diff options
author | Chris Robinson <[email protected]> | 2019-07-28 18:56:04 -0700 |
---|---|---|
committer | Chris Robinson <[email protected]> | 2019-07-28 18:56:04 -0700 |
commit | cb3e96e75640730b9391f0d2d922eecd9ee2ce79 (patch) | |
tree | 23520551bddb2a80354e44da47f54201fdc084f0 /Alc/alu.cpp | |
parent | 93e60919c8f387c36c267ca9faa1ac653254aea6 (diff) |
Rename Alc to alc
Diffstat (limited to 'Alc/alu.cpp')
-rw-r--r-- | Alc/alu.cpp | 1798 |
1 files changed, 0 insertions, 1798 deletions
diff --git a/Alc/alu.cpp b/Alc/alu.cpp deleted file mode 100644 index cc1a5a98..00000000 --- a/Alc/alu.cpp +++ /dev/null @@ -1,1798 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 1999-2007 by authors. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include "alu.h" - -#include <algorithm> -#include <array> -#include <atomic> -#include <cassert> -#include <chrono> -#include <climits> -#include <cmath> -#include <cstdarg> -#include <cstdio> -#include <cstdlib> -#include <cstring> -#include <functional> -#include <iterator> -#include <limits> -#include <memory> -#include <new> -#include <numeric> -#include <utility> - -#include "AL/al.h" -#include "AL/alc.h" -#include "AL/efx.h" - -#include "alAuxEffectSlot.h" -#include "alBuffer.h" -#include "alcmain.h" -#include "alEffect.h" -#include "alListener.h" -#include "alcontext.h" -#include "almalloc.h" -#include "alnumeric.h" -#include "alspan.h" -#include "ambidefs.h" -#include "atomic.h" -#include "bformatdec.h" -#include "bs2b.h" -#include "cpu_caps.h" -#include "effects/base.h" -#include "filters/biquad.h" -#include "filters/nfc.h" -#include "filters/splitter.h" -#include "fpu_modes.h" -#include "hrtf.h" -#include "inprogext.h" -#include "mastering.h" -#include "math_defs.h" -#include "mixer/defs.h" -#include "opthelpers.h" -#include "ringbuffer.h" -#include "threads.h" -#include "uhjfilter.h" -#include "vecmat.h" -#include "vector.h" - -#include "bsinc_inc.h" - - -namespace { - -using namespace std::placeholders; - -ALfloat InitConeScale() -{ - ALfloat ret{1.0f}; - const char *str{getenv("__ALSOFT_HALF_ANGLE_CONES")}; - if(str && (strcasecmp(str, "true") == 0 || strtol(str, nullptr, 0) == 1)) - ret *= 0.5f; - return ret; -} - -ALfloat InitZScale() -{ - ALfloat ret{1.0f}; - const char *str{getenv("__ALSOFT_REVERSE_Z")}; - if(str && (strcasecmp(str, "true") == 0 || strtol(str, nullptr, 0) == 1)) - ret *= -1.0f; - return ret; -} - -ALboolean InitReverbSOS() -{ - ALboolean ret{AL_FALSE}; - const char *str{getenv("__ALSOFT_REVERB_IGNORES_SOUND_SPEED")}; - if(str && (strcasecmp(str, "true") == 0 || strtol(str, nullptr, 0) == 1)) - ret = AL_TRUE; - return ret; -} - -} // namespace - -/* Cone scalar */ -const ALfloat ConeScale{InitConeScale()}; - -/* Localized Z scalar for mono sources */ -const ALfloat ZScale{InitZScale()}; - -/* Force default speed of sound for distance-related reverb decay. */ -const ALboolean OverrideReverbSpeedOfSound{InitReverbSOS()}; - - -namespace { - -void ClearArray(ALfloat (&f)[MAX_OUTPUT_CHANNELS]) -{ - std::fill(std::begin(f), std::end(f), 0.0f); -} - -struct ChanMap { - Channel channel; - ALfloat angle; - ALfloat elevation; -}; - -HrtfDirectMixerFunc MixDirectHrtf = MixDirectHrtf_<CTag>; -inline HrtfDirectMixerFunc SelectHrtfMixer(void) -{ -#ifdef HAVE_NEON - if((CPUCapFlags&CPU_CAP_NEON)) - return MixDirectHrtf_<NEONTag>; -#endif -#ifdef HAVE_SSE - if((CPUCapFlags&CPU_CAP_SSE)) - return MixDirectHrtf_<SSETag>; -#endif - - return MixDirectHrtf_<CTag>; -} - -} // namespace - -void aluInit(void) -{ - MixDirectHrtf = SelectHrtfMixer(); -} - - -void ProcessHrtf(ALCdevice *device, const ALsizei SamplesToDo) -{ - /* HRTF is stereo output only. */ - const int lidx{device->RealOut.ChannelIndex[FrontLeft]}; - const int ridx{device->RealOut.ChannelIndex[FrontRight]}; - ASSUME(lidx >= 0 && ridx >= 0); - - DirectHrtfState *state{device->mHrtfState.get()}; - MixDirectHrtf(device->RealOut.Buffer[lidx], device->RealOut.Buffer[ridx], device->Dry.Buffer, - device->HrtfAccumData, state, SamplesToDo); -} - -void ProcessAmbiDec(ALCdevice *device, const ALsizei SamplesToDo) -{ - BFormatDec *ambidec{device->AmbiDecoder.get()}; - ambidec->process(device->RealOut.Buffer, device->Dry.Buffer.data(), SamplesToDo); -} - -void ProcessUhj(ALCdevice *device, const ALsizei SamplesToDo) -{ - /* UHJ is stereo output only. */ - const int lidx{device->RealOut.ChannelIndex[FrontLeft]}; - const int ridx{device->RealOut.ChannelIndex[FrontRight]}; - ASSUME(lidx >= 0 && ridx >= 0); - - /* Encode to stereo-compatible 2-channel UHJ output. */ - Uhj2Encoder *uhj2enc{device->Uhj_Encoder.get()}; - uhj2enc->encode(device->RealOut.Buffer[lidx], device->RealOut.Buffer[ridx], - device->Dry.Buffer.data(), SamplesToDo); -} - -void ProcessBs2b(ALCdevice *device, const ALsizei SamplesToDo) -{ - /* First, decode the ambisonic mix to the "real" output. */ - BFormatDec *ambidec{device->AmbiDecoder.get()}; - ambidec->process(device->RealOut.Buffer, device->Dry.Buffer.data(), SamplesToDo); - - /* BS2B is stereo output only. */ - const int lidx{device->RealOut.ChannelIndex[FrontLeft]}; - const int ridx{device->RealOut.ChannelIndex[FrontRight]}; - ASSUME(lidx >= 0 && ridx >= 0); - - /* Now apply the BS2B binaural/crossfeed filter. */ - bs2b_cross_feed(device->Bs2b.get(), device->RealOut.Buffer[lidx].data(), - device->RealOut.Buffer[ridx].data(), SamplesToDo); -} - - -/* Prepares the interpolator for a given rate (determined by increment). - * - * With a bit of work, and a trade of memory for CPU cost, this could be - * modified for use with an interpolated increment for buttery-smooth pitch - * changes. - */ -void BsincPrepare(const ALuint increment, BsincState *state, const BSincTable *table) -{ - ALsizei si{BSINC_SCALE_COUNT - 1}; - ALfloat sf{0.0f}; - - if(increment > FRACTIONONE) - { - sf = static_cast<ALfloat>FRACTIONONE / increment; - sf = maxf(0.0f, (BSINC_SCALE_COUNT-1) * (sf-table->scaleBase) * table->scaleRange); - si = float2int(sf); - /* The interpolation factor is fit to this diagonally-symmetric curve - * to reduce the transition ripple caused by interpolating different - * scales of the sinc function. - */ - sf = 1.0f - std::cos(std::asin(sf - si)); - } - - state->sf = sf; - state->m = table->m[si]; - state->l = (state->m/2) - 1; - state->filter = table->Tab + table->filterOffset[si]; -} - - -namespace { - -/* This RNG method was created based on the math found in opusdec. It's quick, - * and starting with a seed value of 22222, is suitable for generating - * whitenoise. - */ -inline ALuint dither_rng(ALuint *seed) noexcept -{ - *seed = (*seed * 96314165) + 907633515; - return *seed; -} - - -inline alu::Vector aluCrossproduct(const alu::Vector &in1, const alu::Vector &in2) -{ - return alu::Vector{ - in1[1]*in2[2] - in1[2]*in2[1], - in1[2]*in2[0] - in1[0]*in2[2], - in1[0]*in2[1] - in1[1]*in2[0], - 0.0f - }; -} - -inline ALfloat aluDotproduct(const alu::Vector &vec1, const alu::Vector &vec2) -{ - return vec1[0]*vec2[0] + vec1[1]*vec2[1] + vec1[2]*vec2[2]; -} - - -alu::Vector operator*(const alu::Matrix &mtx, const alu::Vector &vec) noexcept -{ - return alu::Vector{ - vec[0]*mtx[0][0] + vec[1]*mtx[1][0] + vec[2]*mtx[2][0] + vec[3]*mtx[3][0], - vec[0]*mtx[0][1] + vec[1]*mtx[1][1] + vec[2]*mtx[2][1] + vec[3]*mtx[3][1], - vec[0]*mtx[0][2] + vec[1]*mtx[1][2] + vec[2]*mtx[2][2] + vec[3]*mtx[3][2], - vec[0]*mtx[0][3] + vec[1]*mtx[1][3] + vec[2]*mtx[2][3] + vec[3]*mtx[3][3] - }; -} - - -bool CalcContextParams(ALCcontext *Context) -{ - ALcontextProps *props{Context->Update.exchange(nullptr, std::memory_order_acq_rel)}; - if(!props) return false; - - ALlistener &Listener = Context->Listener; - Listener.Params.MetersPerUnit = props->MetersPerUnit; - - Listener.Params.DopplerFactor = props->DopplerFactor; - Listener.Params.SpeedOfSound = props->SpeedOfSound * props->DopplerVelocity; - if(!OverrideReverbSpeedOfSound) - Listener.Params.ReverbSpeedOfSound = Listener.Params.SpeedOfSound * - Listener.Params.MetersPerUnit; - - Listener.Params.SourceDistanceModel = props->SourceDistanceModel; - Listener.Params.mDistanceModel = props->mDistanceModel; - - AtomicReplaceHead(Context->FreeContextProps, props); - return true; -} - -bool CalcListenerParams(ALCcontext *Context) -{ - ALlistener &Listener = Context->Listener; - - ALlistenerProps *props{Listener.Update.exchange(nullptr, std::memory_order_acq_rel)}; - if(!props) return false; - - /* AT then UP */ - alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f}; - N.normalize(); - alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f}; - V.normalize(); - /* Build and normalize right-vector */ - alu::Vector U{aluCrossproduct(N, V)}; - U.normalize(); - - Listener.Params.Matrix = alu::Matrix{ - U[0], V[0], -N[0], 0.0f, - U[1], V[1], -N[1], 0.0f, - U[2], V[2], -N[2], 0.0f, - 0.0f, 0.0f, 0.0f, 1.0f - }; - - const alu::Vector P{Listener.Params.Matrix * - alu::Vector{props->Position[0], props->Position[1], props->Position[2], 1.0f}}; - Listener.Params.Matrix.setRow(3, -P[0], -P[1], -P[2], 1.0f); - - const alu::Vector vel{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f}; - Listener.Params.Velocity = Listener.Params.Matrix * vel; - - Listener.Params.Gain = props->Gain * Context->GainBoost; - - AtomicReplaceHead(Context->FreeListenerProps, props); - return true; -} - -bool CalcEffectSlotParams(ALeffectslot *slot, ALCcontext *context, bool force) -{ - ALeffectslotProps *props{slot->Update.exchange(nullptr, std::memory_order_acq_rel)}; - if(!props && !force) return false; - - EffectState *state; - if(!props) - state = slot->Params.mEffectState; - else - { - slot->Params.Gain = props->Gain; - slot->Params.AuxSendAuto = props->AuxSendAuto; - slot->Params.Target = props->Target; - slot->Params.EffectType = props->Type; - slot->Params.mEffectProps = props->Props; - if(IsReverbEffect(props->Type)) - { - slot->Params.RoomRolloff = props->Props.Reverb.RoomRolloffFactor; - slot->Params.DecayTime = props->Props.Reverb.DecayTime; - slot->Params.DecayLFRatio = props->Props.Reverb.DecayLFRatio; - slot->Params.DecayHFRatio = props->Props.Reverb.DecayHFRatio; - slot->Params.DecayHFLimit = props->Props.Reverb.DecayHFLimit; - slot->Params.AirAbsorptionGainHF = props->Props.Reverb.AirAbsorptionGainHF; - } - else - { - slot->Params.RoomRolloff = 0.0f; - slot->Params.DecayTime = 0.0f; - slot->Params.DecayLFRatio = 0.0f; - slot->Params.DecayHFRatio = 0.0f; - slot->Params.DecayHFLimit = AL_FALSE; - slot->Params.AirAbsorptionGainHF = 1.0f; - } - - state = props->State; - props->State = nullptr; - EffectState *oldstate{slot->Params.mEffectState}; - slot->Params.mEffectState = state; - - /* Manually decrement the old effect state's refcount if it's greater - * than 1. We need to be a bit clever here to avoid the refcount - * reaching 0 since it can't be deleted in the mixer. - */ - ALuint oldval{oldstate->mRef.load(std::memory_order_acquire)}; - while(oldval > 1 && !oldstate->mRef.compare_exchange_weak(oldval, oldval-1, - std::memory_order_acq_rel, std::memory_order_acquire)) - { - /* oldval was updated with the current value on failure, so just - * try again. - */ - } - - if(oldval < 2) - { - /* Otherwise, if it would be deleted, send it off with a release - * event. - */ - RingBuffer *ring{context->AsyncEvents.get()}; - auto evt_vec = ring->getWriteVector(); - if(LIKELY(evt_vec.first.len > 0)) - { - AsyncEvent *evt{new (evt_vec.first.buf) AsyncEvent{EventType_ReleaseEffectState}}; - evt->u.mEffectState = oldstate; - ring->writeAdvance(1); - context->EventSem.post(); - } - else - { - /* If writing the event failed, the queue was probably full. - * Store the old state in the property object where it can - * eventually be cleaned up sometime later (not ideal, but - * better than blocking or leaking). - */ - props->State = oldstate; - } - } - - AtomicReplaceHead(context->FreeEffectslotProps, props); - } - - EffectTarget output; - if(ALeffectslot *target{slot->Params.Target}) - output = EffectTarget{&target->Wet, nullptr}; - else - { - ALCdevice *device{context->Device}; - output = EffectTarget{&device->Dry, &device->RealOut}; - } - state->update(context, slot, &slot->Params.mEffectProps, output); - return true; -} - - -/* Scales the given azimuth toward the side (+/- pi/2 radians) for positions in - * front. - */ -inline float ScaleAzimuthFront(float azimuth, float scale) -{ - const ALfloat abs_azi{std::fabs(azimuth)}; - if(!(abs_azi > al::MathDefs<float>::Pi()*0.5f)) - return minf(abs_azi*scale, al::MathDefs<float>::Pi()*0.5f) * std::copysign(1.0f, azimuth); - return azimuth; -} - -void CalcPanningAndFilters(ALvoice *voice, const ALfloat xpos, const ALfloat ypos, - const ALfloat zpos, const ALfloat Distance, const ALfloat Spread, const ALfloat DryGain, - const ALfloat DryGainHF, const ALfloat DryGainLF, const ALfloat (&WetGain)[MAX_SENDS], - const ALfloat (&WetGainLF)[MAX_SENDS], const ALfloat (&WetGainHF)[MAX_SENDS], - ALeffectslot *(&SendSlots)[MAX_SENDS], const ALvoicePropsBase *props, - const ALlistener &Listener, const ALCdevice *Device) -{ - static constexpr ChanMap MonoMap[1]{ - { FrontCenter, 0.0f, 0.0f } - }, RearMap[2]{ - { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) }, - { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) } - }, QuadMap[4]{ - { FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) }, - { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) }, - { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) }, - { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) } - }, X51Map[6]{ - { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) }, - { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }, - { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) }, - { LFE, 0.0f, 0.0f }, - { SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) }, - { SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) } - }, X61Map[7]{ - { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) }, - { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }, - { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) }, - { LFE, 0.0f, 0.0f }, - { BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) }, - { SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) }, - { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) } - }, X71Map[8]{ - { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) }, - { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }, - { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) }, - { LFE, 