aboutsummaryrefslogtreecommitdiffstats
path: root/LibOVR/Src/Util/Util_Render_Stereo.cpp
blob: aa82b351cdd05cf052a562d7c0a7144d4b0ca6ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
/************************************************************************************

Filename    :   Util_Render_Stereo.cpp
Content     :   Stereo rendering configuration implementation
Created     :   October 22, 2012
Authors     :   Michael Antonov, Andrew Reisse, Tom Forsyth

Copyright   :   Copyright 2014 Oculus VR, LLC All Rights reserved.

Licensed under the Oculus VR Rift SDK License Version 3.2 (the "License");
you may not use the Oculus VR Rift SDK except in compliance with the License,
which is provided at the time of installation or download, or which
otherwise accompanies this software in either electronic or hard copy form.

You may obtain a copy of the License at

http://www.oculusvr.com/licenses/LICENSE-3.2

Unless required by applicable law or agreed to in writing, the Oculus VR SDK
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*************************************************************************************/

#include "Util_Render_Stereo.h"

namespace OVR { namespace Util { namespace Render {

using namespace OVR::Tracking;


//-----------------------------------------------------------------------------------
// **** Useful debug functions.

char const* GetDebugNameEyeCupType ( EyeCupType eyeCupType )
{
    switch ( eyeCupType )
    {
    case EyeCup_DK1A:           return "DK1 A";
    case EyeCup_DK1B:           return "DK1 B";
    case EyeCup_DK1C:           return "DK1 C";
    case EyeCup_DKHD2A:         return "DKHD2 A";
    case EyeCup_OrangeA:        return "Orange A";
    case EyeCup_RedA:           return "Red A";
    case EyeCup_PinkA:          return "Pink A";
    case EyeCup_BlueA:          return "Blue A";
    case EyeCup_Delilah1A:      return "Delilah 1 A";
    case EyeCup_Delilah2A:      return "Delilah 2 A";
    case EyeCup_JamesA:         return "James A";
    case EyeCup_SunMandalaA:    return "Sun Mandala A";
    case EyeCup_DK2A:           return "DK2 A";
    case EyeCup_LAST:           return "LAST";
    default: OVR_ASSERT ( false ); return "Error";
    }
}

char const* GetDebugNameHmdType ( HmdTypeEnum hmdType )
{
    switch ( hmdType )
    {
    case HmdType_None:              return "None";
    case HmdType_DK1:               return "DK1";
    case HmdType_DKProto:           return "DK1 prototype";
    case HmdType_DKHDProto:         return "DK HD prototype 1";
    case HmdType_DKHDProto566Mi:    return "DK HD prototype 566 Mi";
    case HmdType_DKHD2Proto:        return "DK HD prototype 585";
    case HmdType_CrystalCoveProto:  return "Crystal Cove";
    case HmdType_DK2:               return "DK2";
    case HmdType_Unknown:           return "Unknown";
    case HmdType_LAST:              return "LAST";
    default: OVR_ASSERT ( false ); return "Error";
    }
}


//-----------------------------------------------------------------------------------
// **** Internal pipeline functions.

struct DistortionAndFov
{
    DistortionRenderDesc    Distortion;
    FovPort                 Fov;
};

static DistortionAndFov CalculateDistortionAndFovInternal ( StereoEye eyeType, HmdRenderInfo const &hmd,
                                                            LensConfig const *pLensOverride = NULL,
                                                            FovPort const *pTanHalfFovOverride = NULL,
                                                            float extraEyeRotationInRadians = OVR_DEFAULT_EXTRA_EYE_ROTATION )
{
    // pLensOverride can be NULL, which means no override.

    DistortionRenderDesc localDistortion  = CalculateDistortionRenderDesc ( eyeType, hmd, pLensOverride );
    FovPort              fov              = CalculateFovFromHmdInfo ( eyeType, localDistortion, hmd, extraEyeRotationInRadians );
    // Here the app or the user would optionally clamp this visible fov to a smaller number if
    // they want more perf or resolution and are willing to give up FOV.
    // They may also choose to clamp UDLR differently e.g. to get cinemascope-style views.
    if ( pTanHalfFovOverride != NULL )
    {
        fov = *pTanHalfFovOverride;
    }

    // Here we could call ClampToPhysicalScreenFov(), but we do want people
    // to be able to play with larger-than-screen views.
    // The calling app can always do the clamping itself.
    DistortionAndFov result;
    result.Distortion = localDistortion;
    result.Fov        = fov;

    return result;
}


static Recti CalculateViewportInternal ( StereoEye eyeType,
                                            Sizei const actualRendertargetSurfaceSize,
                                            Sizei const requestedRenderedPixelSize,
                                            bool bRendertargetSharedByBothEyes,
                                            bool bMonoRenderingMode = false )
{
    Recti renderedViewport;
    if ( bMonoRenderingMode || !bRendertargetSharedByBothEyes || (eyeType == StereoEye_Center) )
    {
        // One eye per RT.
        renderedViewport.x = 0;
        renderedViewport.y = 0;
        renderedViewport.w = Alg::Min ( actualRendertargetSurfaceSize.w, requestedRenderedPixelSize.w );
        renderedViewport.h = Alg::Min ( actualRendertargetSurfaceSize.h, requestedRenderedPixelSize.h );
    }
    else
    {
        // Both eyes share the RT.
        renderedViewport.x = 0;
        renderedViewport.y = 0;
        renderedViewport.w = Alg::Min ( actualRendertargetSurfaceSize.w/2, requestedRenderedPixelSize.w );
        renderedViewport.h = Alg::Min ( actualRendertargetSurfaceSize.h,  requestedRenderedPixelSize.h );
        if ( eyeType == StereoEye_Right )
        {
            renderedViewport.x = (actualRendertargetSurfaceSize.w+1)/2;      // Round up, not down.
        }
    }
    return renderedViewport;
}

static Recti CalculateViewportDensityInternal ( StereoEye eyeType,
                                                   DistortionRenderDesc const &distortion,
                                                   FovPort const &fov,
                                                   Sizei const &actualRendertargetSurfaceSize,
                                                   bool bRendertargetSharedByBothEyes,
                                                   float desiredPixelDensity = 1.0f,
                                                   bool bMonoRenderingMode = false )
{
    OVR_ASSERT ( actualRendertargetSurfaceSize.w > 0 );
    OVR_ASSERT ( actualRendertargetSurfaceSize.h > 0 );

    // What size RT do we need to get 1:1 mapping?
    Sizei idealPixelSize = CalculateIdealPixelSize ( eyeType, distortion, fov, desiredPixelDensity );
    // ...but we might not actually get that size.
    return CalculateViewportInternal ( eyeType,
                                       actualRendertargetSurfaceSize,
                                       idealPixelSize,
                                       bRendertargetSharedByBothEyes, bMonoRenderingMode );
}

static ViewportScaleAndOffset CalculateViewportScaleAndOffsetInternal (
                                                          ScaleAndOffset2D const &eyeToSourceNDC,
                                                          Recti const &renderedViewport,
                                                          Sizei const &actualRendertargetSurfaceSize )
{
    ViewportScaleAndOffset result;
    result.RenderedViewport = renderedViewport;
    result.EyeToSourceUV = CreateUVScaleAndOffsetfromNDCScaleandOffset(
                                            eyeToSourceNDC, renderedViewport, actualRendertargetSurfaceSize );
    return result;
}


static StereoEyeParams CalculateStereoEyeParamsInternal ( StereoEye eyeType, HmdRenderInfo const &hmd,
                                                          DistortionRenderDesc const &distortion,
                                                          FovPort const &fov,
                                                          Sizei const &actualRendertargetSurfaceSize,
                                                          Recti const &renderedViewport,
                                                          bool bRightHanded = true, float zNear = 0.01f, float zFar = 10000.0f,
                                                          bool bMonoRenderingMode = false,
                                                          float zoomFactor = 1.0f )
{
    // Generate the projection matrix for intermediate rendertarget.
    // Z range can also be inserted later by the app (though not in this particular case)
    float fovScale = 1.0f / zoomFactor;
    FovPort zoomedFov = fov;
    zoomedFov.LeftTan  *= fovScale;
    zoomedFov.RightTan *= fovScale;
    zoomedFov.UpTan    *= fovScale;
    zoomedFov.DownTan  *= fovScale;
    Matrix4f projection = CreateProjection ( bRightHanded, zoomedFov, zNear, zFar );

    // Find the mapping from TanAngle space to target NDC space.
    // Note this does NOT take the zoom factor into account because
    // this is the mapping of actual physical eye FOV (and our eyes do not zoom!)
    // to screen space.
    ScaleAndOffset2D eyeToSourceNDC = CreateNDCScaleAndOffsetFromFov ( fov );

    // The size of the final FB, which is fixed and determined by the physical size of the device display.
    Recti distortedViewport   = GetFramebufferViewport ( eyeType, hmd );
    Vector3f virtualCameraOffset = CalculateEyeVirtualCameraOffset(hmd, eyeType, bMonoRenderingMode);

