aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/effects/reverb.cpp
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2019-02-23 03:14:11 -0800
committerChris Robinson <[email protected]>2019-02-23 03:18:12 -0800
commit4ec0aed286bf50e1561e727b9003affb9836b239 (patch)
tree82ebd0ddda2abe0ee78684aa7f20d31121aba751 /Alc/effects/reverb.cpp
parent42934b09e5b83c21e8a03438c7e1f0eb91310328 (diff)
Change some functions to proper methods
Diffstat (limited to 'Alc/effects/reverb.cpp')
-rw-r--r--Alc/effects/reverb.cpp342
1 files changed, 171 insertions, 171 deletions
diff --git a/Alc/effects/reverb.cpp b/Alc/effects/reverb.cpp
index 00a9e30f..d2f1e20a 100644
--- a/Alc/effects/reverb.cpp
+++ b/Alc/effects/reverb.cpp
@@ -250,12 +250,38 @@ struct DelayLineI {
*/
ALsizei Mask{0};
ALfloat (*Line)[NUM_LINES]{nullptr};
+
+
+ /* Basic delay line input/output routines. */
+ inline ALfloat get(const ALsizei offset, const ALsizei c) const noexcept
+ { return Line[offset&Mask][c]; }
+
+ /* Cross-faded delay line output routine. Instead of interpolating the
+ * offsets, this interpolates (cross-fades) the outputs at each offset.
+ */
+ inline ALfloat getFaded(const ALsizei off0, const ALsizei off1, const ALsizei c,
+ const ALfloat sc0, const ALfloat sc1) const noexcept
+ { return Line[off0&Mask][c]*sc0 + Line[off1&Mask][c]*sc1; }
+
+
+ inline void write(ALsizei offset, const ALsizei c, const ALfloat *RESTRICT in,
+ ALsizei count) const noexcept
+ {
+ ASSUME(count > 0);
+ for(ALsizei i{0};i < count;i++)
+ Line[(offset++)&Mask][c] = in[i];
+ }
};
struct VecAllpass {
DelayLineI Delay;
ALfloat Coeff{0.0f};
ALsizei Offset[NUM_LINES][2]{};
+
+ void processFaded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES], ALsizei offset,
+ const ALfloat xCoeff, const ALfloat yCoeff, ALfloat fade, const ALsizei todo);
+ void processUnfaded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES], ALsizei offset,
+ const ALfloat xCoeff, const ALfloat yCoeff, const ALsizei todo);
};
struct T60Filter {
@@ -264,6 +290,16 @@ struct T60Filter {
*/
ALfloat MidGain[2]{0.0f, 0.0f};
BiquadFilter HFFilter, LFFilter;
+
+ void calcCoeffs(const ALfloat length, const ALfloat lfDecayTime, const ALfloat mfDecayTime,
+ const ALfloat hfDecayTime, const ALfloat lf0norm, const ALfloat hf0norm);
+
+ /* Applies the two T60 damping filter sections. */
+ inline void process(ALfloat *samples, const ALsizei todo)
+ {
+ HFFilter.process(samples, samples, todo);
+ LFFilter.process(samples, samples, todo);
+ }
};
struct EarlyReflections {
@@ -282,6 +318,9 @@ struct EarlyReflections {
/* The gain for each output channel based on 3D panning. */
ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
+
+ void updateLines(const ALfloat density, const ALfloat diffusion, const ALfloat decayTime,
+ const ALfloat frequency);
};
struct LateReverb {
@@ -303,6 +342,10 @@ struct LateReverb {
/* The gain for each output channel based on 3D panning. */
ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
+
+ void updateLines(const ALfloat density, const ALfloat diffusion, const ALfloat lfDecayTime,
+ const ALfloat mfDecayTime, const ALfloat hfDecayTime, const ALfloat lf0norm,
+ const ALfloat hf0norm, const ALfloat frequency);
};
struct ReverbState final : public EffectState {
@@ -413,6 +456,13 @@ struct ReverbState final : public EffectState {
}
}
+ bool allocLines(const ALfloat frequency);
+
+ void updateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay, const ALfloat density,
+ const ALfloat decayTime, const ALfloat frequency);
+ void update3DPanning(const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan,
+ const ALfloat earlyGain, const ALfloat lateGain, const EffectTarget &target);
+
ALboolean deviceUpdate(const ALCdevice *device) override;
void update(const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props, const EffectTarget target) override;
void process(ALsizei samplesToDo, const ALfloat (*RESTRICT samplesIn)[BUFFERSIZE], const ALsizei numInput, ALfloat (*RESTRICT samplesOut)[BUFFERSIZE], const ALsizei numOutput) override;
@@ -441,15 +491,13 @@ inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLineI *Delay)
}
/* Calculate the length of a delay line and store its mask and offset. */
-ALuint CalcLineLength(const ALfloat length, const ptrdiff_t offset, const ALuint frequency,
- const ALuint extra, DelayLineI *Delay)
+ALuint CalcLineLength(const ALfloat length, const ptrdiff_t offset, const ALfloat frequency,
+ const ALuint extra, DelayLineI *Delay)
{
- ALuint samples;
-
/* All line lengths are powers of 2, calculated from their lengths in
* seconds, rounded up.