0.0f, 0.0f }, - { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) }, - { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) }, - { SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) }, - { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) } - }; - - ChanMap StereoMap[2]{ - { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) }, - { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) } - }; - - const auto Frequency = static_cast<ALfloat>(Device->Frequency); - const ALsizei NumSends{Device->NumAuxSends}; - ASSUME(NumSends >= 0); - - bool DirectChannels{props->DirectChannels != AL_FALSE}; - const ChanMap *chans{nullptr}; - ALsizei num_channels{0}; - bool isbformat{false}; - ALfloat downmix_gain{1.0f}; - switch(voice->mFmtChannels) - { - case FmtMono: - chans = MonoMap; - num_channels = 1; - /* Mono buffers are never played direct. */ - DirectChannels = false; - break; - - case FmtStereo: - /* Convert counter-clockwise to clockwise. */ - StereoMap[0].angle = -props->StereoPan[0]; - StereoMap[1].angle = -props->StereoPan[1]; - - chans = StereoMap; - num_channels = 2; - downmix_gain = 1.0f / 2.0f; - break; - - case FmtRear: - chans = RearMap; - num_channels = 2; - downmix_gain = 1.0f / 2.0f; - break; - - case FmtQuad: - chans = QuadMap; - num_channels = 4; - downmix_gain = 1.0f / 4.0f; - break; - - case FmtX51: - chans = X51Map; - num_channels = 6; - /* NOTE: Excludes LFE. */ - downmix_gain = 1.0f / 5.0f; - break; - - case FmtX61: - chans = X61Map; - num_channels = 7; - /* NOTE: Excludes LFE. */ - downmix_gain = 1.0f / 6.0f; - break; - - case FmtX71: - chans = X71Map; - num_channels = 8; - /* NOTE: Excludes LFE. */ - downmix_gain = 1.0f / 7.0f; - break; - - case FmtBFormat2D: - num_channels = 3; - isbformat = true; - DirectChannels = false; - break; - - case FmtBFormat3D: - num_channels = 4; - isbformat = true; - DirectChannels = false; - break; - } - ASSUME(num_channels > 0); - - std::for_each(voice->mChans.begin(), voice->mChans.begin()+num_channels, - [NumSends](ALvoice::ChannelData &chandata) -> void - { - chandata.mDryParams.Hrtf.Target = HrtfFilter{}; - ClearArray(chandata.mDryParams.Gains.Target); - std::for_each(chandata.mWetParams.begin(), chandata.mWetParams.begin()+NumSends, - [](SendParams ¶ms) -> void { ClearArray(params.Gains.Target); }); - }); - - voice->mFlags &= ~(VOICE_HAS_HRTF | VOICE_HAS_NFC); - if(isbformat) - { - /* Special handling for B-Format sources. */ - - if(Distance > std::numeric_limits<float>::epsilon()) - { - /* Panning a B-Format sound toward some direction is easy. Just pan - * the first (W) channel as a normal mono sound and silence the - * others. - */ - - if(Device->AvgSpeakerDist > 0.0f) - { - /* Clamp the distance for really close sources, to prevent - * excessive bass. - */ - const ALfloat mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)}; - const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (mdist * Frequency)}; - - /* Only need to adjust the first channel of a B-Format source. */ - voice->mChans[0].mDryParams.NFCtrlFilter.adjust(w0); - - voice->mFlags |= VOICE_HAS_NFC; - } - - ALfloat coeffs[MAX_AMBI_CHANNELS]; - if(Device->mRenderMode != StereoPair) - CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs); - else - { - /* Clamp Y, in case rounding errors caused it to end up outside - * of -1...+1. - */ - const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))}; - /* Negate Z for right-handed coords with -Z in front. */ - const ALfloat az{std::atan2(xpos, -zpos)}; - - /* A scalar of 1.5 for plain stereo results in +/-60 degrees - * being moved to +/-90 degrees for direct right and left - * speaker responses. - */ - CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread, coeffs); - } - - /* NOTE: W needs to be scaled due to FuMa normalization. */ - const ALfloat &scale0 = AmbiScale::FromFuMa[0]; - ComputePanGains(&Device->Dry, coeffs, DryGain*scale0, - voice->mChans[0].mDryParams.Gains.Target); - for(ALsizei i{0};i < NumSends;i++) - { - if(const ALeffectslot *Slot{SendSlots[i]}) - ComputePanGains(&Slot->Wet, coeffs, WetGain[i]*scale0, - voice->mChans[0].mWetParams[i].Gains.Target); - } - } - else - { - if(Device->AvgSpeakerDist > 0.0f) - { - /* NOTE: The NFCtrlFilters were created with a w0 of 0, which - * is what we want for FOA input. The first channel may have - * been previously re-adjusted if panned, so reset it. - */ - voice->mChans[0].mDryParams.NFCtrlFilter.adjust(0.0f); - - voice->mFlags |= VOICE_HAS_NFC; - } - - /* Local B-Format sources have their XYZ channels rotated according - * to the orientation. - */ - /* AT then UP */ - alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f}; - N.normalize(); - alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f}; - V.normalize(); - if(!props->HeadRelative) - { - N = Listener.Params.Matrix * N; - V = Listener.Params.Matrix * V; - } - /* Build and normalize right-vector */ - alu::Vector U{aluCrossproduct(N, V)}; - U.normalize(); - - /* Build a rotate + conversion matrix (FuMa -> ACN+N3D). NOTE: This - * matrix is transposed, for the inputs to align on the rows and - * outputs on the columns. - */ - const ALfloat &wscale = AmbiScale::FromFuMa[0]; - const ALfloat &yscale = AmbiScale::FromFuMa[1]; - const ALfloat &zscale = AmbiScale::FromFuMa[2]; - const ALfloat &xscale = AmbiScale::FromFuMa[3]; - const ALfloat matrix[4][MAX_AMBI_CHANNELS]{ - // ACN0 ACN1 ACN2 ACN3 - { wscale, 0.0f, 0.0f, 0.0f }, // FuMa W - { 0.0f, -N[0]*xscale, N[1]*xscale, -N[2]*xscale }, // FuMa X - { 0.0f, U[0]*yscale, -U[1]*yscale, U[2]*yscale }, // FuMa Y - { 0.0f, -V[0]*zscale, V[1]*zscale, -V[2]*zscale } // FuMa Z - }; - - for(ALsizei c{0};c < num_channels;c++) - { - ComputePanGains(&Device->Dry, matrix[c], DryGain, - voice->mChans[c].mDryParams.Gains.Target); - - for(ALsizei i{0};i < NumSends;i++) - { - if(const ALeffectslot *Slot{SendSlots[i]}) - ComputePanGains(&Slot->Wet, matrix[c], WetGain[i], - voice->mChans[c].mWetParams[i].Gains.Target); - } - } - } - } - else if(DirectChannels) - { - /* Direct source channels always play local. Skip the virtual channels - * and write inputs to the matching real outputs. - */ - voice->mDirect.Buffer = Device->RealOut.Buffer; - - for(ALsizei c{0};c < num_channels;c++) - { - int idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)}; - if(idx != -1) voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain; - } - - /* Auxiliary sends still use normal channel panning since they mix to - * B-Format, which can't channel-match. - */ - for(ALsizei c{0};c < num_channels;c++) - { - ALfloat coeffs[MAX_AMBI_CHANNELS]; - CalcAngleCoeffs(chans[c].angle, chans[c].elevation, 0.0f, coeffs); - - for(ALsizei i{0};i < NumSends;i++) - { - if(const ALeffectslot *Slot{SendSlots[i]}) - ComputePanGains(&Slot->Wet, coeffs, WetGain[i], - voice->mChans[c].mWetParams[i].Gains.Target); - } - } - } - else if(Device->mRenderMode == HrtfRender) - { - /* Full HRTF rendering. Skip the virtual channels and render to the - * real outputs. - */ - voice->mDirect.Buffer = Device->RealOut.Buffer; - - if(Distance > std::numeric_limits<float>::epsilon()) - { - const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))}; - const