aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/effects/reverb.cpp
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2018-11-16 21:31:52 -0800
committerChris Robinson <[email protected]>2018-11-16 21:31:52 -0800
commit8410e71a34fc286579573ab55dc94be83c48e55b (patch)
treeb911eda075c3704c40d79a1ffe9a53b2cc2bc23f /Alc/effects/reverb.cpp
parenta68d0b68d74a9f3fa65096fdfddc5a04fa118dfa (diff)
Convert the reverb effect to C++
Diffstat (limited to 'Alc/effects/reverb.cpp')
-rw-r--r--Alc/effects/reverb.cpp2094
1 files changed, 2094 insertions, 0 deletions
diff --git a/Alc/effects/reverb.cpp b/Alc/effects/reverb.cpp
new file mode 100644
index 00000000..5cfc0012
--- /dev/null
+++ b/Alc/effects/reverb.cpp
@@ -0,0 +1,2094 @@
+/**
+ * Ambisonic reverb engine for the OpenAL cross platform audio library
+ * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald.
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Library General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Library General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ * Or go to http://www.gnu.org/copyleft/lgpl.html
+ */
+
+#include "config.h"
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+
+#include "alMain.h"
+#include "alu.h"
+#include "alAuxEffectSlot.h"
+#include "alListener.h"
+#include "alError.h"
+#include "filters/defs.h"
+
+/* This is a user config option for modifying the overall output of the reverb
+ * effect.
+ */
+ALfloat ReverbBoost = 1.0f;
+
+/* This is the maximum number of samples processed for each inner loop
+ * iteration. */
+#define MAX_UPDATE_SAMPLES 256
+
+/* The number of samples used for cross-faded delay lines. This can be used
+ * to balance the compensation for abrupt line changes and attenuation due to
+ * minimally lengthed recursive lines. Try to keep this below the device
+ * update size.
+ */
+#define FADE_SAMPLES 128
+
+/* The number of spatialized lines or channels to process. Four channels allows
+ * for a 3D A-Format response. NOTE: This can't be changed without taking care
+ * of the conversion matrices, and a few places where the length arrays are
+ * assumed to have 4 elements.
+ */
+#define NUM_LINES 4
+
+
+/* The B-Format to A-Format conversion matrix. The arrangement of rows is
+ * deliberately chosen to align the resulting lines to their spatial opposites
+ * (0:above front left <-> 3:above back right, 1:below front right <-> 2:below
+ * back left). It's not quite opposite, since the A-Format results in a
+ * tetrahedron, but it's close enough. Should the model be extended to 8-lines
+ * in the future, true opposites can be used.
+ */
+static const aluMatrixf B2A = {{
+ { 0.288675134595f, 0.288675134595f, 0.288675134595f, 0.288675134595f },
+ { 0.288675134595f, -0.288675134595f, -0.288675134595f, 0.288675134595f },
+ { 0.288675134595f, 0.288675134595f, -0.288675134595f, -0.288675134595f },
+ { 0.288675134595f, -0.288675134595f, 0.288675134595f, -0.288675134595f }
+}};
+
+/* Converts A-Format to B-Format. */
+static const aluMatrixf A2B = {{
+ { 0.866025403785f, 0.866025403785f, 0.866025403785f, 0.866025403785f },
+ { 0.866025403785f, -0.866025403785f, 0.866025403785f, -0.866025403785f },
+ { 0.866025403785f, -0.866025403785f, -0.866025403785f, 0.866025403785f },
+ { 0.866025403785f, 0.866025403785f, -0.866025403785f, -0.866025403785f }
+}};
+
+static const ALfloat FadeStep = 1.0f / FADE_SAMPLES;
+
+/* The all-pass and delay lines have a variable length dependent on the
+ * effect's density parameter, which helps alter the perceived environment
+ * size. The size-to-density conversion is a cubed scale:
+ *
+ * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE);
+ *
+ * The line lengths scale linearly with room size, so the inverse density
+ * conversion is needed, taking the cube root of the re-scaled density to
+ * calculate the line length multiplier:
+ *
+ * length_mult = max(5.0, cbrtf(density*DENSITY_SCALE));
+ *
+ * The density scale below will result in a max line multiplier of 50, for an
+ * effective size range of 5m to 50m.
+ */
+static const ALfloat DENSITY_SCALE = 125000.0f;
+
+/* All delay line lengths are specified in seconds.
+ *
+ * To approximate early reflections, we break them up into primary (those
+ * arriving from the same direction as the source) and secondary (those
+ * arriving from the opposite direction).
+ *
+ * The early taps decorrelate the 4-channel signal to approximate an average
+ * room response for the primary reflections after the initial early delay.
+ *
+ * Given an average room dimension (d_a) and the speed of sound (c) we can
+ * calculate the average reflection delay (r_a) regardless of listener and
+ * source positions as:
+ *
+ * r_a = d_a / c
+ * c = 343.3
+ *
+ * This can extended to finding the average difference (r_d) between the
+ * maximum (r_1) and minimum (r_0) reflection delays:
+ *
+ * r_0 = 2 / 3 r_a
+ * = r_a - r_d / 2
+ * = r_d
+ * r_1 = 4 / 3 r_a
+ * = r_a + r_d / 2
+ * = 2 r_d
+ * r_d = 2 / 3 r_a
+ * = r_1 - r_0
+ *
+ * As can be determined by integrating the 1D model with a source (s) and
+ * listener (l) positioned across the dimension of length (d_a):
+ *
+ * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c
+ *
+ * The initial taps (T_(i=0)^N) are then specified by taking a power series
+ * that ranges between r_0 and half of r_1 less r_0:
+ *
+ * R_i = 2^(i / (2 N - 1)) r_d
+ * = r_0 + (2^(i / (2 N - 1)) - 1) r_d
+ * = r_0 + T_i
+ * T_i = R_i - r_0
+ * = (2^(i / (2 N - 1)) - 1) r_d
+ *
+ * Assuming an average of 1m, we get the following taps:
+ */
+static const ALfloat EARLY_TAP_LENGTHS[NUM_LINES] =
+{
+ 0.0000000e+0f, 2.0213520e-4f, 4.2531060e-4f, 6.7171600e-4f
+};
+
+/* The early all-pass filter lengths are based on the early tap lengths:
+ *
+ * A_i = R_i / a
+ *
+ * Where a is the approximate maximum all-pass cycle limit (20).