    StereoEyeParams result;
    result.Eye                  = eyeType;
    result.HmdToEyeViewOffset   = Matrix4f::Translation(virtualCameraOffset);
    result.Distortion           = distortion;
    result.DistortionViewport   = distortedViewport;
    result.Fov                  = fov;
    result.RenderedProjection   = projection;
    result.EyeToSourceNDC       = eyeToSourceNDC;
    ViewportScaleAndOffset vsao = CalculateViewportScaleAndOffsetInternal ( eyeToSourceNDC, renderedViewport, actualRendertargetSurfaceSize );
    result.RenderedViewport     = vsao.RenderedViewport;
    result.EyeToSourceUV        = vsao.EyeToSourceUV;

    return result;
}


Vector3f CalculateEyeVirtualCameraOffset(HmdRenderInfo const &hmd,
                                         StereoEye eyeType, bool bmonoRenderingMode)
{
    Vector3f virtualCameraOffset(0);

    if (!bmonoRenderingMode)
    {
        float eyeCenterRelief = hmd.GetEyeCenter().ReliefInMeters;

        if (eyeType == StereoEye_Left)
        {
            virtualCameraOffset.x = hmd.EyeLeft.NoseToPupilInMeters;
            virtualCameraOffset.z = eyeCenterRelief - hmd.EyeLeft.ReliefInMeters;
        }
        else if (eyeType == StereoEye_Right)
        {
            virtualCameraOffset.x = -hmd.EyeRight.NoseToPupilInMeters;
            virtualCameraOffset.z = eyeCenterRelief - hmd.EyeRight.ReliefInMeters;
        }
    }

    return virtualCameraOffset;
}


//-----------------------------------------------------------------------------------
// **** Higher-level utility functions.

Sizei CalculateRecommendedTextureSize ( HmdRenderInfo const &hmd,
                                        bool bRendertargetSharedByBothEyes,
                                        float pixelDensityInCenter /*= 1.0f*/ )
{
    Sizei idealPixelSize[2];
    for ( int eyeNum = 0; eyeNum < 2; eyeNum++ )
    {
        StereoEye eyeType = ( eyeNum == 0 ) ? StereoEye_Left : StereoEye_Right;

        DistortionAndFov distortionAndFov = CalculateDistortionAndFovInternal ( eyeType, hmd, NULL, NULL, OVR_DEFAULT_EXTRA_EYE_ROTATION );

        idealPixelSize[eyeNum] = CalculateIdealPixelSize ( eyeType,
                                        distortionAndFov.Distortion,
                                        distortionAndFov.Fov,
                                        pixelDensityInCenter );
    }

    Sizei result;
    result.w = Alg::Max ( idealPixelSize[0].w, idealPixelSize[1].w );
    result.h = Alg::Max ( idealPixelSize[0].h, idealPixelSize[1].h );
    if ( bRendertargetSharedByBothEyes )
    {
        result.w *= 2;
    }
    return result;
}

StereoEyeParams CalculateStereoEyeParams ( HmdRenderInfo const &hmd,
                                           StereoEye eyeType,
                                           Sizei const &actualRendertargetSurfaceSize,
                                           bool bRendertargetSharedByBothEyes,
                                           bool bRightHanded /*= true*/,
                                           float zNear /*= 0.01f*/, float zFar /*= 10000.0f*/,
										   Sizei const *pOverrideRenderedPixelSize /* = NULL*/,
                                           FovPort const *pOverrideFovport /*= NULL*/,
                                           float zoomFactor /*= 1.0f*/ )
{
    DistortionAndFov distortionAndFov = CalculateDistortionAndFovInternal ( eyeType, hmd, NULL, NULL, OVR_DEFAULT_EXTRA_EYE_ROTATION );
    if ( pOverrideFovport != NULL )
    {
        distortionAndFov.Fov = *pOverrideFovport;
    }

    Recti viewport;
    if ( pOverrideRenderedPixelSize != NULL )
    {
        viewport = CalculateViewportInternal ( eyeType, actualRendertargetSurfaceSize, *pOverrideRenderedPixelSize, bRendertargetSharedByBothEyes, false );
    }
    else
    {
        viewport = CalculateViewportDensityInternal ( eyeType,
                                                      distortionAndFov.Distortion,
                                                      distortionAndFov.Fov,
                                                      actualRendertargetSurfaceSize, bRendertargetSharedByBothEyes, 1.0f, false );
    }

    return CalculateStereoEyeParamsInternal (
                                eyeType, hmd,
                                distortionAndFov.Distortion,
                                distortionAndFov.Fov,
                                actualRendertargetSurfaceSize, viewport,
                                bRightHanded, zNear, zFar, false, zoomFactor );
}


FovPort CalculateRecommendedFov ( HmdRenderInfo const &hmd,
                                  StereoEye eyeType,
                                  bool bMakeFovSymmetrical /* = false */ )
{
    DistortionAndFov distortionAndFov = CalculateDistortionAndFovInternal ( eyeType, hmd, NULL, NULL, OVR_DEFAULT_EXTRA_EYE_ROTATION );
    FovPort fov = distortionAndFov.Fov;
    if ( bMakeFovSymmetrical )
    {
        // Deal with engines that cannot support an off-center projection.
        // Unfortunately this means they will be rendering pixels that the user can't actually see.
        float fovTanH = Alg::Max ( fov.LeftTan, fov.RightTan );
        float fovTanV = Alg::Max ( fov.UpTan, fov.DownTan );
        fov.LeftTan = fovTanH;
        fov.RightTan = fovTanH;
        fov.UpTan = fovTanV;
        fov.DownTan = fovTanV;
    }
    return fov;
}

ViewportScaleAndOffset ModifyRenderViewport ( StereoEyeParams const &params,
                                              Sizei const &actualRendertargetSurfaceSize,
                                              Recti const &renderViewport )
{
    return CalculateViewportScaleAndOffsetInternal ( params.EyeToSourceNDC, renderViewport, actualRendertargetSurfaceSize );
}

ViewportScaleAndOffset ModifyRenderSize ( StereoEyeParams const &params,
                                          Sizei const &actualRendertargetSurfaceSize,
                                          Sizei const &requestedRenderSize,
                                          bool bRendertargetSharedByBothEyes /*= false*/ )
{
    Recti renderViewport = CalculateViewportInternal ( params.Eye, actualRendertargetSurfaceSize, requestedRenderSize, bRendertargetSharedByBothEyes, false );
    return CalculateViewportScaleAndOffsetInternal ( params.EyeToSourceNDC, renderViewport, actualRendertargetSurfaceSize );
}

ViewportScaleAndOffset ModifyRenderDensity ( StereoEyeParams const &params,
                                             Sizei const &actualRendertargetSurfaceSize,
                                             float pixelDensity /*= 1.0f*/,
                                             bool bRendertargetSharedByBothEyes /*= false*/ )
{
    Recti renderViewport = CalculateViewportDensityInternal ( params.Eye, params.Distortion, params.Fov, actualRendertargetSurfaceSize, bRendertargetSharedByBothEyes, pixelDensity, false );
    return CalculateViewportScaleAndOffsetInternal ( params.EyeToSourceNDC, renderViewport, actualRendertargetSurfaceSize );
}


//-----------------------------------------------------------------------------------
// **** StereoConfig Implementation

StereoConfig::StereoConfig(StereoMode mode)
    : Mode(mode),
      DirtyFlag(true)
{
    // Initialize "fake" default HMD values for testing without HMD plugged in.
    // These default values match those returned by DK1
    // (at least they did at time of writing - certainly good enough for debugging)
    Hmd.HmdType                                         = HmdType_None;
    Hmd.ResolutionInPixels                              = Sizei(1280, 800);
    Hmd.ScreenSizeInMeters                              = Sizef(0.1498f, 0.0936f);
    Hmd.ScreenGapSizeInMeters                           = 0.0f;
    Hmd.PelOffsetR                                      = Vector2f ( 0.0f, 0.0f );
    Hmd.PelOffsetB                                      = Vector2f ( 0.0f, 0.0f );
    Hmd.CenterFromTopInMeters                           = 0.0468f;
    Hmd.LensSeparationInMeters                          = 0.0635f;
    Hmd.LensDiameterInMeters                            = 0.035f;
    Hmd.LensSurfaceToMidplateInMeters                   = 0.025f;
    Hmd.EyeCups                                         = EyeCup_DK1A;
    Hmd.Shutter.Type                                    = HmdShutter_RollingTopToBottom;
    Hmd.Shutter.VsyncToNextVsync                        = ( 1.0f / 60.0f );
    Hmd.Shutter.VsyncToFirstScanline                    = 0.000052f;
    Hmd.Shutter.FirstScanlineToLastScanline             = 0.016580f;
    Hmd.Shutter.PixelSettleTime                         = 0.015f;
    Hmd.Shutter.PixelPersistence                        = ( 1.0f / 60.0f );
    Hmd.EyeLeft.Distortion.SetToIdentity();
    Hmd.EyeLeft.Distortion.MetersPerTanAngleAtCenter    = 0.043875f;
    Hmd.EyeLeft.Distortion.Eqn                          = Distortion_RecipPoly4;
    Hmd.EyeLeft.Distortion.K[0]                         = 1.0f;
    Hmd.EyeLeft.Distortion.K[1]                         = -0.3999f;
    Hmd.EyeLeft.Distortion.K[2]                         = 0.2408f;
    Hmd.EyeLeft.Distortion.K[3]                         = -0.4589f;
    Hmd.EyeLeft.Distortion.MaxR                         = 1.0f;
	Hmd.EyeLeft.Distortion.ChromaticAberration[0]		= 0.006f;
	Hmd.EyeLeft.Distortion.ChromaticAberration[1]		= 0.0f;
	Hmd.EyeLeft.Distortion.ChromaticAberration[2]		= -0.014f;
	Hmd.EyeLeft.Distortion.ChromaticAberration[3]		= 0.0f;
    Hmd.EyeLeft.NoseToPupilInMeters                     = 0.62f;
    Hmd.EyeLeft.ReliefInMeters                          = 0.013f;
    Hmd.EyeRight = Hmd.EyeLeft;