ALfloat az{std::atan2(xpos, -zpos)}; - - /* Get the HRIR coefficients and delays just once, for the given - * source direction. - */ - GetHrtfCoeffs(Device->mHrtf, ev, az, Distance, Spread, - voice->mChans[0].mDryParams.Hrtf.Target.Coeffs, - voice->mChans[0].mDryParams.Hrtf.Target.Delay); - voice->mChans[0].mDryParams.Hrtf.Target.Gain = DryGain * downmix_gain; - - /* Remaining channels use the same results as the first. */ - for(ALsizei c{1};c < num_channels;c++) - { - /* Skip LFE */ - if(chans[c].channel == LFE) continue; - voice->mChans[c].mDryParams.Hrtf.Target = voice->mChans[0].mDryParams.Hrtf.Target; - } - - /* Calculate the directional coefficients once, which apply to all - * input channels of the source sends. - */ - ALfloat coeffs[MAX_AMBI_CHANNELS]; - CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs); - - for(ALsizei c{0};c < num_channels;c++) - { - /* Skip LFE */ - if(chans[c].channel == LFE) - continue; - for(ALsizei i{0};i < NumSends;i++) - { - if(const ALeffectslot *Slot{SendSlots[i]}) - ComputePanGains(&Slot->Wet, coeffs, WetGain[i] * downmix_gain, - voice->mChans[c].mWetParams[i].Gains.Target); - } - } - } - else - { - /* Local sources on HRTF play with each channel panned to its - * relative location around the listener, providing "virtual - * speaker" responses. - */ - for(ALsizei c{0};c < num_channels;c++) - { - /* Skip LFE */ - if(chans[c].channel == LFE) - continue; - - /* Get the HRIR coefficients and delays for this channel - * position. - */ - GetHrtfCoeffs(Device->mHrtf, chans[c].elevation, chans[c].angle, - std::numeric_limits<float>::infinity(), Spread, - voice->mChans[c].mDryParams.Hrtf.Target.Coeffs, - voice->mChans[c].mDryParams.Hrtf.Target.Delay); - voice->mChans[c].mDryParams.Hrtf.Target.Gain = DryGain; - - /* Normal panning for auxiliary sends. */ - ALfloat coeffs[MAX_AMBI_CHANNELS]; - CalcAngleCoeffs(chans[c].angle, chans[c].elevation, Spread, coeffs); - - for(ALsizei i{0};i < NumSends;i++) - { - if(const ALeffectslot *Slot{SendSlots[i]}) - ComputePanGains(&Slot->Wet, coeffs, WetGain[i], - voice->mChans[c].mWetParams[i].Gains.Target); - } - } - } - - voice->mFlags |= VOICE_HAS_HRTF; - } - else - { - /* Non-HRTF rendering. Use normal panning to the output. */ - - if(Distance > std::numeric_limits<float>::epsilon()) - { - /* Calculate NFC filter coefficient if needed. */ - if(Device->AvgSpeakerDist > 0.0f) - { - /* Clamp the distance for really close sources, to prevent - * excessive bass. - */ - const ALfloat mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)}; - const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (mdist * Frequency)}; - - /* Adjust NFC filters. */ - for(ALsizei c{0};c < num_channels;c++) - voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0); - - voice->mFlags |= VOICE_HAS_NFC; - } - - /* Calculate the directional coefficients once, which apply to all - * input channels. - */ - ALfloat coeffs[MAX_AMBI_CHANNELS]; - if(Device->mRenderMode != StereoPair) - CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs); - else - { - const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))}; - const ALfloat az{std::atan2(xpos, -zpos)}; - CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread, coeffs); - } - - for(ALsizei c{0};c < num_channels;c++) - { - /* Special-case LFE */ - if(chans[c].channel == LFE) - { - if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data()) - { - int idx = GetChannelIdxByName(Device->RealOut, chans[c].channel); - if(idx != -1) voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain; - } - continue; - } - - ComputePanGains(&Device->Dry, coeffs, DryGain * downmix_gain, - voice->mChans[c].mDryParams.Gains.Target); - } - - for(ALsizei c{0};c < num_channels;c++) - { - /* Skip LFE */ - if(chans[c].channel == LFE) - continue; - for(ALsizei i{0};i < NumSends;i++) - { - if(const ALeffectslot *Slot{SendSlots[i]}) - ComputePanGains(&Slot->Wet, coeffs, WetGain[i] * downmix_gain, - voice->mChans[c].mWetParams[i].Gains.Target); - } - } - } - else - { - if(Device->AvgSpeakerDist > 0.0f) - { - /* If the source distance is 0, set w0 to w1 to act as a pass- - * through. We still want to pass the signal through the - * filters so they keep an appropriate history, in case the - * source moves away from the listener. - */ - const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (Device->AvgSpeakerDist * Frequency)}; - - for(ALsizei c{0};c < num_channels;c++) - voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0); - - voice->mFlags |= VOICE_HAS_NFC; - } - - for(ALsizei c{0};c < num_channels;c++) - { - /* Special-case LFE */ - if(chans[c].channel == LFE) - { - if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data()) - { - int idx = GetChannelIdxByName(Device->RealOut, chans[c].channel); - if(idx != -1) voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain; - } - continue; - } - - ALfloat coeffs[MAX_AMBI_CHANNELS]; - CalcAngleCoeffs( - (Device->mRenderMode==StereoPair) ? ScaleAzimuthFront(chans[c].angle, 3.0f) - : chans[c].angle, - chans[c].elevation, Spread, coeffs - ); - - ComputePanGains(&Device->Dry, coeffs, DryGain, - voice->mChans[c].mDryParams.Gains.Target); - for(ALsizei i{0};i < NumSends;i++) - { - if(const ALeffectslot *Slot{SendSlots[i]}) - ComputePanGains(&Slot->Wet, coeffs, WetGain[i], - voice->mChans[c].mWetParams[i].Gains.Target); - } - } - } - } - - { - const ALfloat hfScale{props->Direct.HFReference / Frequency}; - const ALfloat lfScale{props->Direct.LFReference / Frequency}; - const ALfloat gainHF{maxf(DryGainHF, 0.001f)}; /* Limit -60dB */ - const ALfloat gainLF{maxf(DryGainLF, 0.001f)}; - - voice->mDirect.FilterType = AF_None; - if(gainHF != 1.0f) voice->mDirect.FilterType |= AF_LowPass; - if(gainLF != 1.0f) voice->mDirect.FilterType |= AF_HighPass; - auto &lowpass = voice->mChans[0].mDryParams.LowPass; - auto &highpass = voice->mChans[0].mDryParams.HighPass; - lowpass.setParams(BiquadType::HighShelf, gainHF, hfScale, - lowpass.rcpQFromSlope(gainHF, 1.0f)); - highpass.setParams(BiquadType::LowShelf, gainLF, lfScale, - highpass.rcpQFromSlope(gainLF, 1.0f)); - for(ALsizei c{1};c < num_channels;c++) - { - voice->mChans[c].mDryParams.LowPass.copyParamsFrom(lowpass); - voice->mChans[c].mDryParams.HighPass.copyParamsFrom(highpass); - } - } - for(ALsizei i{0};i < NumSends;i++) - { - const ALfloat hfScale{props->Send[i].HFReference / Frequency}; - const ALfloat lfScale{props->Send[i].LFReference / Frequency}; - const ALfloat gainHF{maxf(WetGainHF[i], 0.001f)}; - const ALfloat gainLF{maxf(WetGainLF[i], 0.001f)}; - - voice->mSend[i].FilterType = AF_None; - if(gainHF != 1.0f) voice->mSend[i].FilterType |= AF_LowPass; - if(gainLF != 1.0f) voice->mSend[i].FilterType |= AF_HighPass; - - auto &lowpass = voice->mChans[0].mWetParams[i].LowPass; - auto &highpass = voice->mChans[0].mWetParams[i].HighPass; - lowpass.setParams(BiquadType::HighShelf, gainHF, hfScale, - lowpass.rcpQFromSlope(gainHF, 1.0f)); - highpass.setParams(BiquadType::LowShelf, gainLF, lfScale, - highpass.rcpQFromSlope(gainLF, 1.0f)); - for(ALsizei c{1};c < num_channels;c++) - { - voice->mChans[c].mWetParams[i].LowPass.copyParamsFrom(lowpass); - voice->mChans[c].mWetParams[i].HighPass.copyParamsFrom(highpass); - } - } -} - -void