+ */
+static const ALfloat EARLY_ALLPASS_LENGTHS[NUM_LINES] =
+{
+ 9.7096800e-5f, 1.0720356e-4f, 1.1836234e-4f, 1.3068260e-4f
+};
+
+/* The early delay lines are used to transform the primary reflections into
+ * the secondary reflections. The A-format is arranged in such a way that
+ * the channels/lines are spatially opposite:
+ *
+ * C_i is opposite C_(N-i-1)
+ *
+ * The delays of the two opposing reflections (R_i and O_i) from a source
+ * anywhere along a particular dimension always sum to twice its full delay:
+ *
+ * 2 r_a = R_i + O_i
+ *
+ * With that in mind we can determine the delay between the two reflections
+ * and thus specify our early line lengths (L_(i=0)^N) using:
+ *
+ * O_i = 2 r_a - R_(N-i-1)
+ * L_i = O_i - R_(N-i-1)
+ * = 2 (r_a - R_(N-i-1))
+ * = 2 (r_a - T_(N-i-1) - r_0)
+ * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1)))
+ *
+ * Using an average dimension of 1m, we get:
+ */
+static const ALfloat EARLY_LINE_LENGTHS[NUM_LINES] =
+{
+ 5.9850400e-4f, 1.0913150e-3f, 1.5376658e-3f, 1.9419362e-3f
+};
+
+/* The late all-pass filter lengths are based on the late line lengths:
+ *
+ * A_i = (5 / 3) L_i / r_1
+ */
+static const ALfloat LATE_ALLPASS_LENGTHS[NUM_LINES] =
+{
+ 1.6182800e-4f, 2.0389060e-4f, 2.8159360e-4f, 3.2365600e-4f
+};
+
+/* The late lines are used to approximate the decaying cycle of recursive
+ * late reflections.
+ *
+ * Splitting the lines in half, we start with the shortest reflection paths
+ * (L_(i=0)^(N/2)):
+ *
+ * L_i = 2^(i / (N - 1)) r_d
+ *
+ * Then for the opposite (longest) reflection paths (L_(i=N/2)^N):
+ *
+ * L_i = 2 r_a - L_(i-N/2)
+ * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d
+ *
+ * For our 1m average room, we get:
+ */
+static const ALfloat LATE_LINE_LENGTHS[NUM_LINES] =
+{
+ 1.9419362e-3f, 2.4466860e-3f, 3.3791220e-3f, 3.8838720e-3f
+};
+
+
+typedef struct DelayLineI {
+ /* The delay lines use interleaved samples, with the lengths being powers
+ * of 2 to allow the use of bit-masking instead of a modulus for wrapping.
+ */
+ ALsizei Mask;
+ ALfloat (*Line)[NUM_LINES];
+} DelayLineI;
+
+typedef struct VecAllpass {
+ DelayLineI Delay;
+ ALfloat Coeff;
+ ALsizei Offset[NUM_LINES][2];
+} VecAllpass;
+
+typedef struct T60Filter {
+ /* Two filters are used to adjust the signal. One to control the low
+ * frequencies, and one to control the high frequencies.
+ */
+ ALfloat MidGain[2];
+ BiquadFilter HFFilter, LFFilter;
+} T60Filter;
+
+typedef struct EarlyReflections {
+ /* A Gerzon vector all-pass filter is used to simulate initial diffusion.
+ * The spread from this filter also helps smooth out the reverb tail.
+ */
+ VecAllpass VecAp;
+
+ /* An echo line is used to complete the second half of the early
+ * reflections.
+ */
+ DelayLineI Delay;
+ ALsizei Offset[NUM_LINES][2];
+ ALfloat Coeff[NUM_LINES][2];
+
+ /* The gain for each output channel based on 3D panning. */
+ ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS];
+ ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS];
+} EarlyReflections;
+
+typedef struct LateReverb {
+ /* A recursive delay line is used fill in the reverb tail. */
+ DelayLineI Delay;
+ ALsizei Offset[NUM_LINES][2];
+
+ /* Attenuation to compensate for the modal density and decay rate of the
+ * late lines.
+ */
+ ALfloat DensityGain[2];
+
+ /* T60 decay filters are used to simulate absorption. */
+ T60Filter T60[NUM_LINES];
+
+ /* A Gerzon vector all-pass filter is used to simulate diffusion. */
+ VecAllpass VecAp;
+
+ /* The gain for each output channel based on 3D panning. */
+ ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS];
+ ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS];
+} LateReverb;
+
+struct ReverbState final : public ALeffectState {
+ /* All delay lines are allocated as a single buffer to reduce memory
+ * fragmentation and management code.
+ */
+ ALfloat *SampleBuffer;
+ ALuint TotalSamples;
+
+ struct {
+ /* Calculated parameters which indicate if cross-fading is needed after
+ * an update.