    SetViewportMode = SVPM_Density;
    SetViewportPixelsPerDisplayPixel = 1.0f;
    // Not used in this mode, but init them anyway.
    SetViewportSize[0] = Sizei(0,0);
    SetViewportSize[1] = Sizei(0,0);
    SetViewport[0] = Recti(0,0,0,0);
    SetViewport[1] = Recti(0,0,0,0);

    OverrideLens = false;
    OverrideTanHalfFov = false;
    OverrideZeroIpd = false;
    ExtraEyeRotationInRadians = OVR_DEFAULT_EXTRA_EYE_ROTATION;
    IsRendertargetSharedByBothEyes = true;
    RightHandedProjection = true;

    // This should cause an assert if the app does not call SetRendertargetSize()
    RendertargetSize = Sizei ( 0, 0 );

    ZNear = 0.01f;
    ZFar = 10000.0f;

    Set2DAreaFov(DegreeToRad(85.0f));
}

void StereoConfig::SetHmdRenderInfo(const HmdRenderInfo& hmd)
{
    Hmd = hmd;
    DirtyFlag = true;
}

void StereoConfig::Set2DAreaFov(float fovRadians)
{
    Area2DFov = fovRadians;
    DirtyFlag = true;
}

const StereoEyeParamsWithOrtho& StereoConfig::GetEyeRenderParams(StereoEye eye)
{
    if ( DirtyFlag )
    {
        UpdateComputedState();
    }

    static const uint8_t eyeParamIndices[3] = { 0, 0, 1 };

    OVR_ASSERT(eye < sizeof(eyeParamIndices));
    return EyeRenderParams[eyeParamIndices[eye]];
}

void StereoConfig::SetLensOverride ( LensConfig const *pLensOverrideLeft  /*= NULL*/,
                                     LensConfig const *pLensOverrideRight /*= NULL*/ )
{
    if ( pLensOverrideLeft == NULL )
    {
        OverrideLens = false;
    }
    else
    {
        OverrideLens = true;
        LensOverrideLeft = *pLensOverrideLeft;
        LensOverrideRight = *pLensOverrideLeft;
        if ( pLensOverrideRight != NULL )
        {
            LensOverrideRight = *pLensOverrideRight;
        }
    }
    DirtyFlag = true;
}

void StereoConfig::SetRendertargetSize (Size<int> const rendertargetSize,
                                        bool rendertargetIsSharedByBothEyes )
{
    RendertargetSize = rendertargetSize;
    IsRendertargetSharedByBothEyes = rendertargetIsSharedByBothEyes;
    DirtyFlag = true;
}

void StereoConfig::SetFov ( FovPort const *pfovLeft  /*= NULL*/,
                            FovPort const *pfovRight /*= NULL*/ )
{
    DirtyFlag = true;
    if ( pfovLeft == NULL )
    {
        OverrideTanHalfFov = false;
    }
    else
    {
        OverrideTanHalfFov = true;
        FovOverrideLeft  = *pfovLeft;
        FovOverrideRight = *pfovLeft;
        if ( pfovRight != NULL )
        {
            FovOverrideRight = *pfovRight;
        }
    }
}


void StereoConfig::SetZeroVirtualIpdOverride ( bool enableOverride )
{
    DirtyFlag = true;
    OverrideZeroIpd = enableOverride;
}


void StereoConfig::SetZClipPlanesAndHandedness ( float zNear /*= 0.01f*/, float zFar /*= 10000.0f*/, bool rightHandedProjection /*= true*/ )
{
    DirtyFlag = true;
    ZNear = zNear;
    ZFar = zFar;
    RightHandedProjection = rightHandedProjection;
}

void StereoConfig::SetExtraEyeRotation ( float extraEyeRotationInRadians )
{
    DirtyFlag = true;
    ExtraEyeRotationInRadians = extraEyeRotationInRadians;
}

Sizei StereoConfig::CalculateRecommendedTextureSize ( bool rendertargetSharedByBothEyes,
                                                      float pixelDensityInCenter /*= 1.0f*/ )
{
    return Render::CalculateRecommendedTextureSize ( Hmd, rendertargetSharedByBothEyes, pixelDensityInCenter );
}



void StereoConfig::UpdateComputedState()
{
    int numEyes = 2;
    StereoEye eyeTypes[2];

    switch ( Mode )
    {
    case Stereo_None:
        numEyes         = 1;
        eyeTypes[0]     = StereoEye_Center;
        break;

    case Stereo_LeftRight_Multipass:
        numEyes         = 2;
        eyeTypes[0]     = StereoEye_Left;
        eyeTypes[1]     = StereoEye_Right;
        break;

    default:
        numEyes = 0;
        OVR_ASSERT( false );
        break;
    }

    // If either of these fire, you've probably forgotten to call SetRendertargetSize()
    OVR_ASSERT ( RendertargetSize.w > 0 );
    OVR_ASSERT ( RendertargetSize.h > 0 );

    for ( int eyeNum = 0; eyeNum < numEyes; eyeNum++ )
    {
        StereoEye eyeType = eyeTypes[eyeNum];
        LensConfig *pLensOverride = NULL;
        if ( OverrideLens )
        {
            if ( eyeType == StereoEye_Right )
            {
                pLensOverride = &LensOverrideRight;
            }
            else
            {
                pLensOverride = &LensOverrideLeft;
            }
        }

        FovPort *pTanHalfFovOverride = NULL;
        if ( OverrideTanHalfFov )
        {
            if ( eyeType == StereoEye_Right )
            {
                pTanHalfFovOverride = &FovOverrideRight;
            }
            else
            {
                pTanHalfFovOverride = &FovOverrideLeft;
            }
        }

        DistortionAndFov distortionAndFov =
            CalculateDistortionAndFovInternal ( eyeType, Hmd,
                                                pLensOverride, pTanHalfFovOverride,
                                                ExtraEyeRotationInRadians );

        EyeRenderParams[eyeNum].StereoEye.Distortion = distortionAndFov.Distortion;
        EyeRenderParams[eyeNum].StereoEye.Fov        = distortionAndFov.Fov;
    }

    if ( OverrideZeroIpd )
    {
        // Take the union of the calculated eye FOVs.
        FovPort fov;
        fov.UpTan    = Alg::Max ( EyeRenderParams[0].StereoEye.Fov.UpTan   , EyeRenderParams[1].StereoEye.Fov.UpTan    );
        fov.DownTan  = Alg::Max ( EyeRenderParams[0].StereoEye.Fov.DownTan , EyeRenderParams[1].StereoEye.Fov.DownTan  );
        fov.LeftTan  = Alg::Max ( EyeRenderParams[0].StereoEye.Fov.LeftTan , EyeRenderParams[1].StereoEye.Fov.LeftTan  );
        fov.RightTan = Alg::Max ( EyeRenderParams[0].StereoEye.Fov.RightTan, EyeRenderParams[1].StereoEye.Fov.RightTan );
        EyeRenderParams[0].StereoEye.Fov = fov;
        EyeRenderParams[1].StereoEye.Fov = fov;
    }

    for ( int eyeNum = 0; eyeNum < numEyes; eyeNum++ )
    {
        StereoEye eyeType = eyeTypes[eyeNum];

        DistortionRenderDesc localDistortion = EyeRenderParams[eyeNum].StereoEye.Distortion;
        FovPort              fov             = EyeRenderParams[eyeNum].StereoEye.Fov;

        // Use a placeholder - will be overridden later.
        Recti tempViewport = Recti ( 0, 0, 1, 1 );

        EyeRenderParams[eyeNum].StereoEye = CalculateStereoEyeParamsInternal (
                                        eyeType, Hmd, localDistortion, fov,
                                        RendertargetSize, tempViewport,
                                        RightHandedProjection, ZNear, ZFar,
                                        OverrideZeroIpd );