CalcNonAttnSourceParams(ALvoice *voice, const ALvoicePropsBase *props, const ALCcontext *ALContext) -{ - const ALCdevice *Device{ALContext->Device}; - ALeffectslot *SendSlots[MAX_SENDS]; - - voice->mDirect.Buffer = Device->Dry.Buffer; - for(ALsizei i{0};i < Device->NumAuxSends;i++) - { - SendSlots[i] = props->Send[i].Slot; - if(!SendSlots[i] && i == 0) - SendSlots[i] = ALContext->DefaultSlot.get(); - if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL) - { - SendSlots[i] = nullptr; - voice->mSend[i].Buffer = {}; - } - else - voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer; - } - - /* Calculate the stepping value */ - const auto Pitch = static_cast<ALfloat>(voice->mFrequency) / - static_cast<ALfloat>(Device->Frequency) * props->Pitch; - if(Pitch > static_cast<ALfloat>(MAX_PITCH)) - voice->mStep = MAX_PITCH<<FRACTIONBITS; - else - voice->mStep = maxi(fastf2i(Pitch * FRACTIONONE), 1); - if(props->mResampler == BSinc24Resampler) - BsincPrepare(voice->mStep, &voice->mResampleState.bsinc, &bsinc24); - else if(props->mResampler == BSinc12Resampler) - BsincPrepare(voice->mStep, &voice->mResampleState.bsinc, &bsinc12); - voice->mResampler = SelectResampler(props->mResampler); - - /* Calculate gains */ - const ALlistener &Listener = ALContext->Listener; - ALfloat DryGain{clampf(props->Gain, props->MinGain, props->MaxGain)}; - DryGain *= props->Direct.Gain * Listener.Params.Gain; - DryGain = minf(DryGain, GAIN_MIX_MAX); - ALfloat DryGainHF{props->Direct.GainHF}; - ALfloat DryGainLF{props->Direct.GainLF}; - ALfloat WetGain[MAX_SENDS], WetGainHF[MAX_SENDS], WetGainLF[MAX_SENDS]; - for(ALsizei i{0};i < Device->NumAuxSends;i++) - { - WetGain[i] = clampf(props->Gain, props->MinGain, props->MaxGain); - WetGain[i] *= props->Send[i].Gain * Listener.Params.Gain; - WetGain[i] = minf(WetGain[i], GAIN_MIX_MAX); - WetGainHF[i] = props->Send[i].GainHF; - WetGainLF[i] = props->Send[i].GainLF; - } - - CalcPanningAndFilters(voice, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, DryGain, DryGainHF, DryGainLF, - WetGain, WetGainLF, WetGainHF, SendSlots, props, Listener, Device); -} - -void CalcAttnSourceParams(ALvoice *voice, const ALvoicePropsBase *props, const ALCcontext *ALContext) -{ - const ALCdevice *Device{ALContext->Device}; - const ALsizei NumSends{Device->NumAuxSends}; - const ALlistener &Listener = ALContext->Listener; - - /* Set mixing buffers and get send parameters. */ - voice->mDirect.Buffer = Device->Dry.Buffer; - ALeffectslot *SendSlots[MAX_SENDS]; - ALfloat RoomRolloff[MAX_SENDS]; - ALfloat DecayDistance[MAX_SENDS]; - ALfloat DecayLFDistance[MAX_SENDS]; - ALfloat DecayHFDistance[MAX_SENDS]; - for(ALsizei i{0};i < NumSends;i++) - { - SendSlots[i] = props->Send[i].Slot; - if(!SendSlots[i] && i == 0) - SendSlots[i] = ALContext->DefaultSlot.get(); - if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL) - { - SendSlots[i] = nullptr; - RoomRolloff[i] = 0.0f; - DecayDistance[i] = 0.0f; - DecayLFDistance[i] = 0.0f; - DecayHFDistance[i] = 0.0f; - } - else if(SendSlots[i]->Params.AuxSendAuto) - { - RoomRolloff[i] = SendSlots[i]->Params.RoomRolloff + props->RoomRolloffFactor; - /* Calculate the distances to where this effect's decay reaches - * -60dB. - */ - DecayDistance[i] = SendSlots[i]->Params.DecayTime * - Listener.Params.ReverbSpeedOfSound; - DecayLFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayLFRatio; - DecayHFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayHFRatio; - if(SendSlots[i]->Params.DecayHFLimit) - { - ALfloat airAbsorption{SendSlots[i]->Params.AirAbsorptionGainHF}; - if(airAbsorption < 1.0f) - { - /* Calculate the distance to where this effect's air - * absorption reaches -60dB, and limit the effect's HF - * decay distance (so it doesn't take any longer to decay - * than the air would allow). - */ - ALfloat absorb_dist{std::log10(REVERB_DECAY_GAIN) / std::log10(airAbsorption)}; - DecayHFDistance[i] = minf(absorb_dist, DecayHFDistance[i]); - } - } - } - else - { - /* If the slot's auxiliary send auto is off, the data sent to the - * effect slot is the same as the dry path, sans filter effects */ - RoomRolloff[i] = props->RolloffFactor; - DecayDistance[i] = 0.0f; - DecayLFDistance[i] = 0.0f; - DecayHFDistance[i] = 0.0f; - } - - if(!SendSlots[i]) - voice->mSend[i].Buffer = {}; - else - voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer; - } - - /* Transform source to listener space (convert to head relative) */ - alu::Vector Position{props->Position[0], props->Position[1], props->Position[2], 1.0f}; - alu::Vector Velocity{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f}; - alu::Vector Direction{props->Direction[0], props->Direction[1], props->Direction[2], 0.0f}; - if(props->HeadRelative == AL_FALSE) - { - /* Transform source vectors */ - Position = Listener.Params.Matrix * Position; - Velocity = Listener.Params.Matrix * Velocity; - Direction = Listener.Params.Matrix * Direction; - } - else - { - /* Offset the source velocity to be relative of the listener velocity */ - Velocity += Listener.Params.Velocity; - } - - const bool directional{Direction.normalize() > 0.0f}; - alu::Vector ToSource{Position[0], Position[1], Position[2], 0.0f}; - const ALfloat Distance{ToSource.normalize()}; - - /* Initial source gain */ - ALfloat DryGain{props->Gain}; - ALfloat DryGainHF{1.0f}; - ALfloat DryGainLF{1.0f}; - ALfloat WetGain[MAX_SENDS], WetGainHF[MAX_SENDS], WetGainLF[MAX_SENDS]; - for(ALsizei i{0};i < NumSends;i++) - { - WetGain[i] = props->Gain; - WetGainHF[i] = 1.0f; - WetGainLF[i] = 1.0f; - } - - /* Calculate distance attenuation */ - ALfloat ClampedDist{Distance}; - - switch(Listener.Params.SourceDistanceModel ? - props->mDistanceModel : Listener.Params.mDistanceModel) - { - case DistanceModel::InverseClamped: - ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance); - if(props->MaxDistance < props->RefDistance) break; - /*fall-through*/ - case DistanceModel::Inverse: - if(!(props->RefDistance > 0.0f)) - ClampedDist = props->RefDistance; - else - { - ALfloat dist = lerp(props->RefDistance, ClampedDist, props->RolloffFactor); - if(dist > 0.0f) DryGain *= props->RefDistance / dist; - for(ALsizei i{0};i < NumSends;i++) - { - dist = lerp(props->RefDistance, ClampedDist, RoomRolloff[i]); - if(dist > 0.0f) WetGain[i] *= props->RefDistance / dist; - } - } - break; - - case DistanceModel::LinearClamped: - ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance); - if(props->MaxDistance < props->RefDistance) break; - /*fall-through*/ - case DistanceModel::Linear: - if(!(props->MaxDistance != props->RefDistance)) - ClampedDist = props->RefDistance; - else - { - ALfloat attn = props->RolloffFactor * (ClampedDist-props->RefDistance) / - (props->MaxDistance-props->RefDistance); - DryGain *= maxf(1.0f - attn, 0.0f); - for(ALsizei i{0};i < NumSends;i++) - { - attn = RoomRolloff[i] * (ClampedDist-props->RefDistance) / - (props->MaxDistance-props->RefDistance); - WetGain[i] *= maxf(1.0f - attn, 0.0f); - } - } - break; - - case DistanceModel::ExponentClamped: - ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance); - if(props->MaxDistance < props->RefDistance) break; - /*fall-through*/ - case DistanceModel::Exponent: - if(!