aboutsummaryrefslogtreecommitdiffstats
path: root/Samples/OculusRoomTiny/RenderTiny_Device.h
blob: 878450d29ce751e044d5fd692342c1e40f117dd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
/************************************************************************************

Filename    :   RenderTiny_Device.h
Content     :   Minimal possible renderer for RoomTiny sample
Created     :   September 6, 2012
Authors     :   Andrew Reisse, Michael Antonov

Copyright   :   Copyright 2012 Oculus VR, Inc. All Rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

************************************************************************************/

#ifndef OVR_RenderTiny_Device_h
#define OVR_RenderTiny_Device_h

#include "Kernel/OVR_Math.h"
#include "Kernel/OVR_Array.h"
#include "Kernel/OVR_RefCount.h"
#include "Kernel/OVR_String.h"
#include "Kernel/OVR_File.h"
#include "Kernel/OVR_Color.h"

#include "Util/Util_Render_Stereo.h"

namespace OVR { namespace RenderTiny {

using namespace OVR::Util::Render;

class RenderDevice;


//-----------------------------------------------------------------------------------

// Rendering primitive type used to render Model.
enum PrimitiveType
{
    Prim_Triangles,
    Prim_Lines,
    Prim_TriangleStrip,
    Prim_Unknown,
    Prim_Count
};

// Types of shaders taht can be stored together in a ShaderSet.
enum ShaderStage
{
    Shader_Vertex   = 0,
    Shader_Fragment = 2,
    Shader_Pixel    = 2,
    Shader_Count    = 3,
};

// Built-in shader types; used by LoadBuiltinShader.
enum BuiltinShaders
{
    VShader_MV                      = 0,
    VShader_MVP                     = 1,
    VShader_PostProcess             = 2,
    VShader_Count                   = 3,

    FShader_Solid                   = 0,
    FShader_Gouraud                 = 1,
    FShader_Texture                 = 2,    
    FShader_PostProcess             = 3,
    FShader_PostProcessWithChromAb  = 4,
    FShader_LitGouraud              = 5,
    FShader_LitTexture              = 6,
    FShader_Count
};


enum MapFlags
{
    Map_Discard        = 1,
    Map_Read           = 2, // do not use
    Map_Unsynchronized = 4, // like D3D11_MAP_NO_OVERWRITE
};

// Buffer types used for uploading geometry & constants.
enum BufferUsage
{
    Buffer_Unknown  = 0,
    Buffer_Vertex   = 1,
    Buffer_Index    = 2,
    Buffer_Uniform  = 4,
    Buffer_TypeMask = 0xff,
    Buffer_ReadOnly = 0x100, // Buffer must be created with Data().
};

enum TextureFormat
{
    Texture_RGBA            = 0x0100,
    Texture_Depth           = 0x8000,
    Texture_TypeMask        = 0xff00,
    Texture_SamplesMask     = 0x00ff,
    Texture_RenderTarget    = 0x10000,
    Texture_GenMipmaps      = 0x20000,
};

// Texture sampling modes.
enum SampleMode
{
    Sample_Linear       = 0,
    Sample_Nearest      = 1,
    Sample_Anisotropic  = 2,
    Sample_FilterMask   = 3,

    Sample_Repeat       = 0,
    Sample_Clamp        = 4,
    Sample_ClampBorder  = 8, // If unsupported Clamp is used instead.
    Sample_AddressMask  =12,

    Sample_Count        =13,
};

// A vector with a dummy w component for alignment in uniform buffers (and for float colors).
// The w component is not used in any calculations.
struct Vector4f : public Vector3f
{
    float w;

    Vector4f() : w(1) {}
    Vector4f(const Vector3f& v) : Vector3f(v), w(1) {}
    Vector4f(float r, float g, float b, float a) : Vector3f(r,g,b), w(a) {}
};


// Base class for vertex and pixel shaders. Stored in ShaderSet.
class Shader : public RefCountBase<Shader>
{
    friend class ShaderSet;

protected:
    ShaderStage Stage;

public:
    Shader(ShaderStage s) : Stage(s) {}
    virtual ~Shader() {}

    ShaderStage GetStage() const { return Stage; }

    virtual void Set(PrimitiveType) const { }
    virtual void SetUniformBuffer(class Buffer* buffers, int i = 0) { OVR_UNUSED2(buffers, i); }
 
protected:
    virtual bool SetUniform(const char* name, int n, const float* v) { OVR_UNUSED3(name, n, v); return false; }
};