*/
- samples = float2int(ceilf(length*frequency));
+ auto samples = static_cast<ALuint>(float2int(std::ceil(length*frequency)));
samples = NextPowerOf2(samples + extra);
/* All lines share a single sample buffer. */
@@ -464,7 +512,7 @@ ALuint CalcLineLength(const ALfloat length, const ptrdiff_t offset, const ALuint
* for all lines given the sample rate (frequency). If an allocation failure
* occurs, it returns AL_FALSE.
*/
-ALboolean AllocLines(const ALuint frequency, ReverbState *State)
+bool ReverbState::allocLines(const ALfloat frequency)
{
/* All delay line lengths are calculated to accomodate the full range of
* lengths given their respective paramters.
@@ -484,57 +532,52 @@ ALboolean AllocLines(const ALuint frequency, ReverbState *State)
ALfloat length{AL_EAXREVERB_MAX_REFLECTIONS_DELAY + EARLY_TAP_LENGTHS[NUM_LINES-1]*multiplier +
AL_EAXREVERB_MAX_LATE_REVERB_DELAY +
(LATE_LINE_LENGTHS[NUM_LINES-1] - LATE_LINE_LENGTHS[0])*0.25f*multiplier};
- totalSamples += CalcLineLength(length, totalSamples, frequency, MAX_UPDATE_SAMPLES,
- &State->mDelay);
+ totalSamples += CalcLineLength(length, totalSamples, frequency, MAX_UPDATE_SAMPLES, &mDelay);
/* The early vector all-pass line. */
length = EARLY_ALLPASS_LENGTHS[NUM_LINES-1] * multiplier;
- totalSamples += CalcLineLength(length, totalSamples, frequency, 0,
- &State->mEarly.VecAp.Delay);
+ totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mEarly.VecAp.Delay);
/* The early reflection line. */
length = EARLY_LINE_LENGTHS[NUM_LINES-1] * multiplier;
- totalSamples += CalcLineLength(length, totalSamples, frequency, 0,
- &State->mEarly.Delay);
+ totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mEarly.Delay);
/* The late vector all-pass line. */
length = LATE_ALLPASS_LENGTHS[NUM_LINES-1] * multiplier;
- totalSamples += CalcLineLength(length, totalSamples, frequency, 0,
- &State->mLate.VecAp.Delay);
+ totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mLate.VecAp.Delay);
/* The late delay lines are calculated from the largest maximum density
* line length.
*/
length = LATE_LINE_LENGTHS[NUM_LINES-1] * multiplier;
- totalSamples += CalcLineLength(length, totalSamples, frequency, 0,
- &State->mLate.Delay);
+ totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mLate.Delay);
totalSamples *= NUM_LINES;
- if(totalSamples != State->mSampleBuffer.size())
+ if(totalSamples != mSampleBuffer.size())
{
- State->mSampleBuffer.resize(totalSamples);
- State->mSampleBuffer.shrink_to_fit();
+ mSampleBuffer.resize(totalSamples);
+ mSampleBuffer.shrink_to_fit();
}
/* Clear the sample buffer. */
- std::fill(State->mSampleBuffer.begin(), State->mSampleBuffer.end(), 0.0f);
+ std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f);
/* Update all delays to reflect the new sample buffer. */
- RealizeLineOffset(State->mSampleBuffer.data(), &State->mDelay);
- RealizeLineOffset(State->mSampleBuffer.data(), &State->mEarly.VecAp.Delay);
- RealizeLineOffset(State->mSampleBuffer.data(), &State->mEarly.Delay);
- RealizeLineOffset(State->mSampleBuffer.data(), &State->mLate.VecAp.Delay);
- RealizeLineOffset(State->mSampleBuffer.data(), &State->mLate.Delay);