+ */
+ ALfloat Density, Diffusion;
+ ALfloat DecayTime, HFDecayTime, LFDecayTime;
+ ALfloat HFReference, LFReference;
+ } Params;
+
+ /* Master effect filters */
+ struct {
+ BiquadFilter Lp;
+ BiquadFilter Hp;
+ } Filter[NUM_LINES];
+
+ /* Core delay line (early reflections and late reverb tap from this). */
+ DelayLineI Delay;
+
+ /* Tap points for early reflection delay. */
+ ALsizei EarlyDelayTap[NUM_LINES][2];
+ ALfloat EarlyDelayCoeff[NUM_LINES][2];
+
+ /* Tap points for late reverb feed and delay. */
+ ALsizei LateFeedTap;
+ ALsizei LateDelayTap[NUM_LINES][2];
+
+ /* Coefficients for the all-pass and line scattering matrices. */
+ ALfloat MixX;
+ ALfloat MixY;
+
+ EarlyReflections Early;
+
+ LateReverb Late;
+
+ /* Indicates the cross-fade point for delay line reads [0,FADE_SAMPLES]. */
+ ALsizei FadeCount;
+
+ /* Maximum number of samples to process at once. */
+ ALsizei MaxUpdate[2];
+
+ /* The current write offset for all delay lines. */
+ ALsizei Offset;
+
+ /* Temporary storage used when processing. */
+ alignas(16) ALfloat TempSamples[NUM_LINES][MAX_UPDATE_SAMPLES];
+ alignas(16) ALfloat MixSamples[NUM_LINES][MAX_UPDATE_SAMPLES];
+};
+
+static ALvoid ReverbState_Destruct(ReverbState *State);
+static ALboolean ReverbState_deviceUpdate(ReverbState *State, ALCdevice *Device);
+static ALvoid ReverbState_update(ReverbState *State, const ALCcontext *Context, const ALeffectslot *Slot, const ALeffectProps *props);
+static ALvoid ReverbState_process(ReverbState *State, ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesIn)[BUFFERSIZE], ALfloat (*RESTRICT SamplesOut)[BUFFERSIZE], ALsizei NumChannels);
+DECLARE_DEFAULT_ALLOCATORS(ReverbState)
+
+DEFINE_ALEFFECTSTATE_VTABLE(ReverbState);
+
+static void ReverbState_Construct(ReverbState *state)
+{
+ new (state) ReverbState{};
+
+ ALeffectState_Construct(STATIC_CAST(ALeffectState, state));
+ SET_VTABLE2(ReverbState, ALeffectState, state);
+
+ state->TotalSamples = 0;
+ state->SampleBuffer = NULL;
+
+ state->Params.Density = AL_EAXREVERB_DEFAULT_DENSITY;
+ state->Params.Diffusion = AL_EAXREVERB_DEFAULT_DIFFUSION;
+ state->Params.DecayTime = AL_EAXREVERB_DEFAULT_DECAY_TIME;
+ state->Params.HFDecayTime = AL_EAXREVERB_DEFAULT_DECAY_TIME*AL_EAXREVERB_DEFAULT_DECAY_HFRATIO;
+ state->Params.LFDecayTime = AL_EAXREVERB_DEFAULT_DECAY_TIME*AL_EAXREVERB_DEFAULT_DECAY_LFRATIO;
+ state->Params.HFReference = AL_EAXREVERB_DEFAULT_HFREFERENCE;
+ state->Params.LFReference = AL_EAXREVERB_DEFAULT_LFREFERENCE;
+
+ for(ALsizei i{0};i < NUM_LINES;i++)
+ {
+ BiquadFilter_clear(&state->Filter[i].Lp);
+ BiquadFilter_clear(&state->Filter[i].Hp);
+ }
+
+ state->Delay.Mask = 0;
+ state->Delay.Line = NULL;
+
+ for(ALsizei i{0};i < NUM_LINES;i++)
+ {
+ state->EarlyDelayTap[i][0] = 0;
+ state->EarlyDelayTap[i][1] = 0;
+ state->EarlyDelayCoeff[i][0] = 0.0f;
+ state->EarlyDelayCoeff[i][1] = 0.0f;
+ }
+
+ state->LateFeedTap = 0;
+
+ for(ALsizei i{0};i < NUM_LINES;i++)
+ {
+ state->LateDelayTap[i][0] = 0;
+ state->LateDelayTap[i][1] = 0;
+ }
+
+ state->MixX = 0.0f;
+ state->MixY = 0.0f;
+
+ state->Early.VecAp.Delay.Mask = 0;
+ state->Early.VecAp.Delay.Line = NULL;
+ state->Early.VecAp.Coeff = 0.0f;
+ state->Early.Delay.Mask = 0;
+ state->Early.Delay.Line = NULL;
+ for(ALsizei i{0};i < NUM_LINES;i++)
+ {
+ state->Early.VecAp.Offset[i][0] = 0;
+ state->Early.VecAp.Offset[i][1] = 0;
+ state->Early.Offset[i][0] = 0;
+ state->Early.Offset[i][1] = 0;
+ state->Early.Coeff[i][0] = 0.0f;
+ state->Early.Coeff[i][1] = 0.0f;
+ }
+
+ state->Late.DensityGain[0] = 0.0f;
+ state->Late.DensityGain[1] = 0.0f;
+ state->Late.Delay.Mask = 0;
+ state->Late.Delay.Line = NULL;
+ state->Late.VecAp.Delay.Mask = 0;
+ state->Late.VecAp.Delay.Line = NULL;
+ state->Late.VecAp.Coeff = 0.0f;
+ for(ALsizei i{0};i < NUM_LINES;i++)
+ {
+ state->Late.Offset[i][0] = 0;
+ state->Late.Offset[i][1] = 0;
+
+ state->Late.VecAp.Offset[i][0] = 0;
+ state->Late.VecAp.Offset[i][1] = 0;
+
+ state->Late.T60[i].MidGain[0] = 0.0f;
+ state->Late.T60[i].MidGain[1] = 0.0f;
+ BiquadFilter_clear(&state->Late.T60[i].HFFilter);
+ BiquadFilter_clear(&state->Late.T60[i].LFFilter);
+ }
+
+ for(ALsizei i{0};i < NUM_LINES;i++)
+ {
+ for(ALsizei j{0};j < MAX_OUTPUT_CHANNELS;j++)
+ {
+ state->Early.CurrentGain[i][j] = 0.0f;
+ state->Early.PanGain[i][j] = 0.0f;
+ state->Late.CurrentGain[i][j] = 0.0f;
+ state->Late.PanGain[i][j] = 0.0f;
+ }
+ }
+
+ state->FadeCount = 0;
+ state->MaxUpdate[0] = MAX_UPDATE_SAMPLES;
+ state->MaxUpdate[1] = MAX_UPDATE_SAMPLES;
+ state->Offset = 0;
+}
+
+static ALvoid ReverbState_Destruct(ReverbState *State)
+{
+ al_free(State->SampleBuffer);
+ State->SampleBuffer = NULL;
+
+ ALeffectState_Destruct(STATIC_CAST(ALeffectState,State));
+ State->~ReverbState();
+}
+
+/**************************************
+ * Device Update *
+ **************************************/
+
+static inline ALfloat CalcDelayLengthMult(ALfloat density)
+{
+ return maxf(5.0f, cbrtf(density*DENSITY_SCALE));
+}
+
+/* Given the allocated sample buffer, this function updates each delay line
+ * offset.
+ */
+static inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLineI *Delay)
+{
+ union {
+ ALfloat *f;
+ ALfloat (*f4)[NUM_LINES];
+ } u;
+ u.f = &sampleBuffer[(ptrdiff_t)Delay->Line * NUM_LINES];
+ Delay->Line = u.f4;
+}
+
+/* Calculate the length of a delay line and store its mask and offset. */
+static ALuint CalcLineLength(const ALfloat length, const ptrdiff_t offset, const ALuint frequency,
+ const ALuint extra, DelayLineI *Delay)
+{
+ ALuint samples;
+
+ /* All line lengths are powers of 2, calculated from their lengths in
+ * seconds, rounded up.