(ClampedDist > 0.0f && props->RefDistance > 0.0f)) - ClampedDist = props->RefDistance; - else - { - DryGain *= std::pow(ClampedDist/props->RefDistance, -props->RolloffFactor); - for(ALsizei i{0};i < NumSends;i++) - WetGain[i] *= std::pow(ClampedDist/props->RefDistance, -RoomRolloff[i]); - } - break; - - case DistanceModel::Disable: - ClampedDist = props->RefDistance; - break; - } - - /* Calculate directional soundcones */ - if(directional && props->InnerAngle < 360.0f) - { - const ALfloat Angle{Rad2Deg(std::acos(-aluDotproduct(Direction, ToSource)) * - ConeScale * 2.0f)}; - - ALfloat ConeVolume, ConeHF; - if(!(Angle > props->InnerAngle)) - { - ConeVolume = 1.0f; - ConeHF = 1.0f; - } - else if(Angle < props->OuterAngle) - { - ALfloat scale = ( Angle-props->InnerAngle) / - (props->OuterAngle-props->InnerAngle); - ConeVolume = lerp(1.0f, props->OuterGain, scale); - ConeHF = lerp(1.0f, props->OuterGainHF, scale); - } - else - { - ConeVolume = props->OuterGain; - ConeHF = props->OuterGainHF; - } - - DryGain *= ConeVolume; - if(props->DryGainHFAuto) - DryGainHF *= ConeHF; - if(props->WetGainAuto) - std::transform(std::begin(WetGain), std::begin(WetGain)+NumSends, std::begin(WetGain), - [ConeVolume](ALfloat gain) noexcept -> ALfloat { return gain * ConeVolume; } - ); - if(props->WetGainHFAuto) - std::transform(std::begin(WetGainHF), std::begin(WetGainHF)+NumSends, - std::begin(WetGainHF), - [ConeHF](ALfloat gain) noexcept -> ALfloat { return gain * ConeHF; } - ); - } - - /* Apply gain and frequency filters */ - DryGain = clampf(DryGain, props->MinGain, props->MaxGain); - DryGain = minf(DryGain*props->Direct.Gain*Listener.Params.Gain, GAIN_MIX_MAX); - DryGainHF *= props->Direct.GainHF; - DryGainLF *= props->Direct.GainLF; - for(ALsizei i{0};i < NumSends;i++) - { - WetGain[i] = clampf(WetGain[i], props->MinGain, props->MaxGain); - WetGain[i] = minf(WetGain[i]*props->Send[i].Gain*Listener.Params.Gain, GAIN_MIX_MAX); - WetGainHF[i] *= props->Send[i].GainHF; - WetGainLF[i] *= props->Send[i].GainLF; - } - - /* Distance-based air absorption and initial send decay. */ - if(ClampedDist > props->RefDistance && props->RolloffFactor > 0.0f) - { - ALfloat meters_base{(ClampedDist-props->RefDistance) * props->RolloffFactor * - Listener.Params.MetersPerUnit}; - if(props->AirAbsorptionFactor > 0.0f) - { - ALfloat hfattn{std::pow(AIRABSORBGAINHF, meters_base * props->AirAbsorptionFactor)}; - DryGainHF *= hfattn; - std::transform(std::begin(WetGainHF), std::begin(WetGainHF)+NumSends, - std::begin(WetGainHF), - [hfattn](ALfloat gain) noexcept -> ALfloat { return gain * hfattn; } - ); - } - - if(props->WetGainAuto) - { - /* Apply a decay-time transformation to the wet path, based on the - * source distance in meters. The initial decay of the reverb - * effect is calculated and applied to the wet path. - */ - for(ALsizei i{0};i < NumSends;i++) - { - if(!(DecayDistance[i] > 0.0f)) - continue; - - const ALfloat gain{std::pow(REVERB_DECAY_GAIN, meters_base/DecayDistance[i])}; - WetGain[i] *= gain; - /* Yes, the wet path's air absorption is applied with - * WetGainAuto on, rather than WetGainHFAuto. - */ - if(gain > 0.0f) - { - ALfloat gainhf{std::pow(REVERB_DECAY_GAIN, meters_base/DecayHFDistance[i])}; - WetGainHF[i] *= minf(gainhf / gain, 1.0f); - ALfloat gainlf{std::pow(REVERB_DECAY_GAIN, meters_base/DecayLFDistance[i])}; - WetGainLF[i] *= minf(gainlf / gain, 1.0f); - } - } - } - } - - - /* Initial source pitch */ - ALfloat Pitch{props->Pitch}; - - /* Calculate velocity-based doppler effect */ - ALfloat DopplerFactor{props->DopplerFactor * Listener.Params.DopplerFactor}; - if(DopplerFactor > 0.0f) - { - const alu::Vector &lvelocity = Listener.Params.Velocity; - ALfloat vss{aluDotproduct(Velocity, ToSource) * -DopplerFactor}; - ALfloat vls{aluDotproduct(lvelocity, ToSource) * -DopplerFactor}; - - const ALfloat SpeedOfSound{Listener.Params.SpeedOfSound}; - if(!(vls < SpeedOfSound)) - { - /* Listener moving away from the source at the speed of sound. - * Sound waves can't catch it. - */ - Pitch = 0.0f; - } - else if(!(vss < SpeedOfSound)) - { - /* Source moving toward the listener at the speed of sound. Sound - * waves bunch up to extreme frequencies. - */ - Pitch = std::numeric_limits<float>::infinity(); - } - else - { - /* Source and listener movement is nominal. Calculate the proper - * doppler shift. - */ - Pitch *= (SpeedOfSound-vls) / (SpeedOfSound-vss); - } - } - - /* Adjust pitch based on the buffer and output frequencies, and calculate - * fixed-point stepping value. - */ - Pitch *= static_cast<ALfloat>(voice->mFrequency)/static_cast<ALfloat>(Device->Frequency); - if(Pitch > static_cast<ALfloat>(MAX_PITCH)) - voice->mStep = MAX_PITCH<<FRACTIONBITS; - else - voice->mStep = maxi(fastf2i(Pitch * FRACTIONONE), 1); - if(props->mResampler == BSinc24Resampler) - BsincPrepare(voice->mStep, &voice->mResampleState.bsinc, &bsinc24); - else if(props->mResampler == BSinc12Resampler) - BsincPrepare(voice->mStep, &voice->mResampleState.bsinc, &bsinc12); - voice->mResampler = SelectResampler(props->mResampler); - - ALfloat spread{0.0f}; - if(props->Radius > Distance) - spread = al::MathDefs<float>::Tau() - Distance/props->Radius*al::MathDefs<float>::Pi(); - else if(Distance > 0.0f) - spread = std::asin(props->Radius/Distance) * 2.0f; - - CalcPanningAndFilters(voice, ToSource[0], ToSource[1], ToSource[2]*ZScale, - Distance*Listener.Params.MetersPerUnit, spread, DryGain, DryGainHF, DryGainLF, WetGain, - WetGainLF, WetGainHF, SendSlots, props, Listener, Device); -} - -void CalcSourceParams(ALvoice *voice, ALCcontext *context, bool force) -{ - ALvoiceProps *props{voice->mUpdate.exchange(nullptr, std::memory_order_acq_rel)}; - if(!props && !force) return; - - if(props) - { - voice->mProps = *props; - - AtomicReplaceHead(context->FreeVoiceProps, props); - } - - if((voice->mProps.mSpatializeMode == SpatializeAuto && voice->mFmtChannels == FmtMono) || - voice->mProps.mSpatializeMode == SpatializeOn) - CalcAttnSourceParams(voice, &voice->mProps, context); - else - CalcNonAttnSourceParams(voice, &voice->mProps, context); -} - - -void ProcessParamUpdates(ALCcontext *ctx, const ALeffectslotArray *slots) -{ - IncrementRef(&ctx->UpdateCount); - if(LIKELY(!ctx->HoldUpdates.load(std::memory_order_acquire))) - { - bool cforce{CalcContextParams(ctx)}; - bool force{CalcListenerParams(ctx) || cforce}; - force = std::accumulate(slots->begin(), slots->end(), force, - [ctx,cforce](bool force, ALeffectslot *slot) -> bool - { return CalcEffectSlotParams(slot, ctx, cforce) | force; } - ); - - std::for_each(ctx->Voices->begin(), - ctx->Voices->begin() + ctx->VoiceCount.load(std::memory_order_acquire), - [ctx,force](ALvoice &voice) -> void - { - ALuint sid{voice.mSourceID.load(std::memory_order_acquire)}; - if(sid) CalcSourceParams(&voice, ctx, force); - } - ); - } - IncrementRef(&ctx->UpdateCount); -} - -void ProcessContext(ALCcontext *ctx, const ALsizei SamplesToDo) -{ - ASSUME(SamplesToDo > 0); - - const ALeffectslotArray *auxslots{ctx->ActiveAuxSlots.load(std::memory_order_acquire)}; - - /* Process pending propery updates for objects on the context. */ - ProcessParamUpdates(ctx, auxslots); - - /* Clear auxiliary effect