+ RealizeLineOffset(mSampleBuffer.data(), &mDelay);
+ RealizeLineOffset(mSampleBuffer.data(), &mEarly.VecAp.Delay);
+ RealizeLineOffset(mSampleBuffer.data(), &mEarly.Delay);
+ RealizeLineOffset(mSampleBuffer.data(), &mLate.VecAp.Delay);
+ RealizeLineOffset(mSampleBuffer.data(), &mLate.Delay);
- return AL_TRUE;
+ return true;
}
ALboolean ReverbState::deviceUpdate(const ALCdevice *device)
{
- const ALuint frequency{device->Frequency};
+ const auto frequency = static_cast<ALfloat>(device->Frequency);
/* Allocate the delay lines. */
- if(!AllocLines(frequency, this))
+ if(!allocLines(frequency))
return AL_FALSE;
const ALfloat multiplier{CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY)};
@@ -592,7 +635,7 @@ ALboolean ReverbState::deviceUpdate(const ALCdevice *device)
mMixOut = &ReverbState::MixOutPlain;
mOrderScales.fill(1.0f);
}
- mAmbiSplitter[0][0].init(400.0f / static_cast<ALfloat>(frequency));
+ mAmbiSplitter[0][0].init(400.0f / frequency);
std::fill(mAmbiSplitter[0].begin()+1, mAmbiSplitter[0].end(), mAmbiSplitter[0][0]);
std::fill(mAmbiSplitter[1].begin(), mAmbiSplitter[1].end(), mAmbiSplitter[0][0]);
@@ -672,58 +715,29 @@ ALfloat CalcLimitedHfRatio(const ALfloat hfRatio, const ALfloat airAbsorptionGai
* of specified length, using a combination of two shelf filter sections given
* decay times for each band split at two reference frequencies.
*/
-void CalcT60DampingCoeffs(const ALfloat length, const ALfloat lfDecayTime,
+void T60Filter::calcCoeffs(const ALfloat length, const ALfloat lfDecayTime,
const ALfloat mfDecayTime, const ALfloat hfDecayTime, const ALfloat lf0norm,
- const ALfloat hf0norm, T60Filter *filter)
+ const ALfloat hf0norm)
{
const ALfloat lfGain{CalcDecayCoeff(length, lfDecayTime)};
const ALfloat mfGain{CalcDecayCoeff(length, mfDecayTime)};
const ALfloat hfGain{CalcDecayCoeff(length, hfDecayTime)};
- filter->MidGain[1] = mfGain;
- filter->LFFilter.setParams(BiquadType::LowShelf, lfGain/mfGain, lf0norm,
+ MidGain[1] = mfGain;
+ LFFilter.setParams(BiquadType::LowShelf, lfGain/mfGain, lf0norm,
calc_rcpQ_from_slope(lfGain/mfGain, 1.0f));
- filter->HFFilter.setParams(BiquadType::HighShelf, hfGain/mfGain, hf0norm,
+ HFFilter.setParams(BiquadType::HighShelf, hfGain/mfGain, hf0norm,
calc_rcpQ_from_slope(hfGain/mfGain, 1.0f));
}
-/* Update the offsets for the main effect delay line. */
-void UpdateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay, const ALfloat density,
- const ALfloat decayTime, const ALfloat frequency, ReverbState *State)
-{
- const ALfloat multiplier{CalcDelayLengthMult(density)};
-
- /* Early reflection taps are decorrelated by means of an average room
- * reflection approximation described above the definition of the taps.
- * This approximation is linear and so the above density multiplier can
- * be applied to adjust the width of the taps. A single-band decay
- * coefficient is applied to simulate initial attenuation and absorption.
- *
- * Late reverb taps are based on the late line lengths to allow a zero-
- * delay path and offsets that would continue the propagation naturally
- * into the late lines.