+ */
+ samples = float2int(ceilf(length*frequency));
+ samples = NextPowerOf2(samples + extra);
+
+ /* All lines share a single sample buffer. */
+ Delay->Mask = samples - 1;
+ Delay->Line = (ALfloat(*)[NUM_LINES])offset;
+
+ /* Return the sample count for accumulation. */
+ return samples;
+}
+
+/* Calculates the delay line metrics and allocates the shared sample buffer
+ * for all lines given the sample rate (frequency). If an allocation failure
+ * occurs, it returns AL_FALSE.
+ */
+static ALboolean AllocLines(const ALuint frequency, ReverbState *State)
+{
+ ALuint totalSamples, i;
+ ALfloat multiplier, length;
+
+ /* All delay line lengths are calculated to accomodate the full range of
+ * lengths given their respective paramters.
+ */
+ totalSamples = 0;
+
+ /* Multiplier for the maximum density value, i.e. density=1, which is
+ * actually the least density...
+ */
+ multiplier = CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY);
+
+ /* The main delay length includes the maximum early reflection delay, the
+ * largest early tap width, the maximum late reverb delay, and the
+ * largest late tap width. Finally, it must also be extended by the
+ * update size (MAX_UPDATE_SAMPLES) for block processing.
+ */
+ length = AL_EAXREVERB_MAX_REFLECTIONS_DELAY + EARLY_TAP_LENGTHS[NUM_LINES-1]*multiplier +
+ AL_EAXREVERB_MAX_LATE_REVERB_DELAY +
+ (LATE_LINE_LENGTHS[NUM_LINES-1] - LATE_LINE_LENGTHS[0])*0.25f*multiplier;
+ totalSamples += CalcLineLength(length, totalSamples, frequency, MAX_UPDATE_SAMPLES,
+ &State->Delay);
+
+ /* The early vector all-pass line. */
+ length = EARLY_ALLPASS_LENGTHS[NUM_LINES-1] * multiplier;
+ totalSamples += CalcLineLength(length, totalSamples, frequency, 0,
+ &State->Early.VecAp.Delay);
+
+ /* The early reflection line. */
+ length = EARLY_LINE_LENGTHS[NUM_LINES-1] * multiplier;
+ totalSamples += CalcLineLength(length, totalSamples, frequency, 0,
+ &State->Early.Delay);
+
+ /* The late vector all-pass line. */
+ length = LATE_ALLPASS_LENGTHS[NUM_LINES-1] * multiplier;
+ totalSamples += CalcLineLength(length, totalSamples, frequency, 0,
+ &State->Late.VecAp.Delay);
+
+ /* The late delay lines are calculated from the largest maximum density
+ * line length.
+ */
+ length = LATE_LINE_LENGTHS[NUM_LINES-1] * multiplier;
+ totalSamples += CalcLineLength(length, totalSamples, frequency, 0,
+ &State->Late.Delay);
+
+ if(totalSamples != State->TotalSamples)
+ {
+ ALfloat *newBuffer;
+
+ TRACE("New reverb buffer length: %ux4 samples\n", totalSamples);
+ newBuffer = static_cast<ALfloat*>(al_calloc(16,
+ sizeof(ALfloat[NUM_LINES]) * totalSamples));
+ if(!newBuffer) return AL_FALSE;
+
+ al_free(State->SampleBuffer);
+ State->SampleBuffer = newBuffer;
+ State->TotalSamples = totalSamples;
+ }
+
+ /* Update all delays to reflect the new sample buffer. */
+ RealizeLineOffset(State->SampleBuffer, &State->Delay);
+ RealizeLineOffset(State->SampleBuffer, &State->Early.VecAp.Delay);
+ RealizeLineOffset(State->SampleBuffer, &State->Early.Delay);
+ RealizeLineOffset(State->SampleBuffer, &State->Late.VecAp.Delay);
+ RealizeLineOffset(State->SampleBuffer, &State->Late.Delay);
+
+ /* Clear the sample buffer. */
+ for(i = 0;i < State->TotalSamples;i++)
+ State->SampleBuffer[i] = 0.0f;
+
+ return AL_TRUE;
+}
+
+static ALboolean ReverbState_deviceUpdate(ReverbState *State, ALCdevice *Device)
+{
+ ALuint frequency = Device->Frequency;
+ ALfloat multiplier;
+ ALsizei i, j;
+
+ /* Allocate the delay lines. */
+ if(!AllocLines(frequency, State))
+ return AL_FALSE;
+
+ multiplier = CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY);
+
+ /* The late feed taps are set a fixed position past the latest delay tap. */
+ State->LateFeedTap = float2int((AL_EAXREVERB_MAX_REFLECTIONS_DELAY +
+ EARLY_TAP_LENGTHS[NUM_LINES-1]*multiplier) *
+ frequency);
+
+ /* Clear filters and gain coefficients since the delay lines were all just
+ * cleared (if not reallocated).
+ */
+ for(i = 0;i < NUM_LINES;i++)
+ {
+ BiquadFilter_clear(&State->Filter[i].Lp);
+ BiquadFilter_clear(&State->Filter[i].Hp);
+ }
+
+ for(i = 0;i < NUM_LINES;i++)
+ {
+ State->EarlyDelayCoeff[i][0] = 0.0f;
+ State->EarlyDelayCoeff[i][1] = 0.0f;
+ }
+
+ for(i = 0;i < NUM_LINES;i++)
+ {
+ State->Early.Coeff[i][0] = 0.0f;
+ State->Early.Coeff[i][1] = 0.0f;
+ }
+
+ State->Late.DensityGain[0] = 0.0f;
+ State->Late.DensityGain[1] = 0.0f;
+ for(i = 0;i < NUM_LINES;i++)
+ {
+ State->Late.T60[i].MidGain[0] = 0.0f;
+ State->Late.T60[i].MidGain[1] = 0.0f;
+ BiquadFilter_clear(&State->Late.T60[i].HFFilter);
+ BiquadFilter_clear(&State->Late.T60[i].LFFilter);
+ }
+
+ for(i = 0;i < NUM_LINES;i++)
+ {
+ for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
+ {
+ State->Early.CurrentGain[i][j] = 0.0f;
+ State->Early.PanGain[i][j] = 0.0f;
+ State->Late.CurrentGain[i][j] = 0.0f;
+ State->Late.PanGain[i][j] = 0.0f;
+ }
+ }
+
+ /* Reset counters and offset base. */
+ State->FadeCount = 0;
+ State->MaxUpdate[0] = MAX_UPDATE_SAMPLES;
+ State->MaxUpdate[1] = MAX_UPDATE_SAMPLES;
+ State->Offset = 0;
+
+ return AL_TRUE;
+}
+
+/**************************************
+ * Effect Update *
+ **************************************/
+
+/* Calculate a decay coefficient given the length of each cycle and the time
+ * until the decay reaches -60 dB.