        // We want to create a virtual 2D surface we can draw debug text messages to.
        // We'd like it to be a fixed distance (OrthoDistance) away,
        // and to cover a specific FOV (Area2DFov). We need to find the projection matrix for this,
        // and also to know how large it is in pixels to achieve a 1:1 mapping at the center of the screen.
        float orthoDistance = 0.8f;
        float orthoHalfFov = tanf ( Area2DFov * 0.5f );
        Vector2f unityOrthoPixelSize = localDistortion.PixelsPerTanAngleAtCenter * ( orthoHalfFov * 2.0f );
        float localInterpupillaryDistance = Hmd.EyeLeft.NoseToPupilInMeters + Hmd.EyeRight.NoseToPupilInMeters;
        if ( OverrideZeroIpd )
        {
            localInterpupillaryDistance = 0.0f;
        }
        Matrix4f ortho = CreateOrthoSubProjection ( true, eyeType,
                                                    orthoHalfFov, orthoHalfFov,
                                                    unityOrthoPixelSize.x, unityOrthoPixelSize.y,
                                                    orthoDistance, localInterpupillaryDistance,
                                                    EyeRenderParams[eyeNum].StereoEye.RenderedProjection );
        EyeRenderParams[eyeNum].OrthoProjection = ortho;
    }

    // ...and now set up the viewport, scale & offset the way the app wanted.
    setupViewportScaleAndOffsets();

    if ( OverrideZeroIpd )
    {
        // Monocular rendering has some fragile parts... don't break any by accident.
        OVR_ASSERT ( EyeRenderParams[0].StereoEye.Fov.UpTan                   == EyeRenderParams[1].StereoEye.Fov.UpTan    );
        OVR_ASSERT ( EyeRenderParams[0].StereoEye.Fov.DownTan                 == EyeRenderParams[1].StereoEye.Fov.DownTan  );
        OVR_ASSERT ( EyeRenderParams[0].StereoEye.Fov.LeftTan                 == EyeRenderParams[1].StereoEye.Fov.LeftTan  );
        OVR_ASSERT ( EyeRenderParams[0].StereoEye.Fov.RightTan                == EyeRenderParams[1].StereoEye.Fov.RightTan );
        OVR_ASSERT ( EyeRenderParams[0].StereoEye.RenderedProjection.M[0][0]  == EyeRenderParams[1].StereoEye.RenderedProjection.M[0][0] );
        OVR_ASSERT ( EyeRenderParams[0].StereoEye.RenderedProjection.M[1][1]  == EyeRenderParams[1].StereoEye.RenderedProjection.M[1][1] );
        OVR_ASSERT ( EyeRenderParams[0].StereoEye.RenderedProjection.M[0][2]  == EyeRenderParams[1].StereoEye.RenderedProjection.M[0][2] );
        OVR_ASSERT ( EyeRenderParams[0].StereoEye.RenderedProjection.M[1][2]  == EyeRenderParams[1].StereoEye.RenderedProjection.M[1][2] );
        OVR_ASSERT ( EyeRenderParams[0].StereoEye.RenderedViewport            == EyeRenderParams[1].StereoEye.RenderedViewport      );
        OVR_ASSERT ( EyeRenderParams[0].StereoEye.EyeToSourceUV.Offset        == EyeRenderParams[1].StereoEye.EyeToSourceUV.Offset  );
        OVR_ASSERT ( EyeRenderParams[0].StereoEye.EyeToSourceUV.Scale         == EyeRenderParams[1].StereoEye.EyeToSourceUV.Scale   );
        OVR_ASSERT ( EyeRenderParams[0].StereoEye.EyeToSourceNDC.Offset       == EyeRenderParams[1].StereoEye.EyeToSourceNDC.Offset );
        OVR_ASSERT ( EyeRenderParams[0].StereoEye.EyeToSourceNDC.Scale        == EyeRenderParams[1].StereoEye.EyeToSourceNDC.Scale  );
        OVR_ASSERT ( EyeRenderParams[0].OrthoProjection.M[0][0]               == EyeRenderParams[1].OrthoProjection.M[0][0] );
        OVR_ASSERT ( EyeRenderParams[0].OrthoProjection.M[1][1]               == EyeRenderParams[1].OrthoProjection.M[1][1] );
        OVR_ASSERT ( EyeRenderParams[0].OrthoProjection.M[0][2]               == EyeRenderParams[1].OrthoProjection.M[0][2] );
        OVR_ASSERT ( EyeRenderParams[0].OrthoProjection.M[1][2]               == EyeRenderParams[1].OrthoProjection.M[1][2] );
    }

    DirtyFlag = false;
}



ViewportScaleAndOffsetBothEyes StereoConfig::setupViewportScaleAndOffsets()
{
    for ( int eyeNum = 0; eyeNum < 2; eyeNum++ )
    {
        StereoEye eyeType = ( eyeNum == 0 ) ? StereoEye_Left : StereoEye_Right;

        DistortionRenderDesc localDistortion = EyeRenderParams[eyeNum].StereoEye.Distortion;
        FovPort              fov             = EyeRenderParams[eyeNum].StereoEye.Fov;

        Recti renderedViewport;
        switch ( SetViewportMode )
        {
        case SVPM_Density:
            renderedViewport = CalculateViewportDensityInternal (
                                    eyeType, localDistortion, fov,
                                    RendertargetSize, IsRendertargetSharedByBothEyes,
                                    SetViewportPixelsPerDisplayPixel, OverrideZeroIpd );
            break;
        case SVPM_Size:
            if ( ( eyeType == StereoEye_Right ) && !OverrideZeroIpd )
            {
                renderedViewport = CalculateViewportInternal (
                                        eyeType, RendertargetSize,
                                        SetViewportSize[1],
                                        IsRendertargetSharedByBothEyes, OverrideZeroIpd );
            }
            else
            {
                renderedViewport = CalculateViewportInternal (
                                        eyeType, RendertargetSize,
                                        SetViewportSize[0],
                                        IsRendertargetSharedByBothEyes, OverrideZeroIpd );
            }
            break;
        case SVPM_Viewport:
            if ( ( eyeType == StereoEye_Right ) && !OverrideZeroIpd )
            {
                renderedViewport = SetViewport[1];
            }
            else
            {
                renderedViewport = SetViewport[0];
            }
            break;
        default: OVR_ASSERT ( false ); break;
        }

        ViewportScaleAndOffset vpsao = CalculateViewportScaleAndOffsetInternal (
                                                EyeRenderParams[eyeNum].StereoEye.EyeToSourceNDC,
                                                renderedViewport,
                                                RendertargetSize );
        EyeRenderParams[eyeNum].StereoEye.RenderedViewport = vpsao.RenderedViewport;
        EyeRenderParams[eyeNum].StereoEye.EyeToSourceUV    = vpsao.EyeToSourceUV;
    }

    ViewportScaleAndOffsetBothEyes result;
    result.Left.EyeToSourceUV     = EyeRenderParams[0].StereoEye.EyeToSourceUV;
    result.Left.RenderedViewport  = EyeRenderParams[0].StereoEye.RenderedViewport;
    result.Right.EyeToSourceUV    = EyeRenderParams[1].StereoEye.EyeToSourceUV;
    result.Right.RenderedViewport = EyeRenderParams[1].StereoEye.RenderedViewport;
    return result;
}

// Specify a pixel density - how many rendered pixels per pixel in the physical display.
ViewportScaleAndOffsetBothEyes StereoConfig::SetRenderDensity ( float pixelsPerDisplayPixel )
{
    SetViewportMode  = SVPM_Density;
    SetViewportPixelsPerDisplayPixel = pixelsPerDisplayPixel;
    return setupViewportScaleAndOffsets();
}

// Supply the size directly. Will be clamped to the physical rendertarget size.
ViewportScaleAndOffsetBothEyes StereoConfig::SetRenderSize ( Sizei const &renderSizeLeft, Sizei const &renderSizeRight )
{
    SetViewportMode  = SVPM_Size;
    SetViewportSize[0] = renderSizeLeft;
    SetViewportSize[1] = renderSizeRight;
    return setupViewportScaleAndOffsets();
}

// Supply the viewport directly. This is not clamped to the physical rendertarget - careful now!
ViewportScaleAndOffsetBothEyes StereoConfig::SetRenderViewport ( Recti const &renderViewportLeft, Recti const &renderViewportRight )
{
    SetViewportMode  = SVPM_Viewport;
    SetViewport[0] = renderViewportLeft;
    SetViewport[1] = renderViewportRight;
    return setupViewportScaleAndOffsets();
}

Matrix4f StereoConfig::GetProjectionWithZoom ( StereoEye eye, float fovZoom ) const
{
    int eyeNum = ( eye == StereoEye_Right ) ? 1 : 0;
    float fovScale = 1.0f / fovZoom;
    FovPort fovPort = EyeRenderParams[eyeNum].StereoEye.Fov;
    fovPort.LeftTan  *= fovScale;
    fovPort.RightTan *= fovScale;
    fovPort.UpTan    *= fovScale;
    fovPort.DownTan  *= fovScale;
    return CreateProjection ( RightHandedProjection, fovPort, ZNear, ZFar );
}




//-----------------------------------------------------------------------------------
// *****  Distortion Mesh Rendering