- */
- for(ALsizei i{0};i < NUM_LINES;i++)
- {
- ALfloat length{earlyDelay + EARLY_TAP_LENGTHS[i]*multiplier};
- State->mEarlyDelayTap[i][1] = float2int(length * frequency);
-
- length = EARLY_TAP_LENGTHS[i]*multiplier;
- State->mEarlyDelayCoeff[i][1] = CalcDecayCoeff(length, decayTime);
-
- length = lateDelay + (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS[0])*0.25f*multiplier;
- State->mLateDelayTap[i][1] = State->mLateFeedTap + float2int(length * frequency);
- }
-}
-
/* Update the early reflection line lengths and gain coefficients. */
-void UpdateEarlyLines(const ALfloat density, const ALfloat diffusion, const ALfloat decayTime,
- const ALfloat frequency, EarlyReflections *Early)
+void EarlyReflections::updateLines(const ALfloat density, const ALfloat diffusion,
+ const ALfloat decayTime, const ALfloat frequency)
{
const ALfloat multiplier{CalcDelayLengthMult(density)};
/* Calculate the all-pass feed-back/forward coefficient. */
- Early->VecAp.Coeff = sqrtf(0.5f) * powf(diffusion, 2.0f);
+ VecAp.Coeff = std::sqrt(0.5f) * std::pow(diffusion, 2.0f);
for(ALsizei i{0};i < NUM_LINES;i++)
{
@@ -731,23 +745,23 @@ void UpdateEarlyLines(const ALfloat density, const ALfloat diffusion, const ALfl
ALfloat length{EARLY_ALLPASS_LENGTHS[i] * multiplier};
/* Calculate the delay offset for each all-pass line. */
- Early->VecAp.Offset[i][1] = float2int(length * frequency);
+ VecAp.Offset[i][1] = float2int(length * frequency);
/* Calculate the length (in seconds) of each delay line. */
length = EARLY_LINE_LENGTHS[i] * multiplier;
/* Calculate the delay offset for each delay line. */
- Early->Offset[i][1] = float2int(length * frequency);
+ Offset[i][1] = float2int(length * frequency);
/* Calculate the gain (coefficient) for each line. */
- Early->Coeff[i][1] = CalcDecayCoeff(length, decayTime);
+ Coeff[i][1] = CalcDecayCoeff(length, decayTime);
}
}
/* Update the late reverb line lengths and T60 coefficients. */
-void UpdateLateLines(const ALfloat density, const ALfloat diffusion, const ALfloat lfDecayTime,
- const ALfloat mfDecayTime, const ALfloat hfDecayTime, const ALfloat lf0norm,
- const ALfloat hf0norm, const ALfloat frequency, LateReverb *Late)
+void LateReverb::updateLines(const ALfloat density, const ALfloat diffusion,
+ const ALfloat lfDecayTime, const ALfloat mfDecayTime, const ALfloat hfDecayTime,
+ const ALfloat lf0norm, const ALfloat hf0norm, const ALfloat frequency)
{
/* Scaling factor to convert the normalized reference frequencies from
* representing 0...freq to 0...max_reference.
@@ -776,14 +790,14 @@ void UpdateLateLines(const ALfloat density, const ALfloat diffusion, const ALflo
lf0norm*norm_weight_factor,
hf0norm*norm_weight_factor - lf0norm*norm_weight_factor,
1.0f - hf0norm*norm_weight_factor};
- Late->DensityGain[1] = CalcDensityGain(
+ DensityGain[1] = CalcDensityGain(
CalcDecayCoeff(length,
bandWeights[0]*lfDecayTime + bandWeights[1]*mfDecayTime + bandWeights[2]*hfDecayTime
)
);
/* Calculate the all-pass feed-back/forward coefficient. */
- Late->VecAp.Coeff = std::sqrt(0.5f) * std::pow(diffusion, 2.0f);
+ VecAp.Coeff = std::sqrt(0.5f) * std::pow(diffusion, 2.0f);
for(ALsizei i{0};i < NUM_LINES;i++)
{
@@ -791,13 +805,13 @@ void UpdateLateLines(const ALfloat density, const ALfloat diffusion, const ALflo
length = LATE_ALLPASS_LENGTHS[i] * multiplier;
/* Calculate the delay offset for each all-pass line. */
- Late->VecAp.Offset[i][1] = float2int(length * frequency);
+ VecAp.Offset[i][1] = float2int(length * frequency);
/* Calculate the length (in seconds) of each delay line. */
length = LATE_LINE_LENGTHS[i] * multiplier;
/* Calculate the delay offset for each delay line. */
- Late->Offset[i][1] = float2int(length*frequency + 0.5f);
+ Offset[i][1] = float2int(length*frequency + 0.5f);
/* Approximate the absorption that the vector all-pass would exhibit
* given the current diffusion so we don't have to process a full T60
@@ -809,8 +823,37 @@ void UpdateLateLines(const ALfloat density, const ALfloat diffusion, const ALflo
diffusion) * multiplier;
/* Calculate the T60 damping coefficients for each line. */
- CalcT60DampingCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime,
- lf0norm, hf0norm, &Late->T60[i]);
+ T60[i].calcCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime, lf0norm, hf0norm);
+ }
+}
+
+
+/* Update the offsets for the main effect delay line. */
+void ReverbState::updateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay,
+ const ALfloat density, const ALfloat decayTime, const ALfloat frequency)
+{
+ const ALfloat multiplier{CalcDelayLengthMult(density)};
+
+ /* Early reflection taps are decorrelated by means of an average room
+ * reflection approximation described above the definition of the taps.