+ */
+static inline ALfloat CalcDecayCoeff(const ALfloat length, const ALfloat decayTime)
+{
+ return powf(REVERB_DECAY_GAIN, length/decayTime);
+}
+
+/* Calculate a decay length from a coefficient and the time until the decay
+ * reaches -60 dB.
+ */
+static inline ALfloat CalcDecayLength(const ALfloat coeff, const ALfloat decayTime)
+{
+ return log10f(coeff) * decayTime / log10f(REVERB_DECAY_GAIN);
+}
+
+/* Calculate an attenuation to be applied to the input of any echo models to
+ * compensate for modal density and decay time.
+ */
+static inline ALfloat CalcDensityGain(const ALfloat a)
+{
+ /* The energy of a signal can be obtained by finding the area under the
+ * squared signal. This takes the form of Sum(x_n^2), where x is the
+ * amplitude for the sample n.
+ *
+ * Decaying feedback matches exponential decay of the form Sum(a^n),
+ * where a is the attenuation coefficient, and n is the sample. The area
+ * under this decay curve can be calculated as: 1 / (1 - a).
+ *
+ * Modifying the above equation to find the area under the squared curve
+ * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
+ * calculated by inverting the square root of this approximation,
+ * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
+ */
+ return sqrtf(1.0f - a*a);
+}
+
+/* Calculate the scattering matrix coefficients given a diffusion factor. */
+static inline ALvoid CalcMatrixCoeffs(const ALfloat diffusion, ALfloat *x, ALfloat *y)
+{
+ ALfloat n, t;
+
+ /* The matrix is of order 4, so n is sqrt(4 - 1). */
+ n = sqrtf(3.0f);
+ t = diffusion * atanf(n);
+
+ /* Calculate the first mixing matrix coefficient. */
+ *x = cosf(t);
+ /* Calculate the second mixing matrix coefficient. */
+ *y = sinf(t) / n;
+}
+
+/* Calculate the limited HF ratio for use with the late reverb low-pass
+ * filters.
+ */
+static ALfloat CalcLimitedHfRatio(const ALfloat hfRatio, const ALfloat airAbsorptionGainHF,
+ const ALfloat decayTime, const ALfloat SpeedOfSound)
+{
+ ALfloat limitRatio;
+
+ /* Find the attenuation due to air absorption in dB (converting delay
+ * time to meters using the speed of sound). Then reversing the decay
+ * equation, solve for HF ratio. The delay length is cancelled out of
+ * the equation, so it can be calculated once for all lines.
+ */
+ limitRatio = 1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) * SpeedOfSound);
+
+ /* Using the limit calculated above, apply the upper bound to the HF ratio.
+ */
+ return minf(limitRatio, hfRatio);
+}
+
+
+/* Calculates the 3-band T60 damping coefficients for a particular delay line
+ * of specified length, using a combination of two shelf filter sections given
+ * decay times for each band split at two reference frequencies.
+ */
+static void CalcT60DampingCoeffs(const ALfloat length, const ALfloat lfDecayTime,
+ const ALfloat mfDecayTime, const ALfloat hfDecayTime,
+ const ALfloat lf0norm, const ALfloat hf0norm,
+ T60Filter *filter)
+{
+ ALfloat lfGain = CalcDecayCoeff(length, lfDecayTime);
+ ALfloat mfGain = CalcDecayCoeff(length, mfDecayTime);
+ ALfloat hfGain = CalcDecayCoeff(length, hfDecayTime);
+
+ filter->MidGain[1] = mfGain;
+ BiquadFilter_setParams(&filter->LFFilter, BiquadType_LowShelf, lfGain/mfGain, lf0norm,
+ calc_rcpQ_from_slope(lfGain/mfGain, 1.0f));
+ BiquadFilter_setParams(&filter->HFFilter, BiquadType_HighShelf, hfGain/mfGain, hf0norm,
+ calc_rcpQ_from_slope(hfGain/mfGain, 1.0f));
+}
+
+/* Update the offsets for the main effect delay line. */
+static ALvoid UpdateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay, const ALfloat density, const ALfloat decayTime, const ALuint frequency, ReverbState *State)
+{
+ ALfloat multiplier, length;
+ ALuint i;
+
+ multiplier = CalcDelayLengthMult(density);
+
+ /* Early reflection taps are decorrelated by means of an average room
+ * reflection approximation described above the definition of the taps.
+ * This approximation is linear and so the above density multiplier can
+ * be applied to adjust the width of the taps. A single-band decay
+ * coefficient is applied to simulate initial attenuation and absorption.
+ *
+ * Late reverb taps are based on the late line lengths to allow a zero-
+ * delay path and offsets that would continue the propagation naturally
+ * into the late lines.
+ */
+ for(i = 0;i < NUM_LINES;i++)
+ {
+ length = earlyDelay + EARLY_TAP_LENGTHS[i]*multiplier;
+ State->EarlyDelayTap[i][1] = float2int(length * frequency);
+
+ length = EARLY_TAP_LENGTHS[i]*multiplier;
+ State->EarlyDelayCoeff[i][1] = CalcDecayCoeff(length, decayTime);
+
+ length = lateDelay + (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS[0])*0.25f*multiplier;
+ State->LateDelayTap[i][1] = State->LateFeedTap + float2int(length * frequency);
+ }
+}
+
+/* Update the early reflection line lengths and gain coefficients. */
+static ALvoid UpdateEarlyLines(const ALfloat density, const ALfloat diffusion, const ALfloat decayTime, const ALuint frequency, EarlyReflections *Early)
+{
+ ALfloat multiplier, length;
+ ALsizei i;
+
+ multiplier = CalcDelayLengthMult(density);
+
+ /* Calculate the all-pass feed-back/forward coefficient. */
+ Early->VecAp.Coeff = sqrtf(0.5f) * powf(diffusion, 2.0f);
+
+ for(i = 0;i < NUM_LINES;i++)
+ {
+ /* Calculate the length (in seconds) of each all-pass line. */
+ length = EARLY_ALLPASS_LENGTHS[i] * multiplier;
+
+ /* Calculate the delay offset for each all-pass line. */
+ Early->VecAp.Offset[i][1] = float2int(length * frequency);
+
+ /* Calculate the length (in seconds) of each delay line. */
+ length = EARLY_LINE_LENGTHS[i] * multiplier;
+
+ /* Calculate the delay offset for each delay line. */
+ Early->Offset[i][1] = float2int(length * frequency);
+
+ /* Calculate the gain (coefficient) for each line. */
+ Early->Coeff[i][1] = CalcDecayCoeff(length, decayTime);
+ }
+}
+
+/* Update the late reverb line lengths and T60 coefficients. */
+static ALvoid UpdateLateLines(const ALfloat density, const ALfloat diffusion, const ALfloat lfDecayTime, const ALfloat mfDecayTime, const ALfloat hfDecayTime, const ALfloat lf0norm, const ALfloat hf0norm, const ALuint frequency, LateReverb *Late)
+{
+ /* Scaling factor to convert the normalized reference frequencies from
+ * representing 0...freq to 0...max_reference.
