diff options
author | Chris Robinson <[email protected]> | 2022-09-23 17:16:37 -0700 |
---|---|---|
committer | Chris Robinson <[email protected]> | 2022-09-23 17:16:37 -0700 |
commit | a326bf4e6452b1260a36e2b719d47aa0f0361f95 (patch) | |
tree | 62c7d6a6d69dc8530213890887bf90236e226860 | |
parent | 839f960b4d303c92bcfefeb8fbb37e40136db2c3 (diff) |
Move some comments to a more appropriate place
-rw-r--r-- | core/ambidefs.cpp | 64 |
1 files changed, 32 insertions, 32 deletions
diff --git a/core/ambidefs.cpp b/core/ambidefs.cpp index 819ba9a6..4d78bf84 100644 --- a/core/ambidefs.cpp +++ b/core/ambidefs.cpp @@ -42,6 +42,13 @@ constexpr std::array<std::array<float,MaxAmbiOrder+1>,MaxAmbiOrder+1> HFScales2D }}; +/* This calculates a first-order "upsampler" matrix. It combines a first-order + * decoder matrix with a max-order encoder matrix, creating a matrix that + * behaves as if the B-Format input signal is first decoded to a speaker array + * at first-order, then those speaker feeds are encoded to a higher-order + * signal. While not perfect, this should accurately encode a lower-order + * signal into a higher-order signal. + */ constexpr std::array<std::array<float,4>,8> FirstOrderDecoder{{ {{ 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, }}, {{ 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f, }}, @@ -64,13 +71,6 @@ constexpr std::array<AmbiChannelFloatArray,8> FirstOrderEncoder{{ }}; static_assert(FirstOrderDecoder.size() == FirstOrderEncoder.size(), "First-order mismatch"); -/* This calculates a first-order "upsampler" matrix. It combines a first-order - * decoder matrix with a max-order encoder matrix, creating a matrix that - * behaves as if the B-Format input signal is first decoded to a speaker array - * at first-order, then those speaker feeds are encoded to a higher-order - * signal. While not perfect, this should accurately encode a lower-order - * signal into a higher-order signal. - */ auto CalcFirstOrderUp() { std::array<AmbiChannelFloatArray,4> res{}; @@ -90,6 +90,10 @@ auto CalcFirstOrderUp() } +/* This calculates a 2D first-order "upsampler" matrix. Same as the first-order + * matrix, just using a more optimized speaker array for horizontal-only + * content. + */ constexpr std::array<std::array<float,4>,4> FirstOrder2DDecoder{{ {{ 2.500000000e-01f, 2.041241452e-01f, 0.0f, 2.041241452e-01f, }}, {{ 2.500000000e-01f, 2.041241452e-01f, 0.0f, -2.041241452e-01f, }}, @@ -104,10 +108,6 @@ constexpr std::array<AmbiChannelFloatArray,4> FirstOrder2DEncoder{{ }}; static_assert(FirstOrder2DDecoder.size() == FirstOrder2DEncoder.size(), "First-order 2D mismatch"); -/* This calculates a 2D first-order "upsampler" matrix. Same as the first-order - * matrix, just using a more optimized speaker array for horizontal-only - * content. - */ auto CalcFirstOrder2DUp() { std::array<AmbiChannelFloatArray,4> res{}; @@ -127,6 +127,10 @@ auto CalcFirstOrder2DUp() } +/* This calculates a second-order "upsampler" matrix. Same as the first-order + * matrix, just using a slightly more dense speaker array suitable for second- + * order content. + */ constexpr std::array<std::array<float,9>,12> SecondOrderDecoder{{ {{ 8.333333333e-02f, 0.000000000e+00f, -7.588274978e-02f, 1.227808683e-01f, 0.000000000e+00f, 0.000000000e+00f, -1.591525047e-02f, -1.443375673e-01f, 1.167715449e-01f, }}, {{ 8.333333333e-02f, -1.227808683e-01f, 0.000000000e+00f, 7.588274978e-02f, -1.443375673e-01f, 0.000000000e+00f, -9.316949906e-02f, 0.000000000e+00f, -7.216878365e-02f, }}, @@ -157,10 +161,6 @@ constexpr std::array<AmbiChannelFloatArray,12> SecondOrderEncoder{{ }}; static_assert(SecondOrderDecoder.size() == SecondOrderEncoder.size(), "Second-order mismatch"); -/* This calculates a second-order "upsampler" matrix. Same as the first-order - * matrix, just using a slightly more dense speaker array suitable for second- - * order content. - */ auto CalcSecondOrderUp() { std::array<AmbiChannelFloatArray,9> res{}; @@ -180,6 +180,10 @@ auto CalcSecondOrderUp() } +/* This calculates a 2D second-order "upsampler" matrix. Same as the second- + * order matrix, just using a more optimized speaker array for horizontal-only + * content. + */ constexpr std::array<std::array<float,9>,6> SecondOrder2DDecoder{{ {{ 1.666666667e-01f, -9.622504486e-02f, 0.0f, 1.666666667e-01f, -1.490711985e-01f, 0.0f, 0.0f, 0.0f, 8.606629658e-02f, }}, {{ 1.666666667e-01f, -1.924500897e-01f, 