.GetHandler())
{
MessageBodyFrame sensors(this);
sensors.TimeDelta = (timestampDelta - LastSampleCount) * timeUnit;
sensors.Acceleration = LastAcceleration;
sensors.RotationRate = LastRotationRate;
sensors.MagneticField = LastMagneticField;
sensors.Temperature = LastTemperature;
HandlerRef.GetHandler()->OnMessage(sensors);
}
}
}
else
{
LastAcceleration = Vector3f(0);
LastRotationRate = Vector3f(0);
LastMagneticField= Vector3f(0);
LastTemperature = 0;
SequenceValid = true;
}
LastSampleCount = s.SampleCount;
LastTimestamp = s.Timestamp;
bool convertHMDToSensor = (Coordinates == Coord_Sensor) && (HWCoordinates == Coord_HMD);
if (HandlerRef.GetHandler())
{
MessageBodyFrame sensors(this);
UByte iterations = s.SampleCount;
if (s.SampleCount > 3)
{
iterations = 3;
sensors.TimeDelta = (s.SampleCount - 2) * timeUnit;
}
else
{
sensors.TimeDelta = timeUnit;
}
for (UByte i = 0; i < iterations; i++)
{
sensors.Acceleration = AccelFromBodyFrameUpdate(s, i, convertHMDToSensor);
sensors.RotationRate = EulerFromBodyFrameUpdate(s, i, convertHMDToSensor);
sensors.MagneticField= MagFromBodyFrameUpdate(s, convertHMDToSensor);
sensors.Temperature = s.Temperature * 0.01f;
HandlerRef.GetHandler()->OnMessage(sensors);
// TimeDelta for the last two sample is always fixed.
sensors.TimeDelta = timeUnit;
}
LastAcceleration = sensors.Acceleration;
LastRotationRate = sensors.RotationRate;
LastMagneticField= sensors.MagneticField;
LastTemperature = sensors.Temperature;
}
else
{
UByte i = (s.SampleCount > 3) ? 2 : (s.SampleCount - 1);
LastAcceleration = AccelFromBodyFrameUpdate(s, i, convertHMDToSensor);
LastRotationRate = EulerFromBodyFrameUpdate(s, i, convertHMDToSensor);
LastMagneticField = MagFromBodyFrameUpdate(s, convertHMDToSensor);
LastTemperature = s.Temperature * 0.01f;
}
}
} // namespace OVR
|