+ */
+ const ALfloat norm_weight_factor = (ALfloat)frequency / AL_EAXREVERB_MAX_HFREFERENCE;
+ ALfloat multiplier, length, bandWeights[3];
+ ALsizei i;
+
+ /* To compensate for changes in modal density and decay time of the late
+ * reverb signal, the input is attenuated based on the maximal energy of
+ * the outgoing signal. This approximation is used to keep the apparent
+ * energy of the signal equal for all ranges of density and decay time.
+ *
+ * The average length of the delay lines is used to calculate the
+ * attenuation coefficient.
+ */
+ multiplier = CalcDelayLengthMult(density);
+ length = (LATE_LINE_LENGTHS[0] + LATE_LINE_LENGTHS[1] +
+ LATE_LINE_LENGTHS[2] + LATE_LINE_LENGTHS[3]) / 4.0f * multiplier;
+ length += (LATE_ALLPASS_LENGTHS[0] + LATE_ALLPASS_LENGTHS[1] +
+ LATE_ALLPASS_LENGTHS[2] + LATE_ALLPASS_LENGTHS[3]) / 4.0f * multiplier;
+ /* The density gain calculation uses an average decay time weighted by
+ * approximate bandwidth. This attempts to compensate for losses of energy
+ * that reduce decay time due to scattering into highly attenuated bands.
+ */
+ bandWeights[0] = lf0norm*norm_weight_factor;
+ bandWeights[1] = hf0norm*norm_weight_factor - lf0norm*norm_weight_factor;
+ bandWeights[2] = 1.0f - hf0norm*norm_weight_factor;
+ Late->DensityGain[1] = CalcDensityGain(
+ CalcDecayCoeff(length,
+ bandWeights[0]*lfDecayTime + bandWeights[1]*mfDecayTime + bandWeights[2]*hfDecayTime
+ )
+ );
+
+ /* Calculate the all-pass feed-back/forward coefficient. */
+ Late->VecAp.Coeff = sqrtf(0.5f) * powf(diffusion, 2.0f);
+
+ for(i = 0;i < NUM_LINES;i++)
+ {
+ /* Calculate the length (in seconds) of each all-pass line. */
+ length = LATE_ALLPASS_LENGTHS[i] * multiplier;
+
+ /* Calculate the delay offset for each all-pass line. */
+ Late->VecAp.Offset[i][1] = float2int(length * frequency);
+
+ /* Calculate the length (in seconds) of each delay line. */
+ length = LATE_LINE_LENGTHS[i] * multiplier;
+
+ /* Calculate the delay offset for each delay line. */
+ Late->Offset[i][1] = float2int(length*frequency + 0.5f);
+
+ /* Approximate the absorption that the vector all-pass would exhibit
+ * given the current diffusion so we don't have to process a full T60
+ * filter for each of its four lines.
+ */
+ length += lerp(LATE_ALLPASS_LENGTHS[i],
+ (LATE_ALLPASS_LENGTHS[0] + LATE_ALLPASS_LENGTHS[1] +
+ LATE_ALLPASS_LENGTHS[2] + LATE_ALLPASS_LENGTHS[3]) / 4.0f,
+ diffusion) * multiplier;
+
+ /* Calculate the T60 damping coefficients for each line. */
+ CalcT60DampingCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime,
+ lf0norm, hf0norm, &Late->T60[i]);
+ }
+}
+
+/* Creates a transform matrix given a reverb vector. The vector pans the reverb
+ * reflections toward the given direction, using its magnitude (up to 1) as a
+ * focal strength. This function results in a B-Format transformation matrix
+ * that spatially focuses the signal in the desired direction.
+ */
+static aluMatrixf GetTransformFromVector(const ALfloat *vec)
+{
+ aluMatrixf focus;
+ ALfloat norm[3];
+ ALfloat mag;
+
+ /* Normalize the panning vector according to the N3D scale, which has an
+ * extra sqrt(3) term on the directional components. Converting from OpenAL
+ * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however
+ * that the reverb panning vectors use left-handed coordinates, unlike the
+ * rest of OpenAL which use right-handed. This is fixed by negating Z,
+ * which cancels out with the B-Format Z negation.
+ */
+ mag = sqrtf(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
+ if(mag > 1.0f)
+ {
+ norm[0] = vec[0] / mag * -SQRTF_3;
+ norm[1] = vec[1] / mag * SQRTF_3;
+ norm[2] = vec[2] / mag * SQRTF_3;
+ mag = 1.0f;
+ }
+ else
+ {
+ /* If the magnitude is less than or equal to 1, just apply the sqrt(3)
+ * term. There's no need to renormalize the magnitude since it would
+ * just be reapplied in the matrix.