+ * This approximation is linear and so the above density multiplier can
+ * be applied to adjust the width of the taps. A single-band decay
+ * coefficient is applied to simulate initial attenuation and absorption.
+ *
+ * Late reverb taps are based on the late line lengths to allow a zero-
+ * delay path and offsets that would continue the propagation naturally
+ * into the late lines.
+ */
+ for(ALsizei i{0};i < NUM_LINES;i++)
+ {
+ ALfloat length{earlyDelay + EARLY_TAP_LENGTHS[i]*multiplier};
+ mEarlyDelayTap[i][1] = float2int(length * frequency);
+
+ length = EARLY_TAP_LENGTHS[i]*multiplier;
+ mEarlyDelayCoeff[i][1] = CalcDecayCoeff(length, decayTime);
+
+ length = lateDelay + (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS[0])*0.25f*multiplier;
+ mLateDelayTap[i][1] = mLateFeedTap + float2int(length * frequency);
}
}
@@ -857,28 +900,27 @@ alu::Matrix GetTransformFromVector(const ALfloat *vec)
}
/* Update the early and late 3D panning gains. */
-void Update3DPanning(const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan,
- const ALfloat earlyGain, const ALfloat lateGain, const EffectTarget &target,
- ReverbState *State)
+void ReverbState::update3DPanning(const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan,
+ const ALfloat earlyGain, const ALfloat lateGain, const EffectTarget &target)
{
/* Create matrices that transform a B-Format signal according to the
* panning vectors.
*/
const alu::Matrix earlymat{GetTransformFromVector(ReflectionsPan)};
const alu::Matrix latemat{GetTransformFromVector(LateReverbPan)};
- State->mOutBuffer = target.Main->Buffer;
- State->mOutChannels = target.Main->NumChannels;
+ mOutBuffer = target.Main->Buffer;
+ mOutChannels = target.Main->NumChannels;
for(size_t i{0u};i < NUM_LINES;i++)
{
const ALfloat coeffs[MAX_AMBI_CHANNELS]{earlymat[0][i], earlymat[1][i], earlymat[2][i],
earlymat[3][i]};
- ComputePanGains(target.Main, coeffs, earlyGain, State->mEarly.PanGain[i]);
+ ComputePanGains(target.Main, coeffs, earlyGain, mEarly.PanGain[i]);
}
for(size_t i{0u};i < NUM_LINES;i++)
{
const ALfloat coeffs[MAX_AMBI_CHANNELS]{latemat[0][i], latemat[1][i], latemat[2][i],
latemat[3][i]};
- ComputePanGains(target.Main, coeffs, lateGain, State->mLate.PanGain[i]);
+ ComputePanGains(target.Main, coeffs, lateGain, mLate.PanGain[i]);
}
}
@@ -907,13 +949,12 @@ void ReverbState::update(const ALCcontext *Context, const ALeffectslot *Slot, co
}
/* Update the main effect delay and associated taps. */
- UpdateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay,
- props->Reverb.Density, props->Reverb.DecayTime, frequency,
- this);
+ updateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay,
+ props->Reverb.Density, props->Reverb.DecayTime, frequency);
/* Update the early lines. */
- UpdateEarlyLines(props->Reverb.Density, props->Reverb.Diffusion,
- props->Reverb.DecayTime, frequency, &mEarly);
+ mEarly.updateLines(props->Reverb.Density, props->Reverb.Diffusion, props->Reverb.DecayTime,
+ frequency);
/* Get the mixing matrix coefficients. */
CalcMatrixCoeffs(props->Reverb.Diffusion, &mMixX, &mMixY);
@@ -934,15 +975,13 @@ void ReverbState::update(const ALCcontext *Context, const ALeffectslot *Slot, co
AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME)};
/* Update the late lines. */
- UpdateLateLines(props->Reverb.Density, props->Reverb.Diffusion,
- lfDecayTime, props->Reverb.DecayTime, hfDecayTime, lf0norm, hf0norm,
- frequency, &mLate
- );
+ mLate.updateLines(props->Reverb.Density, props->Reverb.Diffusion, lfDecayTime,
+ props->Reverb.DecayTime, hfDecayTime, lf0norm, hf0norm, frequency);
/* Update early and late 3D panning. */
const ALfloat gain{props->Reverb.Gain * Slot->Params.Gain * ReverbBoost};
- Update3DPanning(props->Reverb.ReflectionsPan, props->Reverb.LateReverbPan,
- props->Reverb.ReflectionsGain*gain, props->Reverb.LateReverbGain*gain, target, this);
+ update3DPanning(props->Reverb.ReflectionsPan, props->Reverb.LateReverbPan,
+ props->Reverb.ReflectionsGain*gain, props->Reverb.LateReverbGain*gain, target);
/* Calculate the max update size from the smallest relevant delay. */
mMaxUpdate[1] = mini(MAX_UPDATE_SAMPLES, mini(mEarly.Offset[0][1], mLate.Offset[0][1]));
@@ -979,29 +1018,6 @@ void ReverbState::update(const ALCcontext *Context, const ALeffectslot *Slot, co
* Effect Processing *
**************************************/
-/* Basic delay line input/output routines. */
-inline ALfloat DelayLineOut(const DelayLineI *Delay, const ALsizei offset, const ALsizei c)
-{ return Delay->Line[offset&Delay->Mask][c]; }
-
-/* Cross-faded delay line output routine. Instead of interpolating the
- * offsets, this interpolates (cross-fades) the outputs at each offset.