// A group of shaders, one per stage.
// A ShaderSet is applied to a RenderDevice for rendering with a given fill.
class ShaderSet : public RefCountBase<ShaderSet>
{
 protected:
    Ptr<Shader> Shaders[Shader_Count];

public:
    ShaderSet() { }
    ~ShaderSet() { }

    virtual void SetShader(Shader *s)
    {
        Shaders[s->GetStage()] = s;
    }
    virtual void UnsetShader(int stage)
    {
        Shaders[stage] = NULL;
    }
    Shader* GetShader(int stage) { return Shaders[stage]; }

    virtual void Set(PrimitiveType prim) const
    {
        for (int i = 0; i < Shader_Count; i++)
            if (Shaders[i])
                Shaders[i]->Set(prim);
    }

    // Set a uniform (other than the standard matrices). It is undefined whether the
    // uniforms from one shader occupy the same space as those in other shaders
    // (unless a buffer is used, then each buffer is independent).     
    virtual bool SetUniform(const char* name, int n, const float* v)
    {
        bool result = 0;
        for (int i = 0; i < Shader_Count; i++)
            if (Shaders[i])
                result |= Shaders[i]->SetUniform(name, n, v);

        return result;
    }
    bool SetUniform1f(const char* name, float x)
    {
        const float v[] = {x};
        return SetUniform(name, 1, v);
    }
    bool SetUniform2f(const char* name, float x, float y)
    {
        const float v[] = {x,y};
        return SetUniform(name, 2, v);
    }
    bool SetUniform4f(const char* name, float x, float y, float z, float w = 1)
    {
        const float v[] = {x,y,z,w};
        return SetUniform(name, 4, v);
    }
    bool SetUniformv(const char* name, const Vector3f& v)
    {
        const float a[] = {v.x,v.y,v.z,1};
        return SetUniform(name, 4, a);
    }
    bool SetUniform4fv(const char* name, int n, const Vector4f* v)
    {
        return SetUniform(name, 4*n, &v[0].x);
    }
    virtual bool SetUniform4x4f(const char* name, const Matrix4f& m)
    {
        Matrix4f mt = m.Transposed();
        return SetUniform(name, 16, &mt.M[0][0]);
    }
};


// Fill combines a ShaderSet (vertex, pixel) with textures, if any.
// Every model has a fill.
class ShaderFill : public RefCountBase<ShaderFill>
{
    Ptr<ShaderSet>     Shaders;
    Ptr<class Texture> Textures[8];

public:
    ShaderFill(ShaderSet* sh) : Shaders(sh) {  }
    ShaderFill(ShaderSet& sh) : Shaders(sh) {  }    

    ShaderSet*  GetShaders() { return Shaders; }

    virtual void Set(PrimitiveType prim = Prim_Unknown) const;   
    virtual void SetTexture(int i, class Texture* tex) { if (i < 8) Textures[i] = tex; }
};


// Buffer for vertex or index data. Some renderers require separate buffers, so that
// is recommended. Some renderers cannot have high-performance buffers which are readable,
// so reading in Map should not be relied on.
//
// Constraints on buffers, such as ReadOnly, are not enforced by the API but may result in 
// rendering-system dependent undesirable behavior, such as terrible performance or unreported failure.
//
// Use of a buffer inconsistent with usage is also not checked by the API, but it may result in bad
// performance or even failure.
//
// Use the Data() function to set buffer data the first time, if possible (it may be faster).

class Buffer : public RefCountBase<Buffer>
{
public:
    virtual ~Buffer() {}

    virtual size_t GetSize() = 0;
    virtual void*  Map(size_t start, size_t size, int flags = 0) = 0;
    virtual bool   Unmap(void *m) = 0;

    // Allocates a buffer, optionally filling it with data.
    virtual bool   Data(int use, const void* buffer, size_t size) = 0;
};

class Texture : public RefCountBase<Texture>
{
public:
    virtual ~Texture() {}

    virtual int GetWidth() const = 0;
    virtual int GetHeight() const = 0;
    virtual int GetSamples() const { return 1; }

    virtual void SetSampleMode(int sm) = 0;
    virtual void Set(int slot, ShaderStage stage = Shader_Fragment) const = 0;
};



//-----------------------------------------------------------------------------------