slot mixing buffers. */ - std::for_each(auxslots->begin(), auxslots->end(), - [SamplesToDo](ALeffectslot *slot) -> void - { - for(auto &buffer : slot->MixBuffer) - std::fill_n(buffer.begin(), SamplesToDo, 0.0f); - } - ); - - /* Process voices that have a playing source. */ - std::for_each(ctx->Voices->begin(), - ctx->Voices->begin() + ctx->VoiceCount.load(std::memory_order_acquire), - [SamplesToDo,ctx](ALvoice &voice) -> void - { - const ALvoice::State vstate{voice.mPlayState.load(std::memory_order_acquire)}; - if(vstate == ALvoice::Stopped) return; - const ALuint sid{voice.mSourceID.load(std::memory_order_relaxed)}; - if(voice.mStep < 1) return; - - MixVoice(&voice, vstate, sid, ctx, SamplesToDo); - } - ); - - /* Process effects. */ - if(auxslots->size() < 1) return; - auto slots = auxslots->data(); - auto slots_end = slots + auxslots->size(); - - /* First sort the slots into scratch storage, so that effects come before - * their effect target (or their targets' target). - */ - auto sorted_slots = const_cast<ALeffectslot**>(slots_end); - auto sorted_slots_end = sorted_slots; - auto in_chain = [](const ALeffectslot *slot1, const ALeffectslot *slot2) noexcept -> bool - { - while((slot1=slot1->Params.Target) != nullptr) { - if(slot1 == slot2) return true; - } - return false; - }; - - *sorted_slots_end = *slots; - ++sorted_slots_end; - while(++slots != slots_end) - { - /* If this effect slot targets an effect slot already in the list (i.e. - * slots outputs to something in sorted_slots), directly or indirectly, - * insert it prior to that element. - */ - auto checker = sorted_slots; - do { - if(in_chain(*slots, *checker)) break; - } while(++checker != sorted_slots_end); - - checker = std::move_backward(checker, sorted_slots_end, sorted_slots_end+1); - *--checker = *slots; - ++sorted_slots_end; - } - - std::for_each(sorted_slots, sorted_slots_end, - [SamplesToDo](const ALeffectslot *slot) -> void - { - EffectState *state{slot->Params.mEffectState}; - state->process(SamplesToDo, slot->Wet.Buffer.data(), - static_cast<ALsizei>(slot->Wet.Buffer.size()), state->mOutTarget); - } - ); -} - - -void ApplyStablizer(FrontStablizer *Stablizer, const al::span<FloatBufferLine> Buffer, - const ALuint lidx, const ALuint ridx, const ALuint cidx, const ALsizei SamplesToDo) -{ - ASSUME(SamplesToDo > 0); - - /* Apply a delay to all channels, except the front-left and front-right, so - * they maintain correct timing. - */ - const size_t NumChannels{Buffer.size()}; - for(size_t i{0u};i < NumChannels;i++) - { - if(i == lidx || i == ridx) - continue; - - auto &DelayBuf = Stablizer->DelayBuf[i]; - auto buffer_end = Buffer[i].begin() + SamplesToDo; - if(LIKELY(SamplesToDo >= ALsizei{FrontStablizer::DelayLength})) - { - auto delay_end = std::rotate(Buffer[i].begin(), - buffer_end - FrontStablizer::DelayLength, buffer_end); - std::swap_ranges(Buffer[i].begin(), delay_end, std::begin(DelayBuf)); - } - else - { - auto delay_start = std::swap_ranges(Buffer[i].begin(), buffer_end, - std::begin(DelayBuf)); - std::rotate(std::begin(DelayBuf), delay_start, std::end(DelayBuf)); - } - } - - ALfloat (&lsplit)[2][BUFFERSIZE] = Stablizer->LSplit; - ALfloat (&rsplit)[2][BUFFERSIZE] = Stablizer->RSplit; - auto &tmpbuf = Stablizer->TempBuf; - - /* This applies the band-splitter, preserving phase at the cost of some - * delay. The shorter the delay, the more error seeps into the result. - */ - auto apply_splitter = [&tmpbuf,SamplesToDo](const FloatBufferLine &Buffer, - ALfloat (&DelayBuf)[FrontStablizer::DelayLength], BandSplitter &Filter, - ALfloat (&splitbuf)[2][BUFFERSIZE]) -> void - { - /* Combine the delayed samples and the input samples into the temp - * buffer, in reverse. Then copy the final samples back into the delay - * buffer for next time. Note that the delay buffer's samples are - * stored backwards here. - */ - auto tmpbuf_end = std::begin(tmpbuf) + SamplesToDo; - std::copy_n(std::begin(DelayBuf), FrontStablizer::DelayLength, tmpbuf_end); - std::reverse_copy(Buffer.begin(), Buffer.begin()+SamplesToDo, std::begin(tmpbuf)); - std::copy_n(std::begin(tmpbuf), FrontStablizer::DelayLength, std::begin(DelayBuf)); - - /* Apply an all-pass on the reversed signal, then reverse the samples - * to get the forward signal with a reversed phase shift. - */ - Filter.applyAllpass(tmpbuf, SamplesToDo+FrontStablizer::DelayLength); - std::reverse(std::begin(tmpbuf), tmpbuf_end+FrontStablizer::DelayLength); - - /* Now apply the band-splitter, combining its phase shift with the - * reversed phase shift, restoring the original phase on the split - * signal. - */ - Filter.process(splitbuf[1], splitbuf[0], tmpbuf, SamplesToDo); - }; - apply_splitter(Buffer[lidx], Stablizer->DelayBuf[lidx], Stablizer->LFilter, lsplit); - apply_splitter(Buffer[ridx], Stablizer->DelayBuf[ridx], Stablizer->RFilter, rsplit); - - for(ALsizei i{0};i < SamplesToDo;i++) - { - ALfloat lfsum{lsplit[0][i] + rsplit[0][i]}; - ALfloat hfsum{lsplit[1][i] + rsplit[1][i]}; - ALfloat s{lsplit[0][i] + lsplit[1][i] - rsplit[0][i] - rsplit[1][i]}; - - /* This pans the separate low- and high-frequency sums between being on - * the center channel and the left/right channels. The low-frequency - * sum is 1/3rd toward center (2/3rds on left/right) and the high- - * frequency sum is 1/4th toward center (3/4ths on left/right). These - * values can be tweaked. - */ - ALfloat m{lfsum*std::cos(1.0f/3.0f * (al::MathDefs<float>::Pi()*0.5f)) + - hfsum*std::cos(1.0f/4.0f * (al::MathDefs<float>::Pi()*0.5f))}; - ALfloat c{lfsum*std::sin(1.0f/3.0f * (al::MathDefs<float>::Pi()*0.5f)) + - hfsum*std::sin(1.0f/4.0f * (al::MathDefs<float>::Pi()*0.5f))}; - - /* The generated center channel signal adds to the existing signal, - * while the modified left and right channels replace. - */ - Buffer[lidx][i] = (m + s) * 0.5f; - Buffer[ridx][i] = (m - s) * 0.5f; - Buffer[cidx][i] += c * 0.5f; - } -} - -void ApplyDistanceComp(const al::span<FloatBufferLine> Samples, const ALsizei SamplesToDo, - const DistanceComp::DistData *distcomp) -{ - ASSUME(SamplesToDo > 0); - - for(auto &chanbuffer : Samples) - { - const ALfloat gain{distcomp->Gain}; - const ALsizei base{distcomp->Length}; - ALfloat *distbuf{al::assume_aligned<16>(distcomp->Buffer)}; - ++distcomp; - - if(base < 1) - continue; - - ALfloat *inout{al::assume_aligned<16>(chanbuffer.data())}; - auto inout_end = inout + SamplesToDo; - if(LIKELY(SamplesToDo >= base)) - { - auto delay_end = std::rotate(inout, inout_end - base, inout_end); - std::swap_ranges(inout, delay_end, distbuf); - } - else - { - auto delay_start = std::swap_ranges(inout, inout_end, distbuf); - std::rotate(distbuf, delay_start, distbuf + base); - } - std::transform(inout, inout_end, inout, std::bind(std::multiplies<float>{}, _1, gain)); - } -} - -void ApplyDither(const al::span<FloatBufferLine> Samples, ALuint *dither_seed, - const ALfloat quant_scale, const ALsizei SamplesToDo) -{ - /* Dithering. Generate whitenoise (uniform distribution of random values - * between -1 and +1) and add it to the sample values, after scaling up to - * the desired quantization depth amd before rounding. - */ - const ALfloat invscale{1.0f / quant_scale}; - ALuint seed{*dither_seed}; - auto