+ */
+ norm[0] = vec[0] * -SQRTF_3;
+ norm[1] = vec[1] * SQRTF_3;
+ norm[2] = vec[2] * SQRTF_3;
+ }
+
+ aluMatrixfSet(&focus,
+ 1.0f, 0.0f, 0.0f, 0.0f,
+ norm[0], 1.0f-mag, 0.0f, 0.0f,
+ norm[1], 0.0f, 1.0f-mag, 0.0f,
+ norm[2], 0.0f, 0.0f, 1.0f-mag
+ );
+
+ return focus;
+}
+
+/* Update the early and late 3D panning gains. */
+static ALvoid Update3DPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, const ALfloat earlyGain, const ALfloat lateGain, ReverbState *State)
+{
+ aluMatrixf transform, rot;
+ ALsizei i;
+
+ STATIC_CAST(ALeffectState,State)->OutBuffer = Device->FOAOut.Buffer;
+ STATIC_CAST(ALeffectState,State)->OutChannels = Device->FOAOut.NumChannels;
+
+ /* Note: _res is transposed. */
+#define MATRIX_MULT(_res, _m1, _m2) do { \
+ int row, col; \
+ for(col = 0;col < 4;col++) \
+ { \
+ for(row = 0;row < 4;row++) \
+ _res.m[col][row] = _m1.m[row][0]*_m2.m[0][col] + _m1.m[row][1]*_m2.m[1][col] + \
+ _m1.m[row][2]*_m2.m[2][col] + _m1.m[row][3]*_m2.m[3][col]; \
+ } \
+} while(0)
+ /* Create a matrix that first converts A-Format to B-Format, then
+ * transforms the B-Format signal according to the panning vector.
+ */
+ rot = GetTransformFromVector(ReflectionsPan);
+ MATRIX_MULT(transform, rot, A2B);
+ memset(&State->Early.PanGain, 0, sizeof(State->Early.PanGain));
+ for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
+ ComputePanGains(&Device->FOAOut, transform.m[i], earlyGain,
+ State->Early.PanGain[i]);
+
+ rot = GetTransformFromVector(LateReverbPan);
+ MATRIX_MULT(transform, rot, A2B);
+ memset(&State->Late.PanGain, 0, sizeof(State->Late.PanGain));
+ for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
+ ComputePanGains(&Device->FOAOut, transform.m[i], lateGain,
+ State->Late.PanGain[i]);
+#undef MATRIX_MULT
+}
+
+static void ReverbState_update(ReverbState *State, const ALCcontext *Context, const ALeffectslot *Slot, const ALeffectProps *props)
+{
+ const ALCdevice *Device = Context->Device;
+ const ALlistener *Listener = Context->Listener;
+ ALuint frequency = Device->Frequency;
+ ALfloat lf0norm, hf0norm, hfRatio;
+ ALfloat lfDecayTime, hfDecayTime;
+ ALfloat gain, gainlf, gainhf;
+ ALsizei i;
+
+ /* Calculate the master filters */
+ hf0norm = minf(props->Reverb.HFReference / frequency, 0.49f);
+ /* Restrict the filter gains from going below -60dB to keep the filter from
+ * killing most of the signal.
+ */
+ gainhf = maxf(props->Reverb.GainHF, 0.001f);
+ BiquadFilter_setParams(&State->Filter[0].Lp, BiquadType_HighShelf, gainhf, hf0norm,
+ calc_rcpQ_from_slope(gainhf, 1.0f));
+ lf0norm = minf(props->Reverb.LFReference / frequency, 0.49f);
+ gainlf = maxf(props->Reverb.GainLF, 0.001f);
+ BiquadFilter_setParams(&State->Filter[0].Hp, BiquadType_LowShelf, gainlf, lf0norm,
+ calc_rcpQ_from_slope(gainlf, 1.0f));
+ for(i = 1;i < NUM_LINES;i++)
+ {
+ BiquadFilter_copyParams(&State->Filter[i].Lp, &State->Filter[0].Lp);
+ BiquadFilter_copyParams(&State->Filter[i].Hp, &State->Filter[0].Hp);
+ }
+
+ /* Update the main effect delay and associated taps. */
+ UpdateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay,
+ props->Reverb.Density, props->Reverb.DecayTime, frequency,
+ State);
+
+ /* Update the early lines. */
+ UpdateEarlyLines(props->Reverb.Density, props->Reverb.Diffusion,
+ props->Reverb.DecayTime, frequency, &State->Early);
+
+ /* Get the mixing matrix coefficients. */
+ CalcMatrixCoeffs(props->Reverb.Diffusion, &State->MixX, &State->MixY);
+
+ /* If the HF limit parameter is flagged, calculate an appropriate limit
+ * based on the air absorption parameter.
+ */
+ hfRatio = props->Reverb.DecayHFRatio;
+ if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f)
+ hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF,
+ props->Reverb.DecayTime, Listener->Params.ReverbSpeedOfSound
+ );
+
+ /* Calculate the LF/HF decay times. */
+ lfDecayTime = clampf(props->Reverb.DecayTime * props->Reverb.DecayLFRatio,
+ AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME);
+ hfDecayTime = clampf(props->Reverb.DecayTime * hfRatio,
+ AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME);
+
+ /* Update the late lines. */
+ UpdateLateLines(props->Reverb.Density, props->Reverb.Diffusion,
+ lfDecayTime, props->Reverb.DecayTime, hfDecayTime, lf0norm, hf0norm,
+ frequency, &State->Late
+ );
+
+ /* Update early and late 3D panning. */
+ gain = props->Reverb.Gain * Slot->Params.Gain * ReverbBoost;
+ Update3DPanning(Device, props->Reverb.ReflectionsPan, props->Reverb.LateReverbPan,
+ props->Reverb.ReflectionsGain*gain, props->Reverb.LateReverbGain*gain,
+ State);
+
+ /* Calculate the max update size from the smallest relevant delay. */
+ State->MaxUpdate[1] = mini(MAX_UPDATE_SAMPLES,
+ mini(State->Early.Offset[0][1], State->Late.Offset[0][1])
+ );
+
+ /* Determine if delay-line cross-fading is required. Density is essentially
+ * a master control for the feedback delays, so changes the offsets of many
+ * delay lines.
+ */
+ if(State->Params.Density != props->Reverb.Density ||
+ /* Diffusion and decay times influences the decay rate (gain) of the
+ * late reverb T60 filter.
+ */
+ State->Params.Diffusion != props->Reverb.Diffusion ||
+ State->Params.DecayTime != props->Reverb.DecayTime ||
+ State->Params.HFDecayTime != hfDecayTime ||
+ State->Params.LFDecayTime != lfDecayTime ||
+ /* HF/LF References control the weighting used to calculate the density
+ * gain.