// Node is a base class for geometry in a Scene, it contains base position
// and orientation data.
// Model and Container both derive from it.
// 
class Node : public RefCountBase<Node>
{
    Vector3f     Pos;
    Quatf        Rot;

    mutable Matrix4f  Mat;
	mutable bool      MatCurrent;

public:
    Node() : Pos(Vector3f(0)), MatCurrent(1) { }
    virtual ~Node() { }

    enum NodeType
    {
        Node_NonDisplay,
        Node_Container,
        Node_Model
    };
    virtual NodeType GetType() const { return Node_NonDisplay; }

    const Vector3f&  GetPosition() const      { return Pos; }
    const Quatf&     GetOrientation() const   { return Rot; }
    void             SetPosition(Vector3f p)  { Pos = p; MatCurrent = 0; }
    void             SetOrientation(Quatf q)  { Rot = q; MatCurrent = 0; }

    void             Move(Vector3f p)         { Pos += p; MatCurrent = 0; }
    void             Rotate(Quatf q)          { Rot = q * Rot; MatCurrent = 0; }


    // For testing only; causes Position an Orientation
    void  SetMatrix(const Matrix4f& m)
    {
        MatCurrent = true;
        Mat = m;        
    }

    const Matrix4f&  GetMatrix() const 
    {
        if (!MatCurrent)
        {
            Mat = Rot;
            Mat = Matrix4f::Translation(Pos) * Mat;
            MatCurrent = 1;
        }
        return Mat;
    }

	virtual void     Render(const Matrix4f& ltw, RenderDevice* ren) { OVR_UNUSED2(ltw, ren); }
};


// Vertex type; same format is used for all shapes for simplicity.
// Shapes are built by adding vertices to Model.
struct Vertex
{
    Vector3f  Pos;
    Color     C;
    float     U, V;	
    Vector3f  Norm;

    Vertex (const Vector3f& p, const Color& c = Color(64,0,0,255), 
            float u = 0, float v = 0, Vector3f n = Vector3f(1,0,0))
      : Pos(p), C(c), U(u), V(v), Norm(n)
    {}
    Vertex(float x, float y, float z, const Color& c = Color(64,0,0,255),
           float u = 0, float v = 0) : Pos(x,y,z), C(c), U(u), V(v)
    { }
	
    bool operator==(const Vertex& b) const
    {
        return Pos == b.Pos && C == b.C && U == b.U && V == b.V;
    }
};

// LightingParams are stored in a uniform buffer, don't change it without fixing all renderers
// Scene contains a set of LightingParams that is uses for rendering.
struct LightingParams
{
    Vector4f Ambient;
    Vector4f LightPos[8];
    Vector4f LightColor[8];
    float    LightCount;    
    int      Version;

    LightingParams() : LightCount(0), Version(0) {}


    void Update(const Matrix4f& view, const Vector4f* SceneLightPos)
    {    
        Version++;
        for (int i = 0; i < LightCount; i++)
        {
            LightPos[i] = view.Transform(SceneLightPos[i]);
        }
    }

    void Set(ShaderSet* s) const
    {
        s->SetUniform4fv("Ambient", 1, &Ambient);
        s->SetUniform1f("LightCount", LightCount);
        s->SetUniform4fv("LightPos", (int)LightCount, LightPos);
        s->SetUniform4fv("LightColor", (int)LightCount, LightColor);
    }

};

//-----------------------------------------------------------------------------------

// Model is a triangular mesh with a fill that can be added to scene.
// 
class Model : public Node
{
public:
    Array<Vertex>     Vertices;
    Array<UInt16>     Indices;
    PrimitiveType     Type;
    Ptr<ShaderFill>   Fill;
    bool              Visible;	

    // Some renderers will create these if they didn't exist before rendering.
    // Currently they are not updated, so vertex data should not be changed after rendering.
    Ptr<Buffer>       VertexBuffer;
    Ptr<Buffer>       IndexBuffer;

    Model(PrimitiveType t = Prim_Triangles) : Type(t), Fill(NULL), Visible(true) { }
    ~Model() { }

    PrimitiveType GetPrimType() const      { return Type; }

    void          SetVisible(bool visible) { Visible = visible; }
    bool          IsVisible() const        { return Visible; }


    // Node implementation.
    virtual NodeType GetType() const       { return Node_Model; }
    virtual void    Render(const Matrix4f& ltw, RenderDevice* ren);
    

    // Returns the index next added vertex will have.
    UInt16 GetNextVertexIndex() const
    {
        return (UInt16)Vertices.GetSize();
    }