- */
-inline ALfloat FadedDelayLineOut(const DelayLineI *Delay, const ALsizei off0, const ALsizei off1,
- const ALsizei c, const ALfloat sc0, const ALfloat sc1)
-{
- return Delay->Line[off0&Delay->Mask][c]*sc0 +
- Delay->Line[off1&Delay->Mask][c]*sc1;
-}
-
-
-inline void DelayLineIn(const DelayLineI *Delay, ALsizei offset, const ALsizei c,
- const ALfloat *RESTRICT in, ALsizei count)
-{
- ASSUME(count > 0);
- for(ALsizei i{0};i < count;i++)
- Delay->Line[(offset++)&Delay->Mask][c] = *(in++);
-}
-
/* Applies a scattering matrix to the 4-line (vector) input. This is used
* for both the below vector all-pass model and to perform modal feed-back
* delay network (FDN) mixing.
@@ -1078,18 +1094,17 @@ inline void VectorScatterRevDelayIn(const DelayLineI *Delay, ALint offset,
* Two static specializations are used for transitional (cross-faded) delay
* line processing and non-transitional processing.
*/
-void VectorAllpass_Unfaded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES], ALsizei offset,
- const ALfloat xCoeff, const ALfloat yCoeff, ALsizei todo,
- VecAllpass *Vap)
+void VecAllpass::processUnfaded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES], ALsizei offset,
+ const ALfloat xCoeff, const ALfloat yCoeff, const ALsizei todo)
{
- const DelayLineI delay{Vap->Delay};
- const ALfloat feedCoeff{Vap->Coeff};
+ const DelayLineI delay{Delay};
+ const ALfloat feedCoeff{Coeff};
ASSUME(todo > 0);
ALsizei vap_offset[NUM_LINES];
for(ALsizei j{0};j < NUM_LINES;j++)
- vap_offset[j] = offset - Vap->Offset[j][0];
+ vap_offset[j] = offset - Offset[j][0];
for(ALsizei i{0};i < todo;i++)
{
ALfloat f[NUM_LINES];
@@ -1097,7 +1112,7 @@ void VectorAllpass_Unfaded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES], ALsi
for(ALsizei j{0};j < NUM_LINES;j++)
{
ALfloat input = samples[j][i];
- ALfloat out = DelayLineOut(&delay, vap_offset[j]++, j) - feedCoeff*input;
+ ALfloat out = delay.get(vap_offset[j]++, j) - feedCoeff*input;
f[j] = input + feedCoeff*out;
samples[j][i] = out;
@@ -1107,12 +1122,11 @@ void VectorAllpass_Unfaded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES], ALsi
++offset;
}
}
-void VectorAllpass_Faded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES], ALsizei offset,
- const ALfloat xCoeff, const ALfloat yCoeff, ALfloat fade,
- ALsizei todo, VecAllpass *Vap)
+void VecAllpass::processFaded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES], ALsizei offset,
+ const ALfloat xCoeff, const ALfloat yCoeff, ALfloat fade, const ALsizei todo)
{
- const DelayLineI delay{Vap->Delay};
- const ALfloat feedCoeff{Vap->Coeff};
+ const DelayLineI delay{Delay};
+ const ALfloat feedCoeff{Coeff};
ASSUME(todo > 0);
@@ -1120,8 +1134,8 @@ void VectorAllpass_Faded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES], ALsize
ALsizei vap_offset[NUM_LINES][2];
for(ALsizei j{0};j < NUM_LINES;j++)
{
- vap_offset[j][0] = offset - Vap->Offset[j][0];
- vap_offset[j][1] = offset - Vap->Offset[j][1];
+ vap_offset[j][0] = offset - Offset[j][0];
+ vap_offset[j][1] = offset - Offset[j][1];
}
for(ALsizei i{0};i < todo;i++)
{
@@ -1129,11 +1143,8 @@ void VectorAllpass_Faded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES], ALsize
for(ALsizei j{0};j < NUM_LINES;j++)
{
- ALfloat input = samples[j][i];
- ALfloat out =
- FadedDelayLineOut(&delay, vap_offset[j][0]++, vap_offset[j][1]++, j,
- 1.0f-fade, fade
- ) - feedCoeff*input;
+ ALfloat input{samples[j][i]};