// Pow2 for the Morton order to work!
// 4 is too low - it is easy to see the "wobbles" in the HMD.
// 5 is realllly close but you can see pixel differences with even/odd frame checking.
// 6 is indistinguishable on a monitor on even/odd frames.
static const int DMA_GridSizeLog2   = 6;
static const int DMA_GridSize       = 1<<DMA_GridSizeLog2;
static const int DMA_NumVertsPerEye = (DMA_GridSize+1)*(DMA_GridSize+1);
static const int DMA_NumTrisPerEye  = (DMA_GridSize)*(DMA_GridSize)*2;



DistortionMeshVertexData DistortionMeshMakeVertex ( Vector2f screenNDC,
                                                    bool rightEye,
                                                    const HmdRenderInfo &hmdRenderInfo,
                                                    const DistortionRenderDesc &distortion, const ScaleAndOffset2D &eyeToSourceNDC )
{
    DistortionMeshVertexData result;

    float xOffset = 0.0f;
    if (rightEye)
    {
        xOffset = 1.0f;
    }

    Vector2f tanEyeAnglesR, tanEyeAnglesG, tanEyeAnglesB;
    TransformScreenNDCToTanFovSpaceChroma ( &tanEyeAnglesR, &tanEyeAnglesG, &tanEyeAnglesB,
                                            distortion, screenNDC );

	result.TanEyeAnglesR = tanEyeAnglesR;
	result.TanEyeAnglesG = tanEyeAnglesG;
	result.TanEyeAnglesB = tanEyeAnglesB;

    HmdShutterTypeEnum shutterType = hmdRenderInfo.Shutter.Type;
    switch ( shutterType )
    {
    case HmdShutter_Global:
        result.TimewarpLerp = 0.0f;
        break;
    case HmdShutter_RollingLeftToRight:
        // Retrace is left to right - left eye goes 0.0 -> 0.5, then right goes 0.5 -> 1.0
        result.TimewarpLerp = screenNDC.x * 0.25f + 0.25f;
        if (rightEye)
        {
            result.TimewarpLerp += 0.5f;
        }
        break;
    case HmdShutter_RollingRightToLeft:
        // Retrace is right to left - right eye goes 0.0 -> 0.5, then left goes 0.5 -> 1.0
        result.TimewarpLerp = 0.75f - screenNDC.x * 0.25f;
        if (rightEye)
        {
            result.TimewarpLerp -= 0.5f;
        }
        break;
    case HmdShutter_RollingTopToBottom:
        // Retrace is top to bottom on both eyes at the same time.
        result.TimewarpLerp = screenNDC.y * 0.5f + 0.5f;
        break;
    default: OVR_ASSERT ( false ); break;
    }

    // When does the fade-to-black edge start? Chosen heuristically.
    float fadeOutBorderFractionTexture = 0.1f;
    float fadeOutBorderFractionTextureInnerEdge = 0.1f;
    float fadeOutBorderFractionScreen = 0.1f;
    float fadeOutFloor = 0.6f;        // the floor controls how much black is in the fade region

    if (hmdRenderInfo.HmdType == HmdType_DK1)
    {
        fadeOutBorderFractionTexture = 0.3f;
        fadeOutBorderFractionTextureInnerEdge = 0.075f;
        fadeOutBorderFractionScreen = 0.075f;
        fadeOutFloor = 0.25f;
    }

    // Fade out at texture edges.
    // The furthest out will be the blue channel, because of chromatic aberration (true of any standard lens)
    Vector2f sourceTexCoordBlueNDC = TransformTanFovSpaceToRendertargetNDC ( eyeToSourceNDC, tanEyeAnglesB );
	if (rightEye)
	{
		// The inner edge of the eye texture is usually much more magnified, because it's right against the middle of the screen, not the FOV edge.
		// So we want a different scaling factor for that. This code flips the texture NDC so that +1.0 is the inner edge
		sourceTexCoordBlueNDC.x = -sourceTexCoordBlueNDC.x;
	}
    float edgeFadeIn               = ( 1.0f / fadeOutBorderFractionTextureInnerEdge ) * ( 1.0f - sourceTexCoordBlueNDC.x )  ;   // Inner
    edgeFadeIn       = Alg::Min ( edgeFadeIn, ( 1.0f / fadeOutBorderFractionTexture ) * ( 1.0f + sourceTexCoordBlueNDC.x ) );   // Outer
    edgeFadeIn       = Alg::Min ( edgeFadeIn, ( 1.0f / fadeOutBorderFractionTexture ) * ( 1.0f - sourceTexCoordBlueNDC.y ) );   // Upper
    edgeFadeIn       = Alg::Min ( edgeFadeIn, ( 1.0f / fadeOutBorderFractionTexture ) * ( 1.0f + sourceTexCoordBlueNDC.y ) );   // Lower

    // Also fade out at screen edges. Since this is in pixel space, no need to do inner specially.
    float edgeFadeInScreen = ( 1.0f / fadeOutBorderFractionScreen ) *
                             ( 1.0f - Alg::Max ( Alg::Abs ( screenNDC.x ), Alg::Abs ( screenNDC.y ) ) );
    edgeFadeIn = Alg::Min ( edgeFadeInScreen, edgeFadeIn ) + fadeOutFloor;

	// Note - this is NOT clamped negatively.
	// For rendering methods that interpolate over a coarse grid, we need the values to go negative for correct intersection with zero.
    result.Shade = Alg::Min ( edgeFadeIn, 1.0f );
    result.ScreenPosNDC.x = 0.5f * screenNDC.x - 0.5f + xOffset;
    result.ScreenPosNDC.y = -screenNDC.y;

    return result;
}


void DistortionMeshDestroy ( DistortionMeshVertexData *pVertices, uint16_t *pTriangleMeshIndices )
{
    OVR_FREE ( pVertices );
    OVR_FREE ( pTriangleMeshIndices );
}

void DistortionMeshCreate ( DistortionMeshVertexData **ppVertices, uint16_t **ppTriangleListIndices,
                            int *pNumVertices, int *pNumTriangles,
                            const StereoEyeParams &stereoParams, const HmdRenderInfo &hmdRenderInfo )
{
    bool    rightEye      = ( stereoParams.Eye == StereoEye_Right );
    int     vertexCount   = 0;
    int     triangleCount = 0;

    // Generate mesh into allocated data and return result.
    DistortionMeshCreate(ppVertices, ppTriangleListIndices, &vertexCount, &triangleCount,
                         rightEye, hmdRenderInfo, stereoParams.Distortion, stereoParams.EyeToSourceNDC);

    *pNumVertices  = vertexCount;
    *pNumTriangles = triangleCount;
}


// Generate distortion mesh for a eye.
void DistortionMeshCreate( DistortionMeshVertexData **ppVertices, uint16_t **ppTriangleListIndices,
                           int *pNumVertices, int *pNumTriangles,
                           bool rightEye,
                           const HmdRenderInfo &hmdRenderInfo,
                           const DistortionRenderDesc &distortion, const ScaleAndOffset2D &eyeToSourceNDC )
{
    *pNumVertices  = DMA_NumVertsPerEye;
    *pNumTriangles = DMA_NumTrisPerEye;

    *ppVertices = (DistortionMeshVertexData*)
                      OVR_ALLOC( sizeof(DistortionMeshVertexData) * (*pNumVertices) );
    *ppTriangleListIndices  = (uint16_t*) OVR_ALLOC( sizeof(uint16_t) * (*pNumTriangles) * 3 );

    if (!*ppVertices || !*ppTriangleListIndices)
    {
        if (*ppVertices)
        {
            OVR_FREE(*ppVertices);
        }
        if (*ppTriangleListIndices)
        {
            OVR_FREE(*ppTriangleListIndices);
        }
        *ppVertices             = NULL;
        *ppTriangleListIndices  = NULL;
        *pNumTriangles          = 0;
        *pNumVertices           = 0;
        return;
    }



    // Populate vertex buffer info

    // First pass - build up raw vertex data.
    DistortionMeshVertexData* pcurVert = *ppVertices;

    for ( int y = 0; y <= DMA_GridSize; y++ )
    {
        for ( int x = 0; x <= DMA_GridSize; x++ )
        {

            Vector2f sourceCoordNDC;
            // NDC texture coords [-1,+1]
            sourceCoordNDC.x = 2.0f * ( (float)x / (float)DMA_GridSize ) - 1.0f;
            sourceCoordNDC.y = 2.0f * ( (float)y / (float)DMA_GridSize ) - 1.0f;
            Vector2f tanEyeAngle = TransformRendertargetNDCToTanFovSpace ( eyeToSourceNDC, sourceCoordNDC );

            // Find a corresponding screen position.
            // Note - this function does not have to be precise - we're just trying to match the mesh tessellation
            // with the shape of the distortion to minimise the number of trianlges needed.
            Vector2f screenNDC = TransformTanFovSpaceToScreenNDC ( distortion, tanEyeAngle, false );
            // ...but don't let verts overlap to the other eye.
            screenNDC.x = Alg::Max ( -1.0f, Alg::Min ( screenNDC.x, 1.0f ) );
            screenNDC.y = Alg::Max ( -1.0f, Alg::Min ( screenNDC.y, 1.0f ) );