    UInt16 AddVertex(const Vertex& v)
    {
        assert(!VertexBuffer && !IndexBuffer);
        UInt16 index = (UInt16)Vertices.GetSize();
        Vertices.PushBack(v);
        return index;
    }

    void AddTriangle(UInt16 a, UInt16 b, UInt16 c)
    {
        Indices.PushBack(a);
        Indices.PushBack(b);
        Indices.PushBack(c);
    }

    // Uses texture coordinates for uniform world scaling (must use a repeat sampler).
    void  AddSolidColorBox(float x1, float y1, float z1,
                           float x2, float y2, float z2,
                           Color c);
};


// Container stores a collection of rendering nodes (Models or other containers).
class Container : public Node
{
public:
    Array<Ptr<Node> > Nodes;

    Container()  { }
    ~Container() { }
 
    virtual NodeType GetType() const { return Node_Container; }

    virtual void Render(const Matrix4f& ltw, RenderDevice* ren);

    void Add(Node *n)  { Nodes.PushBack(n); }	
	void Clear()       { Nodes.Clear(); }	
};


// Scene combines a collection of model 
class Scene
{
public:
    Container			World;
    Vector4f			LightPos[8];
    LightingParams		Lighting;

public:
    void Render(RenderDevice* ren, const Matrix4f& view);

    void SetAmbient(Vector4f color)
    {
        Lighting.Ambient = color;
    }
    
    void AddLight(Vector3f pos, Vector4f color)
    {
        int n = (int)Lighting.LightCount;
        OVR_ASSERT(n < 8);
        LightPos[n] = pos;
        Lighting.LightColor[n] = color;
        Lighting.LightCount++;
    }

	void Clear()
	{
		World.Clear();
		Lighting.Ambient = Vector4f(0.0f, 0.0f, 0.0f, 0.0f);
		Lighting.LightCount = 0;
	}
  };


//-----------------------------------------------------------------------------------

// Post-processing type to apply to scene after rendering. PostProcess_Distortion
// applied distortion as described by DistortionConfig.
enum PostProcessType
{
    PostProcess_None,
    PostProcess_Distortion
};

enum DisplayMode
{
    Display_Window     = 0,
    Display_Fullscreen = 1
};
    

// Rendering parameters used by RenderDevice::CreateDevice.
struct RendererParams
{
    int  Multisample;
    int  Fullscreen;

    // Windows - Monitor name for fullscreen mode.
    String MonitorName;
    // MacOS
    long   DisplayId;

    RendererParams(int ms = 1) : Multisample(ms), Fullscreen(0) {}
    
    bool IsDisplaySet() const
    {
        return MonitorName.GetLength() || DisplayId;
    }
};



//-----------------------------------------------------------------------------------
// ***** RenderDevice

// Rendering device abstraction.
// Provides platform-independent part of implementation, with platform-specific
// part being in a separate derived class/file, such as D3D10::RenderDevice.
// 
class RenderDevice : public RefCountBase<RenderDevice>
{    
protected:
    int             WindowWidth, WindowHeight;
    RendererParams  Params;
    Viewport        VP;

    Matrix4f        Proj;
    Ptr<Buffer>     pTextVertexBuffer;

    // For rendering with lens warping
    PostProcessType CurPostProcess;
    Ptr<Texture>    pSceneColorTex;  // Distortion render target, both eyes.
    int             SceneColorTexW;
    int             SceneColorTexH;
    Ptr<ShaderSet>  pPostProcessShader;
    Ptr<Buffer>     pFullScreenVertexBuffer;
    float           SceneRenderScale;
    DistortionConfig Distortion;    

    // For lighting on platforms with uniform buffers
    Ptr<Buffer>     LightingBuffer;

    void FinishScene1();

public:
    enum CompareFunc
    {
        Compare_Always  = 0,
        Compare_Less    = 1,
        Compare_Greater = 2,
        Compare_Count
    };
    RenderDevice();
    virtual ~RenderDevice() { Shutdown(); }

    // This static function is implemented in each derived class
    // to support a specific renderer type.
    //static RenderDevice* CreateDevice(const RendererParams& rp, void* oswnd);


    virtual void Init() {}
    virtual void Shutdown() {}
    virtual bool SetParams(const RendererParams&) { return 0; }

    const RendererParams& GetParams() const { return Params; }

    
    // StereoParams apply Viewport, Projection and Distortion simultaneously,
    // doing full configuration for one eye.
    void        ApplyStereoParams(const StereoEyeParams& params)
    {
        SetViewport(params.VP);
        SetProjection(params.Projection);
        if (params.pDistortion)
            SetDistortionConfig(*params.pDistortion, params.Eye);
    }

    virtual void SetViewport(const Viewport& vp);
    void         SetViewport(int x, int y, int w, int h) { SetViewport(Viewport(x,y,w,h)); }