+ ALfloat out{delay.getFaded(vap_offset[j][0]++, vap_offset[j][1]++, j, 1.0f-fade, fade) - feedCoeff*input};
f[j] = input + feedCoeff*out;
samples[j][i] = out;
@@ -1183,13 +1194,13 @@ void EarlyReflection_Unfaded(ReverbState *State, ALsizei offset, const ALsizei t
ALsizei early_delay_tap{offset - State->mEarlyDelayTap[j][0]};
const ALfloat coeff{State->mEarlyDelayCoeff[j][0]};
for(ALsizei i{0};i < todo;i++)
- temps[j][i] = DelayLineOut(&main_delay, early_delay_tap++, j) * coeff;
+ temps[j][i] = main_delay.get(early_delay_tap++, j) * coeff;
}
/* Apply a vector all-pass, to help color the initial reflections based on
* the diffusion strength.
*/
- VectorAllpass_Unfaded(temps, offset, mixX, mixY, todo, &State->mEarly.VecAp);
+ State->mEarly.VecAp.processUnfaded(temps, offset, mixX, mixY, todo);
/* Apply a delay and bounce to generate secondary reflections, combine with
* the primary reflections and write out the result for mixing.
@@ -1200,11 +1211,10 @@ void EarlyReflection_Unfaded(ReverbState *State, ALsizei offset, const ALsizei t
const ALfloat early_feedb_coeff{State->mEarly.Coeff[j][0]};
for(ALsizei i{0};i < todo;i++)
- out[j][i] = DelayLineOut(&early_delay, early_feedb_tap++, j)*early_feedb_coeff +
- temps[j][i];
+ out[j][i] = early_delay.get(early_feedb_tap++, j)*early_feedb_coeff + temps[j][i];
}
for(ALsizei j{0};j < NUM_LINES;j++)
- DelayLineIn(&early_delay, offset, NUM_LINES-1-j, temps[j], todo);
+ early_delay.write(offset, NUM_LINES-1-j, temps[j], todo);
/* Also write the result back to the main delay line for the late reverb
* stage to pick up at the appropriate time, appplying a scatter and
@@ -1235,16 +1245,15 @@ void EarlyReflection_Faded(ReverbState *State, ALsizei offset, const ALsizei tod
for(ALsizei i{0};i < todo;i++)
{
- const ALfloat fade0 = oldCoeff + oldCoeffStep*fadeCount;
- const ALfloat fade1 = newCoeffStep*fadeCount;
- temps[j][i] = FadedDelayLineOut(&main_delay,
- early_delay_tap0++, early_delay_tap1++, j, fade0, fade1
- );
+ const ALfloat fade0{oldCoeff + oldCoeffStep*fadeCount};
+ const ALfloat fade1{newCoeffStep*fadeCount};
+ temps[j][i] = main_delay.getFaded(early_delay_tap0++, early_delay_tap1++, j,
+ fade0, fade1);
fadeCount += 1.0f;
}
}
- VectorAllpass_Faded(temps, offset, mixX, mixY, fade, todo, &State->mEarly.VecAp);
+ State->mEarly.VecAp.processFaded(temps, offset, mixX, mixY, fade, todo);
for(ALsizei j{0};j < NUM_LINES;j++)
{
@@ -1259,26 +1268,18 @@ void EarlyReflection_Faded(ReverbState *State, ALsizei offset, const ALsizei tod
{
const ALfloat fade0{feedb_oldCoeff + feedb_oldCoeffStep*fadeCount};
const ALfloat fade1{feedb_newCoeffStep*fadeCount};
- out[j][i] = FadedDelayLineOut(&early_delay,
- feedb_tap0++, feedb_tap1++, j, fade0, fade1
- ) + temps[j][i];
+ out[j][i] = early_delay.getFaded(feedb_tap0++, feedb_tap1++, j, fade0, fade1) +
+ temps[j][i];
fadeCount += 1.0f;
}
}
for(ALsizei j{0};j < NUM_LINES;j++)
- DelayLineIn(&early_delay, offset, NUM_LINES-1-j, temps[j], todo);
+ early_delay.write(offset, NUM_LINES-1-j, temps[j], todo);
const ALsizei late_feed_tap{offset - State->mLateFeedTap};
VectorScatterRevDelayIn(&main_delay, late_feed_tap, mixX, mixY, out, todo);
}
-/* Applies the two T60 damping filter sections. */
-inline void LateT60Filter(ALfloat *samples, const ALsizei todo, T60Filter *filter)
-{
- filter->HFFilter.process(samples, samples, todo);
- filter->LFFilter.process(samples, samples, todo);
-}
-
/* This generates the reverb tail using a modified feed-back delay network
* (FDN).