            // From those screen positions, generate the vertex.
            *pcurVert = DistortionMeshMakeVertex ( screenNDC, rightEye, hmdRenderInfo, distortion, eyeToSourceNDC );
            pcurVert++;
        }
    }


    // Populate index buffer info
    uint16_t *pcurIndex = *ppTriangleListIndices;

    for ( int triNum = 0; triNum < DMA_GridSize * DMA_GridSize; triNum++ )
    {
        // Use a Morton order to help locality of FB, texture and vertex cache.
        // (0.325ms raster order -> 0.257ms Morton order)
        OVR_ASSERT ( DMA_GridSize <= 256 );
        int x = ( ( triNum & 0x0001 ) >> 0 ) |
                ( ( triNum & 0x0004 ) >> 1 ) |
                ( ( triNum & 0x0010 ) >> 2 ) |
                ( ( triNum & 0x0040 ) >> 3 ) |
                ( ( triNum & 0x0100 ) >> 4 ) |
                ( ( triNum & 0x0400 ) >> 5 ) |
                ( ( triNum & 0x1000 ) >> 6 ) |
                ( ( triNum & 0x4000 ) >> 7 );
        int y = ( ( triNum & 0x0002 ) >> 1 ) |
                ( ( triNum & 0x0008 ) >> 2 ) |
                ( ( triNum & 0x0020 ) >> 3 ) |
                ( ( triNum & 0x0080 ) >> 4 ) |
                ( ( triNum & 0x0200 ) >> 5 ) |
                ( ( triNum & 0x0800 ) >> 6 ) |
                ( ( triNum & 0x2000 ) >> 7 ) |
                ( ( triNum & 0x8000 ) >> 8 );
        int FirstVertex = x * (DMA_GridSize+1) + y;
        // Another twist - we want the top-left and bottom-right quadrants to
        // have the triangles split one way, the other two split the other.
        // +---+---+---+---+
        // |  /|  /|\  |\  |
        // | / | / | \ | \ |
        // |/  |/  |  \|  \|
        // +---+---+---+---+
        // |  /|  /|\  |\  |
        // | / | / | \ | \ |
        // |/  |/  |  \|  \|
        // +---+---+---+---+
        // |\  |\  |  /|  /|
        // | \ | \ | / | / |
        // |  \|  \|/  |/  |
        // +---+---+---+---+
        // |\  |\  |  /|  /|
        // | \ | \ | / | / |
        // |  \|  \|/  |/  |
        // +---+---+---+---+
        // This way triangle edges don't span long distances over the distortion function,
        // so linear interpolation works better & we can use fewer tris.
        if ( ( x < DMA_GridSize/2 ) != ( y < DMA_GridSize/2 ) )       // != is logical XOR
        {
            *pcurIndex++ = (uint16_t)FirstVertex;
            *pcurIndex++ = (uint16_t)FirstVertex+1;
            *pcurIndex++ = (uint16_t)FirstVertex+(DMA_GridSize+1)+1;

            *pcurIndex++ = (uint16_t)FirstVertex+(DMA_GridSize+1)+1;
            *pcurIndex++ = (uint16_t)FirstVertex+(DMA_GridSize+1);
            *pcurIndex++ = (uint16_t)FirstVertex;
        }
        else
        {
            *pcurIndex++ = (uint16_t)FirstVertex;
            *pcurIndex++ = (uint16_t)FirstVertex+1;
            *pcurIndex++ = (uint16_t)FirstVertex+(DMA_GridSize+1);

            *pcurIndex++ = (uint16_t)FirstVertex+1;
            *pcurIndex++ = (uint16_t)FirstVertex+(DMA_GridSize+1)+1;
            *pcurIndex++ = (uint16_t)FirstVertex+(DMA_GridSize+1);
        }
    }
}

//-----------------------------------------------------------------------------------
// *****  Heightmap Mesh Rendering


static const int HMA_GridSizeLog2   = 7;
static const int HMA_GridSize       = 1<<HMA_GridSizeLog2;
static const int HMA_NumVertsPerEye = (HMA_GridSize+1)*(HMA_GridSize+1);
static const int HMA_NumTrisPerEye  = (HMA_GridSize)*(HMA_GridSize)*2;


void HeightmapMeshDestroy ( HeightmapMeshVertexData *pVertices, uint16_t *pTriangleMeshIndices )
{
    OVR_FREE ( pVertices );
    OVR_FREE ( pTriangleMeshIndices );
}

void HeightmapMeshCreate ( HeightmapMeshVertexData **ppVertices, uint16_t **ppTriangleListIndices,
    int *pNumVertices, int *pNumTriangles,
    const StereoEyeParams &stereoParams, const HmdRenderInfo &hmdRenderInfo )
{
    bool    rightEye      = ( stereoParams.Eye == StereoEye_Right );
    int     vertexCount   = 0;
    int     triangleCount = 0;

    // Generate mesh into allocated data and return result.
    HeightmapMeshCreate(ppVertices, ppTriangleListIndices, &vertexCount, &triangleCount,
        rightEye, hmdRenderInfo, stereoParams.EyeToSourceNDC);

    *pNumVertices  = vertexCount;
    *pNumTriangles = triangleCount;
}


// Generate heightmap mesh for one eye.
void HeightmapMeshCreate( HeightmapMeshVertexData **ppVertices, uint16_t **ppTriangleListIndices,
    int *pNumVertices, int *pNumTriangles, bool rightEye,
    const HmdRenderInfo &hmdRenderInfo,
    const ScaleAndOffset2D &eyeToSourceNDC )
{
    *pNumVertices  = HMA_NumVertsPerEye;
    *pNumTriangles = HMA_NumTrisPerEye;

    *ppVertices = (HeightmapMeshVertexData*) OVR_ALLOC( sizeof(HeightmapMeshVertexData) * (*pNumVertices) );
    *ppTriangleListIndices  = (uint16_t*) OVR_ALLOC( sizeof(uint16_t) * (*pNumTriangles) * 3 );

    if (!*ppVertices || !*ppTriangleListIndices)
    {
        if (*ppVertices)
        {
            OVR_FREE(*ppVertices);
        }
        if (*ppTriangleListIndices)
        {
            OVR_FREE(*ppTriangleListIndices);
        }
        *ppVertices             = NULL;
        *ppTriangleListIndices  = NULL;
        *pNumTriangles          = 0;
        *pNumVertices           = 0;
        return;
    }

    // Populate vertex buffer info
    // float xOffset = (rightEye ? 1.0f : 0.0f);  Currently disabled because its usage is disabled below.

    // First pass - build up raw vertex data.
    HeightmapMeshVertexData* pcurVert = *ppVertices;

    for ( int y = 0; y <= HMA_GridSize; y++ )
    {
        for ( int x = 0; x <= HMA_GridSize; x++ )
        {
            Vector2f sourceCoordNDC;
            // NDC texture coords [-1,+1]
            sourceCoordNDC.x = 2.0f * ( (float)x / (float)HMA_GridSize ) - 1.0f;
            sourceCoordNDC.y = 2.0f * ( (float)y / (float)HMA_GridSize ) - 1.0f;
            Vector2f tanEyeAngle = TransformRendertargetNDCToTanFovSpace ( eyeToSourceNDC, sourceCoordNDC );

            pcurVert->TanEyeAngles = tanEyeAngle;

            HmdShutterTypeEnum shutterType = hmdRenderInfo.Shutter.Type;
            switch ( shutterType )
            {
            case HmdShutter_Global:
                pcurVert->TimewarpLerp = 0.0f;
                break;
            case HmdShutter_RollingLeftToRight:
                // Retrace is left to right - left eye goes 0.0 -> 0.5, then right goes 0.5 -> 1.0
                pcurVert->TimewarpLerp = sourceCoordNDC.x * 0.25f + 0.25f;
                if (rightEye)
                {
                    pcurVert->TimewarpLerp += 0.5f;
                }
                break;
            case HmdShutter_RollingRightToLeft:
                // Retrace is right to left - right eye goes 0.0 -> 0.5, then left goes 0.5 -> 1.0
                pcurVert->TimewarpLerp = 0.75f - sourceCoordNDC.x * 0.25f;
                if (rightEye)
                {
                    pcurVert->TimewarpLerp -= 0.5f;
                }
                break;
            case HmdShutter_RollingTopToBottom:
                // Retrace is top to bottom on both eyes at the same time.
                pcurVert->TimewarpLerp = sourceCoordNDC.y * 0.5f + 0.5f;
                break;
            default: OVR_ASSERT ( false ); break;
            }

            // Don't let verts overlap to the other eye.
            //sourceCoordNDC.x = Alg::Max ( -1.0f, Alg::Min ( sourceCoordNDC.x, 1.0f ) );
            //sourceCoordNDC.y = Alg::Max ( -1.0f, Alg::Min ( sourceCoordNDC.y, 1.0f ) );

