aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/effects/fshifter.cpp
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2018-11-17 04:14:57 -0800
committerChris Robinson <[email protected]>2018-11-17 04:14:57 -0800
commitccdaca80c910047e16f710d44f640a6d6f86a195 (patch)
tree0cf95ed7a5fd6478c01cea8bd8e9c521478ccf0d /Alc/effects/fshifter.cpp
parent09943683b5872943cd1f9211ef2a77922906b906 (diff)
Use standard complex types instead of custom
Diffstat (limited to 'Alc/effects/fshifter.cpp')
-rw-r--r--Alc/effects/fshifter.cpp41
1 files changed, 21 insertions, 20 deletions
diff --git a/Alc/effects/fshifter.cpp b/Alc/effects/fshifter.cpp
index 23291ccd..e0dced3a 100644
--- a/Alc/effects/fshifter.cpp
+++ b/Alc/effects/fshifter.cpp
@@ -22,6 +22,8 @@
#include <cmath>
#include <cstdlib>
+#include <complex>
+#include <algorithm>
#include "alMain.h"
#include "alAuxEffectSlot.h"
@@ -33,6 +35,8 @@
namespace {
+using complex_d = std::complex<double>;
+
#define HIL_SIZE 1024
#define OVERSAMP (1<<2)
@@ -64,10 +68,10 @@ struct ALfshifterState final : public ALeffectState {
/*Effects buffers*/
ALfloat InFIFO[HIL_SIZE];
- ALcomplex OutFIFO[HIL_SIZE];
- ALcomplex OutputAccum[HIL_SIZE];
- ALcomplex Analytic[HIL_SIZE];
- ALcomplex Outdata[BUFFERSIZE];
+ complex_d OutFIFO[HIL_SIZE];
+ complex_d OutputAccum[HIL_SIZE];
+ complex_d Analytic[HIL_SIZE];
+ complex_d Outdata[BUFFERSIZE];
alignas(16) ALfloat BufferOut[BUFFERSIZE];
@@ -105,13 +109,13 @@ ALboolean ALfshifterState_deviceUpdate(ALfshifterState *state, ALCdevice *UNUSED
state->Phase = 0;
state->ld_sign = 1.0;
- memset(state->InFIFO, 0, sizeof(state->InFIFO));
- memset(state->OutFIFO, 0, sizeof(state->OutFIFO));
- memset(state->OutputAccum, 0, sizeof(state->OutputAccum));
- memset(state->Analytic, 0, sizeof(state->Analytic));
+ std::fill(std::begin(state->InFIFO), std::end(state->InFIFO), 0.0f);
+ std::fill(std::begin(state->OutFIFO), std::end(state->OutFIFO), complex_d{});
+ std::fill(std::begin(state->OutputAccum), std::end(state->OutputAccum), complex_d{});
+ std::fill(std::begin(state->Analytic), std::end(state->Analytic), complex_d{});
- memset(state->CurrentGains, 0, sizeof(state->CurrentGains));
- memset(state->TargetGains, 0, sizeof(state->TargetGains));
+ std::fill(std::begin(state->CurrentGains), std::end(state->CurrentGains), 0.0f);
+ std::fill(std::begin(state->TargetGains), std::end(state->TargetGains), 0.0f);
return AL_TRUE;
}
@@ -147,7 +151,7 @@ ALvoid ALfshifterState_update(ALfshifterState *state, const ALCcontext *context,
ALvoid ALfshifterState_process(ALfshifterState *state, ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesIn)[BUFFERSIZE], ALfloat (*RESTRICT SamplesOut)[BUFFERSIZE], ALsizei NumChannels)
{
- static const ALcomplex complex_zero = { 0.0, 0.0 };
+ static const complex_d complex_zero{0.0, 0.0};
ALfloat *RESTRICT BufferOut = state->BufferOut;
ALsizei j, k, base;
@@ -175,8 +179,8 @@ ALvoid ALfshifterState_process(ALfshifterState *state, ALsizei SamplesToDo, cons
/* Real signal windowing and store in Analytic buffer */
for(k = 0;k < HIL_SIZE;k++)
{
- state->Analytic[k].Real = state->InFIFO[k] * HannWindow[k];
- state->Analytic[k].Imag = 0.0;
+ state->Analytic[k].real(state->InFIFO[k] * HannWindow[k]);
+ state->Analytic[k].imag(0.0);
}
/* Processing signal by Discrete Hilbert Transform (analytical signal). */
@@ -184,10 +188,7 @@ ALvoid ALfshifterState_process(ALfshifterState *state, ALsizei SamplesToDo, cons
/* Windowing and add to output accumulator */
for(k = 0;k < HIL_SIZE;k++)
- {
- state->OutputAccum[k].Real += 2.0/OVERSAMP*HannWindow[k]*state->Analytic[k].Real;
- state->OutputAccum[k].Imag += 2.0/OVERSAMP*HannWindow[k]*state->Analytic[k].Imag;
- }
+ state->OutputAccum[k] += 2.0/OVERSAMP*HannWindow[k]*state->Analytic[k];
/* Shift accumulator, input & output FIFO */
for(k = 0;k < HIL_STEP;k++) state->OutFIFO[k] = state->OutputAccum[k];
@@ -200,9 +201,9 @@ ALvoid ALfshifterState_process(ALfshifterState *state, ALsizei SamplesToDo, cons
/* Process frequency shifter using the analytic signal obtained. */
for(k = 0;k < SamplesToDo;k++)
{
- ALdouble phase = state->Phase * ((1.0/FRACTIONONE) * 2.0*M_PI);
- BufferOut[k] = (ALfloat)(state->Outdata[k].Real*cos(phase) +
- state->Outdata[k].Imag*sin(phase)*state->ld_sign);
+ double phase = state->Phase * ((1.0/FRACTIONONE) * 2.0*M_PI);
+ BufferOut[k] = (float)(state->Outdata[k].real()*std::cos(phase) +
+ state->Outdata[k].imag()*std::sin(phase)*state->ld_sign);
state->Phase += state->PhaseStep;
state->Phase &= FRACTIONMASK;