    // PostProcess distortion
    void          SetSceneRenderScale(float ss);

    void          SetDistortionConfig(const DistortionConfig& config, StereoEye eye = StereoEye_Left)
    {
        Distortion = config;
        if (eye == StereoEye_Right)
            Distortion.XCenterOffset = -Distortion.XCenterOffset;
    }
   
    // Set viewport ignoring any adjustments used for the stereo mode.
    virtual void SetRealViewport(const Viewport& vp) = 0;    

    virtual void Clear(float r = 0, float g = 0, float b = 0, float a = 1, float depth = 1) = 0;   
 
    virtual bool IsFullscreen() const { return Params.Fullscreen != Display_Window; }
    virtual void Present() = 0;
    // Waits for rendering to complete; important for reducing latency.
    virtual void ForceFlushGPU() { }

    // Resources
    virtual Buffer*  CreateBuffer() { return NULL; }
    virtual Texture* CreateTexture(int format, int width, int height, const void* data, int mipcount=1)
    { OVR_UNUSED5(format,width,height,data, mipcount); return NULL; }
    

    virtual ShaderSet* CreateShaderSet() { return new ShaderSet; }
    virtual Shader*    LoadBuiltinShader(ShaderStage stage, int shader) = 0;

    // Rendering

    // Begin drawing directly to the currently selected render target, no post-processing.
    virtual void BeginRendering() {}
    // Begin drawing the primary scene. This will have post-processing applied (if enabled)
    // during FinishScene.
    virtual void BeginScene(PostProcessType pp = PostProcess_None);
    // Postprocess the scene and return to the screen render target.
    virtual void FinishScene();

    // Texture must have been created with Texture_RenderTarget. Use NULL for the default render target.
    // NULL depth buffer means use an internal, temporary one.
    virtual void SetRenderTarget(Texture* color, Texture* depth = NULL, Texture* stencil = NULL)
    { OVR_UNUSED3(color, depth, stencil); }
    virtual void SetDepthMode(bool enable, bool write, CompareFunc func = Compare_Less) = 0;
    virtual void SetProjection(const Matrix4f& proj);
    virtual void SetWorldUniforms(const Matrix4f& proj) = 0;

    // The data is not copied, it must remain valid until the end of the frame
    virtual void SetLighting(const LightingParams* light);

    // The index 0 is reserved for non-buffer uniforms, and so cannot be used with this function.
    virtual void SetCommonUniformBuffer(int i, Buffer* buffer) { OVR_UNUSED2(i, buffer); }
    
    virtual Matrix4f GetProjection() const { return Proj; }

    // This is a View matrix only, it will be combined with the projection matrix from SetProjection
    virtual void Render(const Matrix4f& matrix, Model* model) = 0;
    // offset is in bytes; indices can be null.
    virtual void Render(const ShaderFill* fill, Buffer* vertices, Buffer* indices,
                        const Matrix4f& matrix, int offset, int count, PrimitiveType prim = Prim_Triangles) = 0;

    virtual ShaderFill *CreateSimpleFill() = 0;
    ShaderFill *        CreateTextureFill(Texture* tex);

 
    // Don't call these directly, use App/Platform instead
    virtual bool SetFullscreen(DisplayMode fullscreen) { OVR_UNUSED(fullscreen); return false; }    
    

    enum PostProcessShader
    {
        PostProcessShader_Distortion                = 0,
        PostProcessShader_DistortionAndChromAb      = 1,
        PostProcessShader_Count
    };

    PostProcessShader GetPostProcessShader()
    {
        return PostProcessShaderActive;
    }

    void SetPostProcessShader(PostProcessShader newShader)
    {
        PostProcessShaderRequested = newShader;
    }

protected:
    // Stereo & post-processing
    virtual bool  initPostProcessSupport(PostProcessType pptype);
   
private:
    PostProcessShader   PostProcessShaderRequested;
    PostProcessShader   PostProcessShaderActive;
};

int GetNumMipLevels(int w, int h);

// Filter an rgba image with a 2x2 box filter, for mipmaps.
// Image size must be a power of 2.
void FilterRgba2x2(const UByte* src, int w, int h, UByte* dest);

}}  // OVR::RenderTiny

#endif