            //pcurVert->ScreenPosNDC.x = 0.5f * sourceCoordNDC.x - 0.5f + xOffset;
            pcurVert->ScreenPosNDC.x = sourceCoordNDC.x;
            pcurVert->ScreenPosNDC.y = -sourceCoordNDC.y;

            pcurVert++;
        }
    }


    // Populate index buffer info
    uint16_t *pcurIndex = *ppTriangleListIndices;

    for ( int triNum = 0; triNum < HMA_GridSize * HMA_GridSize; triNum++ )
    {
        // Use a Morton order to help locality of FB, texture and vertex cache.
        // (0.325ms raster order -> 0.257ms Morton order)
        OVR_ASSERT ( HMA_GridSize < 256 );
        int x = ( ( triNum & 0x0001 ) >> 0 ) |
                ( ( triNum & 0x0004 ) >> 1 ) |
                ( ( triNum & 0x0010 ) >> 2 ) |
                ( ( triNum & 0x0040 ) >> 3 ) |
                ( ( triNum & 0x0100 ) >> 4 ) |
                ( ( triNum & 0x0400 ) >> 5 ) |
                ( ( triNum & 0x1000 ) >> 6 ) |
                ( ( triNum & 0x4000 ) >> 7 );
        int y = ( ( triNum & 0x0002 ) >> 1 ) |
                ( ( triNum & 0x0008 ) >> 2 ) |
                ( ( triNum & 0x0020 ) >> 3 ) |
                ( ( triNum & 0x0080 ) >> 4 ) |
                ( ( triNum & 0x0200 ) >> 5 ) |
                ( ( triNum & 0x0800 ) >> 6 ) |
                ( ( triNum & 0x2000 ) >> 7 ) |
                ( ( triNum & 0x8000 ) >> 8 );
        int FirstVertex = x * (HMA_GridSize+1) + y;
        // Another twist - we want the top-left and bottom-right quadrants to
        // have the triangles split one way, the other two split the other.
        // +---+---+---+---+
        // |  /|  /|\  |\  |
        // | / | / | \ | \ |
        // |/  |/  |  \|  \|
        // +---+---+---+---+
        // |  /|  /|\  |\  |
        // | / | / | \ | \ |
        // |/  |/  |  \|  \|
        // +---+---+---+---+
        // |\  |\  |  /|  /|
        // | \ | \ | / | / |
        // |  \|  \|/  |/  |
        // +---+---+---+---+
        // |\  |\  |  /|  /|
        // | \ | \ | / | / |
        // |  \|  \|/  |/  |
        // +---+---+---+---+
        // This way triangle edges don't span long distances over the distortion function,
        // so linear interpolation works better & we can use fewer tris.
        if ( ( x < HMA_GridSize/2 ) != ( y < HMA_GridSize/2 ) )       // != is logical XOR
        {
            *pcurIndex++ = (uint16_t)FirstVertex;
            *pcurIndex++ = (uint16_t)FirstVertex+1;
            *pcurIndex++ = (uint16_t)FirstVertex+(HMA_GridSize+1)+1;

            *pcurIndex++ = (uint16_t)FirstVertex+(HMA_GridSize+1)+1;
            *pcurIndex++ = (uint16_t)FirstVertex+(HMA_GridSize+1);
            *pcurIndex++ = (uint16_t)FirstVertex;
        }
        else
        {
            *pcurIndex++ = (uint16_t)FirstVertex;
            *pcurIndex++ = (uint16_t)FirstVertex+1;
            *pcurIndex++ = (uint16_t)FirstVertex+(HMA_GridSize+1);

            *pcurIndex++ = (uint16_t)FirstVertex+1;
            *pcurIndex++ = (uint16_t)FirstVertex+(HMA_GridSize+1)+1;
            *pcurIndex++ = (uint16_t)FirstVertex+(HMA_GridSize+1);
        }
    }
}

//-----------------------------------------------------------------------------------
// ***** Prediction and timewarp.
//

// Calculates the values from the HMD info.
PredictionValues PredictionGetDeviceValues ( const HmdRenderInfo &hmdRenderInfo,
                                             bool withTimewarp /*= true*/,
                                             bool withVsync /*= true*/ )
{
    PredictionValues result;

    result.WithTimewarp = withTimewarp;
    result.WithVsync = withVsync;

    // For unclear reasons, most graphics systems add an extra frame of latency
    // somewhere along the way. In time we'll debug this and figure it out, but
    // for now this gets prediction a little bit better.
    const float extraFramesOfBufferingKludge = 1.0f;

    if ( withVsync )
    {
        // These are the times from the Present+Flush to when the middle of the scene is "averagely visible" (without timewarp)
        // So if you had no timewarp, this, plus the time until the next vsync, is how much to predict by.
        result.PresentFlushToRenderedScene  = extraFramesOfBufferingKludge * hmdRenderInfo.Shutter.FirstScanlineToLastScanline;
        // Predict to the middle of the screen being scanned out.
        result.PresentFlushToRenderedScene += hmdRenderInfo.Shutter.VsyncToFirstScanline + 0.5f * hmdRenderInfo.Shutter.FirstScanlineToLastScanline;
        // Time for pixels to get half-way to settling.
        result.PresentFlushToRenderedScene += hmdRenderInfo.Shutter.PixelSettleTime * 0.5f;
        // Predict to half-way through persistence
        result.PresentFlushToRenderedScene += hmdRenderInfo.Shutter.PixelPersistence * 0.5f;

        // The time from the Present+Flush to when the first scanline is "averagely visible".
        result.PresentFlushToTimewarpStart  = extraFramesOfBufferingKludge * hmdRenderInfo.Shutter.FirstScanlineToLastScanline;
        // Predict to the first line being scanned out.
        result.PresentFlushToTimewarpStart += hmdRenderInfo.Shutter.VsyncToFirstScanline;
        // Time for pixels to get half-way to settling.
        result.PresentFlushToTimewarpStart += hmdRenderInfo.Shutter.PixelSettleTime * 0.5f;
        // Predict to half-way through persistence
        result.PresentFlushToTimewarpStart += hmdRenderInfo.Shutter.PixelPersistence * 0.5f;

        // Time to the the last scanline.
        result.PresentFlushToTimewarpEnd    = result.PresentFlushToTimewarpStart + hmdRenderInfo.Shutter.FirstScanlineToLastScanline;

        // Ideal framerate.
        result.PresentFlushToPresentFlush   = hmdRenderInfo.Shutter.VsyncToNextVsync;
    }
    else
    {
        // Timewarp without vsync is a little odd.
        // Currently, we assume that without vsync, we have no idea which scanline
        // is currently being sent to the display. So we can't do lerping timewarp,
        // we can just do a full-screen late-stage fixup.

        // "PresentFlushToRenderedScene" means the time from the Present+Flush to when the middle of the scene is "averagely visible" (without timewarp)
        // So if you had no timewarp, this, plus the time until the next flush (which is usually the time to render the frame), is how much to predict by.
        // Time for pixels to get half-way to settling.
        result.PresentFlushToRenderedScene  = hmdRenderInfo.Shutter.PixelSettleTime * 0.5f;
        // Predict to half-way through persistence
        result.PresentFlushToRenderedScene += hmdRenderInfo.Shutter.PixelPersistence * 0.5f;

        // Without vsync, you don't know timings, and so can't do anything useful with lerped warping.
        result.PresentFlushToTimewarpStart  = result.PresentFlushToRenderedScene;
        result.PresentFlushToTimewarpEnd    = result.PresentFlushToRenderedScene;

        // There's no concept of "ideal" when vsync is off.
        result.PresentFlushToPresentFlush   = 0.0f;
    }

    return result;
}

Matrix4f TimewarpComputePoseDelta ( Matrix4f const &renderedViewFromWorld, Matrix4f const &predictedViewFromWorld, Matrix4f const&hmdToEyeViewOffset )
{
    Matrix4f worldFromPredictedView = (hmdToEyeViewOffset * predictedViewFromWorld).InvertedHomogeneousTransform();
    Matrix4f matRenderFromNowStart = (hmdToEyeViewOffset * renderedViewFromWorld) * worldFromPredictedView;