*
@@ -1314,15 +1315,15 @@ void LateReverb_Unfaded(ReverbState *State, ALsizei offset, const ALsizei todo,
const ALfloat midGain{State->mLate.T60[j].MidGain[0]};
const ALfloat densityGain{State->mLate.DensityGain[0] * midGain};
for(ALsizei i{0};i < todo;i++)
- temps[j][i] = DelayLineOut(&main_delay, late_delay_tap++, j)*densityGain +
- DelayLineOut(&late_delay, late_feedb_tap++, j)*midGain;
- LateT60Filter(temps[j], todo, &State->mLate.T60[j]);
+ temps[j][i] = main_delay.get(late_delay_tap++, j)*densityGain +
+ late_delay.get(late_feedb_tap++, j)*midGain;
+ State->mLate.T60[j].process(temps[j], todo);
}
/* Apply a vector all-pass to improve micro-surface diffusion, and write
* out the results for mixing.
*/
- VectorAllpass_Unfaded(temps, offset, mixX, mixY, todo, &State->mLate.VecAp);
+ State->mLate.VecAp.processUnfaded(temps, offset, mixX, mixY, todo);
for(ALsizei j{0};j < NUM_LINES;j++)
std::copy_n(temps[j], todo, out[j]);
@@ -1364,16 +1365,14 @@ void LateReverb_Faded(ReverbState *State, ALsizei offset, const ALsizei todo, co
const ALfloat gfade0 = oldMidGain + oldMidStep*fadeCount;
const ALfloat gfade1 = midStep*fadeCount;
temps[j][i] =
- FadedDelayLineOut(&main_delay, late_delay_tap0++, late_delay_tap1++, j,
- fade0, fade1) +
- FadedDelayLineOut(&late_delay, late_feedb_tap0++, late_feedb_tap1++, j,
- gfade0, gfade1);
+ main_delay.getFaded(late_delay_tap0++, late_delay_tap1++, j, fade0, fade1) +
+ late_delay.getFaded(late_feedb_tap0++, late_feedb_tap1++, j, gfade0, gfade1);
fadeCount += 1.0f;
}
- LateT60Filter(temps[j], todo, &State->mLate.T60[j]);
+ State->mLate.T60[j].process(temps[j], todo);
}
- VectorAllpass_Faded(temps, offset, mixX, mixY, fade, todo, &State->mLate.VecAp);
+ State->mLate.VecAp.processFaded(temps, offset, mixX, mixY, fade, todo);
for(ALsizei j{0};j < NUM_LINES;j++)
std::copy_n(temps[j], todo, out[j]);
@@ -1404,6 +1403,7 @@ void ReverbState::process(ALsizei samplesToDo, const ALfloat (*RESTRICT samplesI
*/
if(todo < samplesToDo-base)
todo &= ~3;
+ ASSUME(todo > 0);
/* Convert B-Format to A-Format for processing. */
ALfloat (&afmt)[NUM_LINES][MAX_UPDATE_SAMPLES] = mTempSamples;
@@ -1421,7 +1421,7 @@ void ReverbState::process(ALsizei samplesToDo, const ALfloat (*RESTRICT samplesI
mFilter[c].Hp.process(mMixBuffer[1], mMixBuffer[0], todo);
/* Feed the initial delay line. */
- DelayLineIn(&mDelay, offset, c, mMixBuffer[1], todo);
+ mDelay.write(offset, c, mMixBuffer[1], todo);
}
if(UNLIKELY(fadeCount < FADE_SAMPLES))