0.0f, 0.000000000e+00f, 0.000000000e+00f, 0.0f, 0.0f, 0.0f, -1.721325932e-01f, }}, @@ -199,10 +203,6 @@ constexpr std::array<AmbiChannelFloatArray,6> SecondOrder2DEncoder{{ static_assert(SecondOrder2DDecoder.size() == SecondOrder2DEncoder.size(), "Second-order 2D mismatch"); -/* This calculates a 2D second-order "upsampler" matrix. Same as the second- - * order matrix, just using a more optimized speaker array for horizontal-only - * content. - */ auto CalcSecondOrder2DUp() { std::array<AmbiChannelFloatArray,9> res{}; @@ -222,6 +222,10 @@ auto CalcSecondOrder2DUp() } +/* This calculates a third-order "upsampler" matrix. Same as the first-order + * matrix, just using a more dense speaker array suitable for third-order + * content. + */ constexpr std::array<std::array<float,16>,20> ThirdOrderDecoder{{ {{ 5.000000000e-02f, 3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, 6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f, -1.256118221e-01f, 0.000000000e+00f, 1.126112056e-01f, 7.944389175e-02f, 0.000000000e+00f, 2.421151497e-02f, 0.000000000e+00f, }}, {{ 5.000000000e-02f, -3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f, 1.256118221e-01f, 0.000000000e+00f, -1.126112056e-01f, 7.944389175e-02f, 0.000000000e+00f, 2.421151497e-02f, 0.000000000e+00f, }}, @@ -268,10 +272,6 @@ constexpr std::array<AmbiChannelFloatArray,20> ThirdOrderEncoder{{ }}; static_assert(ThirdOrderDecoder.size() == ThirdOrderEncoder.size(), "Third-order mismatch"); -/* This calculates a third-order "upsampler" matrix. Same as the first-order - * matrix, just using a more dense speaker array suitable for third-order - * content. - */ auto CalcThirdOrderUp() { std::array<AmbiChannelFloatArray,16> res{}; @@ -291,6 +291,10 @@ auto CalcThirdOrderUp() } +/* This calculates a 2D third-order "upsampler" matrix. Same as the third-order + * matrix, just using a more optimized speaker array for horizontal-only + * content. + */ constexpr std::array<std::array<float,16>,8> ThirdOrder2DDecoder{{ {{ 1.250000000e-01f, -5.523559567e-02f, 0.0f, 1.333505242e-01f, -9.128709292e-02f, 0.0f, 0.0f, 0.0f, 9.128709292e-02f, -1.104247249e-01f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 4.573941867e-02f, }}, {{ 1.250000000e-01f, -1.333505242e-01f, 0.0f, 5.523559567e-02f, -9.128709292e-02f, 0.0f, 0.0f, 0.0f, -9.128709292e-02f, 4.573941867e-02f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -1.104247249e-01f, }}, @@ -313,10 +317,6 @@ constexpr std::array<AmbiChannelFloatArray,8> ThirdOrder2DEncoder{{ }}; static_assert(ThirdOrder2DDecoder.size() == ThirdOrder2DEncoder.size(), "Third-order 2D mismatch"); -/* This calculates a 2D third-order "upsampler" matrix. Same as the third-order - * matrix, just using a more optimized speaker array for horizontal-only - * content. - */ auto CalcThirdOrder2DUp() { std::array<AmbiChannelFloatArray,16> res{}; @@ -336,6 +336,11 @@ auto CalcThirdOrder2DUp() } +/* This calculates a 2D fourth-order "upsampler" matrix. There is no 3D fourth- + * order upsampler since fourth-order is the max order we'll be supporting for + * the foreseeable future. This is only necessary for mixing horizontal-only + * fourth-order content to 3D. + */ constexpr std::array<std::array<float,25>,10> FourthOrder2DDecoder{{ {{ 1.000000000e-01f, 3.568220898e-02f, 0.0f, 1.098185471e-01f, 6.070619982e-02f, 0.0f, 0.0f, 0.0f, 8.355491589e-02f, 7.735682057e-02f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 5.620301997e-02f, 8.573754253e-02f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 2.785781628e-02f, }}, {{ 1.000000000e-01f, 9.341723590e-02f, 0.0f, 6.787159473e-02f, 9.822469464e-02f, 0.0f, 0.0f, 0.0f, -3.191513794e-02f, 2.954767620e-02f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -9.093839659e-02f, -5.298871540e-02f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -7.293270986e-02f, }}, @@ -362,11 +367,6 @@ constexpr std::array<AmbiChannelFloatArray,10> FourthOrder2DEncoder{{ }}; static_assert(FourthOrder2DDecoder.size() == FourthOrder2DEncoder.size(), "Fourth-order 2D mismatch"); -/* This calculates a 2D fourth-order "upsampler" matrix. There is no 3D fourth- - * order upsampler since fourth-order is the max order we'll be supporting for - * the foreseeable future. This is only necessary for mixing horizontal-only - * fourth-order content to 3D. - */ auto CalcFourthOrder2DUp() { std::array<AmbiChannelFloatArray,25> res{}; |