    // The sensor-predicted orientations have:                           X=right, Y=up,   Z=backwards.
    // The vectors inside the mesh are in NDC to keep the shader simple: X=right, Y=down, Z=forwards.
    // So we need to perform a similarity transform on this delta matrix.
    // The verbose code would look like this:
    /*
    Matrix4f matBasisChange;
    matBasisChange.SetIdentity();
    matBasisChange.M[0][0] =  1.0f;
    matBasisChange.M[1][1] = -1.0f;
    matBasisChange.M[2][2] = -1.0f;
    Matrix4f matBasisChangeInv = matBasisChange.Inverted();
    matRenderFromNow = matBasisChangeInv * matRenderFromNow * matBasisChange;
    */
    // ...but of course all the above is a constant transform and much more easily done.
    // We flip the signs of the Y&Z row, then flip the signs of the Y&Z column,
    // and of course most of the flips cancel:
    // +++                        +--                     +--
    // +++ -> flip Y&Z columns -> +-- -> flip Y&Z rows -> -++
    // +++                        +--                     -++
    matRenderFromNowStart.M[0][1] = -matRenderFromNowStart.M[0][1];
    matRenderFromNowStart.M[0][2] = -matRenderFromNowStart.M[0][2];
    matRenderFromNowStart.M[1][0] = -matRenderFromNowStart.M[1][0];
    matRenderFromNowStart.M[2][0] = -matRenderFromNowStart.M[2][0];
    matRenderFromNowStart.M[1][3] = -matRenderFromNowStart.M[1][3];
    matRenderFromNowStart.M[2][3] = -matRenderFromNowStart.M[2][3];

    return matRenderFromNowStart;
}

Matrix4f TimewarpComputePoseDeltaPosition ( Matrix4f const &renderedViewFromWorld, Matrix4f const &predictedViewFromWorld, Matrix4f const&hmdToEyeViewOffset )
{
    Matrix4f worldFromPredictedView = (hmdToEyeViewOffset * predictedViewFromWorld).InvertedHomogeneousTransform();
    Matrix4f matRenderXform = (hmdToEyeViewOffset * renderedViewFromWorld) * worldFromPredictedView;

    return matRenderXform.Inverted();
}

TimewarpMachine::TimewarpMachine()
  : VsyncEnabled(false),
    RenderInfo(),
    CurrentPredictionValues(),
    DistortionTimeCount(0),
    DistortionTimeCurrentStart(0.0),
  //DistortionTimes[],
    DistortionTimeAverage(0.f),
  //EyeRenderPoses[],
    LastFramePresentFlushTime(0.0),
    PresentFlushToPresentFlushSeconds(0.f),
    NextFramePresentFlushTime(0.0)
{
    #if defined(OVR_BUILD_DEBUG)
        memset(DistortionTimes, 0, sizeof(DistortionTimes));
    #endif

    for ( int i = 0; i < 2; i++ )
    {
        EyeRenderPoses[i] = Posef();
    }
}

void TimewarpMachine::Reset(HmdRenderInfo& renderInfo, bool vsyncEnabled, double timeNow)
{
    RenderInfo = renderInfo;
    VsyncEnabled = vsyncEnabled;
    CurrentPredictionValues = PredictionGetDeviceValues ( renderInfo, true, VsyncEnabled );
    PresentFlushToPresentFlushSeconds = 0.0f;
    DistortionTimeCount = 0;
    DistortionTimeAverage = 0.0f;
    LastFramePresentFlushTime = timeNow;
    AfterPresentAndFlush(timeNow);
}

void TimewarpMachine::AfterPresentAndFlush(double timeNow)
{
    AfterPresentWithoutFlush();
    AfterPresentFinishes ( timeNow );
}

void TimewarpMachine::AfterPresentWithoutFlush()
{
    // We've only issued the Present - it hasn't actually finished (i.e. appeared)
    // But we need to estimate when the next Present will appear, so extrapolate from previous data.
    NextFramePresentFlushTime = LastFramePresentFlushTime + 2.0 * (double)PresentFlushToPresentFlushSeconds;
}

void TimewarpMachine::AfterPresentFinishes(double timeNow)
{
    // The present has now actually happened.
    PresentFlushToPresentFlushSeconds = (float)(timeNow - LastFramePresentFlushTime);
    LastFramePresentFlushTime = timeNow;
    NextFramePresentFlushTime = timeNow + (double)PresentFlushToPresentFlushSeconds;
}



double TimewarpMachine::GetViewRenderPredictionTime()
{
    // Note that PredictionGetDeviceValues() did all the vsync-dependent thinking for us.
    return NextFramePresentFlushTime + CurrentPredictionValues.PresentFlushToRenderedScene;
}

bool TimewarpMachine::GetViewRenderPredictionPose(SensorStateReader* reader, Posef& pose)
{
	return reader->GetPoseAtTime(GetViewRenderPredictionTime(), pose);
}

double TimewarpMachine::GetVisiblePixelTimeStart()
{
    // Note that PredictionGetDeviceValues() did all the vsync-dependent thinking for us.
    return NextFramePresentFlushTime + CurrentPredictionValues.PresentFlushToTimewarpStart;
}
double TimewarpMachine::GetVisiblePixelTimeEnd()
{
    // Note that PredictionGetDeviceValues() did all the vsync-dependent thinking for us.
    return NextFramePresentFlushTime + CurrentPredictionValues.PresentFlushToTimewarpEnd;
}
bool TimewarpMachine::GetPredictedVisiblePixelPoseStart(SensorStateReader* reader, Posef& pose)
{
	return reader->GetPoseAtTime(GetVisiblePixelTimeStart(), pose);
}
bool TimewarpMachine::GetPredictedVisiblePixelPoseEnd(SensorStateReader* reader, Posef& pose)
{
	return reader->GetPoseAtTime(GetVisiblePixelTimeEnd(), pose);
}
bool TimewarpMachine::GetTimewarpDeltaStart(SensorStateReader* reader, Posef const &renderedPose, Matrix4f& transform)
{
	Posef visiblePose;
	if (!GetPredictedVisiblePixelPoseStart(reader, visiblePose))
	{
		return false;
	}

    Matrix4f visibleMatrix(visiblePose);
    Matrix4f renderedMatrix(renderedPose);
    Matrix4f identity;  // doesn't matter for orientation-only timewarp
    transform = TimewarpComputePoseDelta ( renderedMatrix, visibleMatrix, identity );

	return true;
}
bool TimewarpMachine::GetTimewarpDeltaEnd(SensorStateReader* reader, Posef const &renderedPose, Matrix4f& transform)
{
	Posef visiblePose;
	if (!GetPredictedVisiblePixelPoseEnd(reader, visiblePose))
	{
		return false;
	}

    Matrix4f visibleMatrix(visiblePose);
    Matrix4f renderedMatrix(renderedPose);
    Matrix4f identity;  // doesn't matter for orientation-only timewarp
    transform = TimewarpComputePoseDelta ( renderedMatrix, visibleMatrix, identity );

	return true;
}


// What time should the app wait until before starting distortion?
double  TimewarpMachine::JustInTime_GetDistortionWaitUntilTime()
{
    if ( !VsyncEnabled || ( DistortionTimeCount < NumDistortionTimes ) )
    {
        // Don't wait.
        return LastFramePresentFlushTime;
    }

    // Note - 1-2ms fudge factor (because Windows timer granularity etc) is NOT added here,
    // because otherwise you end up adding multiple fudge factors!
    // So it's left for the calling app to add just one fudge factor.

    float howLongBeforePresent = DistortionTimeAverage;
    // Subtlety here. Technically, the correct time is NextFramePresentFlushTime - howLongBeforePresent.
    // However, if the app drops a frame, this then perpetuates it,
    // i.e. if the display is running at 60fps, but the last frame was slow,
    // (e.g. because of swapping or whatever), then NextFramePresentFlushTime is
    // 33ms in the future, not 16ms. Since this function supplies the
    // time to wait until, the app will indeed wait until 32ms, so the framerate
    // drops to 30fps and never comes back up!
    // So we return the *ideal* framerate, not the *actual* framerate.
    return LastFramePresentFlushTime + (float)( CurrentPredictionValues.PresentFlushToPresentFlush - howLongBeforePresent );
}

double TimewarpMachine::JustInTime_AverageDistortionTime()
{
    if ( JustInTime_NeedDistortionTimeMeasurement() )
    {
        return 0.0;
    }
    return DistortionTimeAverage;
}

bool    TimewarpMachine::JustInTime_NeedDistortionTimeMeasurement() const
{
    if (!VsyncEnabled)
    {
        return false;
    }
    return ( DistortionTimeCount < NumDistortionTimes );
}

void    TimewarpMachine::JustInTime_BeforeDistortionTimeMeasurement(double timeNow)
{
    DistortionTimeCurrentStart = timeNow;
}

void    TimewarpMachine::JustInTime_AfterDistortionTimeMeasurement(double timeNow)
{
    float timeDelta = (float)( timeNow - DistortionTimeCurrentStart );
    if ( DistortionTimeCount < NumDistortionTimes )
    {
        DistortionTimes[DistortionTimeCount] = timeDelta;
        DistortionTimeCount++;
        if ( DistortionTimeCount == NumDistortionTimes )
        {
            // Median.
            float distortionTimeMedian = 0.0f;
            for ( int i = 0; i < NumDistortionTimes/2; i++ )
            {
                // Find the maximum time of those remaining.
                float maxTime = DistortionTimes[0];
                int maxIndex = 0;
                for ( int j = 1; j < NumDistortionTimes; j++ )
                {
                    if ( maxTime < DistortionTimes[j] )
                    {
                        maxTime = DistortionTimes[j];
                        maxIndex = j;
                    }
                }
                // Zero that max time, so we'll find the next-highest time.
                DistortionTimes[maxIndex] = 0.0f;
                distortionTimeMedian = maxTime;
            }
            DistortionTimeAverage = distortionTimeMedian;
        }
    }
    else
    {
        OVR_ASSERT ( !"Really didn't need more measurements, thanks" );
    }
}


}}}  // OVR::Util::Render