dither_channel = [&seed,invscale,quant_scale,SamplesToDo](FloatBufferLine &input) -> void - { - ASSUME(SamplesToDo > 0); - auto dither_sample = [&seed,invscale,quant_scale](const ALfloat sample) noexcept -> ALfloat - { - ALfloat val{sample * quant_scale}; - ALuint rng0{dither_rng(&seed)}; - ALuint rng1{dither_rng(&seed)}; - val += static_cast<ALfloat>(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX)); - return fast_roundf(val) * invscale; - }; - std::transform(input.begin(), input.begin()+SamplesToDo, input.begin(), dither_sample); - }; - std::for_each(Samples.begin(), Samples.end(), dither_channel); - *dither_seed = seed; -} - - -/* Base template left undefined. Should be marked =delete, but Clang 3.8.1 - * chokes on that given the inline specializations. - */ -template<typename T> -inline T SampleConv(ALfloat) noexcept; - -template<> inline ALfloat SampleConv(ALfloat val) noexcept -{ return val; } -template<> inline ALint SampleConv(ALfloat val) noexcept -{ - /* Floats have a 23-bit mantissa, plus an implied 1 bit and a sign bit. - * This means a normalized float has at most 25 bits of signed precision. - * When scaling and clamping for a signed 32-bit integer, these following - * values are the best a float can give. - */ - return fastf2i(clampf(val*2147483648.0f, -2147483648.0f, 2147483520.0f)); -} -template<> inline ALshort SampleConv(ALfloat val) noexcept -{ return fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f)); } -template<> inline ALbyte SampleConv(ALfloat val) noexcept -{ return fastf2i(clampf(val*128.0f, -128.0f, 127.0f)); } - -/* Define unsigned output variations. */ -template<> inline ALuint SampleConv(ALfloat val) noexcept -{ return SampleConv<ALint>(val) + 2147483648u; } -template<> inline ALushort SampleConv(ALfloat val) noexcept -{ return SampleConv<ALshort>(val) + 32768; } -template<> inline ALubyte SampleConv(ALfloat val) noexcept -{ return SampleConv<ALbyte>(val) + 128; } - -template<DevFmtType T> -void Write(const al::span<const FloatBufferLine> InBuffer, ALvoid *OutBuffer, const size_t Offset, - const ALsizei SamplesToDo) -{ - using SampleType = typename DevFmtTypeTraits<T>::Type; - - const size_t numchans{InBuffer.size()}; - ASSUME(numchans > 0); - - SampleType *outbase = static_cast<SampleType*>(OutBuffer) + Offset*numchans; - auto conv_channel = [&outbase,SamplesToDo,numchans](const FloatBufferLine &inbuf) -> void - { - ASSUME(SamplesToDo > 0); - SampleType *out{outbase++}; - auto conv_sample = [numchans,&out](const ALfloat s) noexcept -> void - { - *out = SampleConv<SampleType>(s); - out += numchans; - }; - std::for_each(inbuf.begin(), inbuf.begin()+SamplesToDo, conv_sample); - }; - std::for_each(InBuffer.cbegin(), InBuffer.cend(), conv_channel); -} - -} // namespace - -void aluMixData(ALCdevice *device, ALvoid *OutBuffer, ALsizei NumSamples) -{ - FPUCtl mixer_mode{}; - for(ALsizei SamplesDone{0};SamplesDone < NumSamples;) - { - const ALsizei SamplesToDo{mini(NumSamples-SamplesDone, BUFFERSIZE)}; - - /* Clear main mixing buffers. */ - std::for_each(device->MixBuffer.begin(), device->MixBuffer.end(), - [SamplesToDo](std::array<ALfloat,BUFFERSIZE> &buffer) -> void - { std::fill_n(buffer.begin(), SamplesToDo, 0.0f); } - ); - - /* Increment the mix count at the start (lsb should now be 1). */ - IncrementRef(&device->MixCount); - - /* For each context on this device, process and mix its sources and - * effects. - */ - for(ALCcontext *ctx : *device->mContexts.load(std::memory_order_acquire)) - ProcessContext(ctx, SamplesToDo); - - /* Increment the clock time. Every second's worth of samples is - * converted and added to clock base so that large sample counts don't - * overflow during conversion. This also guarantees a stable - * conversion. - */ - device->SamplesDone += SamplesToDo; - device->ClockBase += std::chrono::seconds{device->SamplesDone / device->Frequency}; - device->SamplesDone %= device->Frequency; - - /* Increment the mix count at the end (lsb should now be 0). */ - IncrementRef(&device->MixCount); - - /* Apply any needed post-process for finalizing the Dry mix to the - * RealOut (Ambisonic decode, UHJ encode, etc). - */ - if(LIKELY(device->PostProcess)) - device->PostProcess(device, SamplesToDo); - const al::span<FloatBufferLine> RealOut{device->RealOut.Buffer}; - - /* Apply front image stablization for surround sound, if applicable. */ - if(device->Stablizer) - { - const int lidx{GetChannelIdxByName(device->RealOut, FrontLeft)}; - const int ridx{GetChannelIdxByName(device->RealOut, FrontRight)}; - const int cidx{GetChannelIdxByName(device->RealOut, FrontCenter)}; - assert(lidx >= 0 && ridx >= 0 && cidx >= 0); - - ApplyStablizer(device->Stablizer.get(), RealOut, lidx, ridx, cidx, SamplesToDo); - } - - /* Apply compression, limiting sample amplitude if needed or desired. */ - if(Compressor *comp{device->Limiter.get()}) - comp->process(SamplesToDo, RealOut.data()); - - /* Apply delays and attenuation for mismatched speaker distances. */ - ApplyDistanceComp(RealOut, SamplesToDo, device->ChannelDelay.as_span().cbegin()); - - /* Apply dithering. The compressor should have left enough headroom for - * the dither noise to not saturate. - */ - if(device->DitherDepth > 0.0f) - ApplyDither(RealOut, &device->DitherSeed, device->DitherDepth, SamplesToDo); - - if(LIKELY(OutBuffer)) - { - /* Finally, interleave and convert samples, writing to the device's - * output buffer. - */ - switch(device->FmtType) - { -#define HANDLE_WRITE(T) case T: \ - Write<T>(RealOut, OutBuffer, SamplesDone, SamplesToDo); break; - HANDLE_WRITE(DevFmtByte) - HANDLE_WRITE(DevFmtUByte) - HANDLE_WRITE(DevFmtShort) - HANDLE_WRITE(DevFmtUShort) - HANDLE_WRITE(DevFmtInt) - HANDLE_WRITE(DevFmtUInt) - HANDLE_WRITE(DevFmtFloat) -#undef HANDLE_WRITE - } - } - - SamplesDone += SamplesToDo; - } -} - - -void aluHandleDisconnect(ALCdevice *device, const char *msg, ...) -{ - if(!device->Connected.exchange(false, std::memory_order_acq_rel)) - return; - - AsyncEvent evt{EventType_Disconnected}; - evt.u.user.type = AL_EVENT_TYPE_DISCONNECTED_SOFT; - evt.u.user.id = 0; - evt.u.user.param = 0; - - va_list args; - va_start(args, msg); - int msglen{vsnprintf(evt.u.user.msg, sizeof(evt.u.user.msg), msg, args)}; - va_end(args); - - if(msglen < 0 || static_cast<size_t>(msglen) >= sizeof(evt.u.user.msg)) - evt.u.user.msg[sizeof(evt.u.user.msg)-1] = 0; - - for(ALCcontext *ctx : *device->mContexts.load()) - { - const ALbitfieldSOFT enabledevt{ctx->EnabledEvts.load(std::memory_order_acquire)}; - if((enabledevt&EventType_Disconnected)) - { - RingBuffer *ring{ctx->AsyncEvents.get()}; - auto evt_data = ring->getWriteVector().first; - if(evt_data.len > 0) - { - new (evt_data.buf) AsyncEvent{evt}; - ring->writeAdvance(1); - ctx->EventSem.post(); - } - } - - auto stop_voice = [](ALvoice &voice) -> void - { - voice.mCurrentBuffer.store(nullptr, std::memory_order_relaxed); - voice.mLoopBuffer.store(nullptr, std::memory_order_relaxed); - voice.mSourceID.store(0u, std::memory_order_relaxed); - voice.mPlayState.store(ALvoice::Stopped, std::memory_order_release); - }; - std::for_each(ctx->Voices->begin(), - ctx->Voices->begin() + ctx->VoiceCount.load(std::memory_order_acquire), - stop_voice); - } -} |