+ */
+ State->Params.HFReference != props->Reverb.HFReference ||
+ State->Params.LFReference != props->Reverb.LFReference)
+ State->FadeCount = 0;
+ State->Params.Density = props->Reverb.Density;
+ State->Params.Diffusion = props->Reverb.Diffusion;
+ State->Params.DecayTime = props->Reverb.DecayTime;
+ State->Params.HFDecayTime = hfDecayTime;
+ State->Params.LFDecayTime = lfDecayTime;
+ State->Params.HFReference = props->Reverb.HFReference;
+ State->Params.LFReference = props->Reverb.LFReference;
+}
+
+
+/**************************************
+ * Effect Processing *
+ **************************************/
+
+/* Basic delay line input/output routines. */
+static inline ALfloat DelayLineOut(const DelayLineI *Delay, const ALsizei offset, const ALsizei c)
+{
+ return Delay->Line[offset&Delay->Mask][c];
+}
+
+/* Cross-faded delay line output routine. Instead of interpolating the
+ * offsets, this interpolates (cross-fades) the outputs at each offset.
+ */
+static inline ALfloat FadedDelayLineOut(const DelayLineI *Delay, const ALsizei off0,
+ const ALsizei off1, const ALsizei c,
+ const ALfloat sc0, const ALfloat sc1)
+{
+ return Delay->Line[off0&Delay->Mask][c]*sc0 +
+ Delay->Line[off1&Delay->Mask][c]*sc1;
+}
+
+
+static inline void DelayLineIn(const DelayLineI *Delay, ALsizei offset, const ALsizei c,
+ const ALfloat *RESTRICT in, ALsizei count)
+{
+ ALsizei i;
+ for(i = 0;i < count;i++)
+ Delay->Line[(offset++)&Delay->Mask][c] = *(in++);
+}
+
+/* Applies a scattering matrix to the 4-line (vector) input. This is used
+ * for both the below vector all-pass model and to perform modal feed-back
+ * delay network (FDN) mixing.
+ *
+ * The matrix is derived from a skew-symmetric matrix to form a 4D rotation
+ * matrix with a single unitary rotational parameter:
+ *
+ * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
+ * [ -a, d, c, -b ]
+ * [ -b, -c, d, a ]
+ * [ -c, b, -a, d ]
+ *
+ * The rotation is constructed from the effect's diffusion parameter,
+ * yielding:
+ *
+ * 1 = x^2 + 3 y^2
+ *
+ * Where a, b, and c are the coefficient y with differing signs, and d is the
+ * coefficient x. The final matrix is thus:
+ *
+ * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
+ * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
+ * [ y, -y, x, y ] x = cos(t)
+ * [ -y, -y, -y, x ] y = sin(t) / n
+ *
+ * Any square orthogonal matrix with an order that is a power of two will
+ * work (where ^T is transpose, ^-1 is inverse):
+ *
+ * M^T = M^-1
+ *
+ * Using that knowledge, finding an appropriate matrix can be accomplished
+ * naively by searching all combinations of:
+ *
+ * M = D + S - S^T
+ *
+ * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y)
+ * whose combination of signs are being iterated.
+ */
+static inline void VectorPartialScatter(ALfloat *RESTRICT out, const ALfloat *RESTRICT in,
+ const ALfloat xCoeff, const ALfloat yCoeff)
+{
+ out[0] = xCoeff*in[0] + yCoeff*( in[1] + -in[2] + in[3]);
+ out[1] = xCoeff*in[1] + yCoeff*(-in[0] + in[2] + in[3]);
+ out[2] = xCoeff*in[2] + yCoeff*( in[0] + -in[1] + in[3]);
+ out[3] = xCoeff*in[3] + yCoeff*(-in[0] + -in[1] + -in[2] );
+}
+#define VectorScatterDelayIn(delay, o, in, xcoeff, ycoeff) \
+ VectorPartialScatter((delay)->Line[(o)&(delay)->Mask], in, xcoeff, ycoeff)
+
+/* Utilizes the above, but reverses the input channels. */
+static inline void VectorScatterRevDelayIn(const DelayLineI *Delay, ALint offset,
+ const ALfloat xCoeff, const ALfloat yCoeff,
+ const ALfloat (*RESTRICT in)[MAX_UPDATE_SAMPLES],
+ const ALsizei count)
+{
+ const DelayLineI delay = *Delay;
+ ALsizei i, j;
+
+ for(i = 0;i < count;++i)
+ {
+ ALfloat f[NUM_LINES];
+ for(j = 0;j < NUM_LINES;j++)
+ f[NUM_LINES-1-j] = in[j][i];
+
+ VectorScatterDelayIn(&delay, offset++, f, xCoeff, yCoeff);
+ }
+}
+
+/* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass
+ * filter to the 4-line input.
+ *
+ * It works by vectorizing a regular all-pass filter and replacing the delay
+ * element with a scattering matrix (like the one above) and a diagonal
+ * matrix of delay elements.
+ *
+ * Two static specializations are used for transitional (cross-faded) delay
+ * line processing and non-transitional processing.
+ */
+static void VectorAllpass_Unfaded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES], ALsizei offset,
+ const ALfloat xCoeff, const ALfloat yCoeff, ALsizei todo,
+ VecAllpass *Vap)
+{
+ const DelayLineI delay = Vap->Delay;
+ const ALfloat feedCoeff = Vap->Coeff;
+ ALsizei vap_offset[NUM_LINES];
+ ALsizei i, j;
+
+ ASSUME(todo > 0);
+
+ for(j = 0;j < NUM_LINES;j++)
+ vap_offset[j] = offset-Vap->Offset[j][0];
+ for(i = 0;i < todo;i++)
+ {
+ ALfloat f[NUM_LINES];
+
+ for(j = 0;j < NUM_LINES;j++)
+ {
+ ALfloat input = samples[j][i];
+ ALfloat out = DelayLineOut(&delay, vap_offset[j]++, j) - feedCoeff*input;
+ f[j] = input + feedCoeff*out;
+
+ samples[j][i] = out;
+ }
+
+ VectorScatterDelayIn(&delay, offset, f, xCoeff, yCoeff);
+ ++offset;
+ }
+}
+static void VectorAllpass_Faded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES], ALsizei offset,
+ const ALfloat xCoeff, const ALfloat yCoeff, ALfloat fade,
+ ALsizei todo, VecAllpass *Vap)
+{
+ const DelayLineI delay = Vap->Delay;
+ const ALfloat feedCoeff = Vap->Coeff;
+ ALsizei vap_offset[NUM_LINES][2];
+ ALsizei i, j;
+
+ ASSUME(todo > 0);
+
+ fade *= 1.0f/FADE_SAMPLES;
+ for(j = 0;j < NUM_LINES;j++)
+ {
+ vap_offset[j][0] = offset-Vap->Offset[j][0];
+ vap_offset[j][1] = offset-Vap->Offset[j][1];
+ }
+ for(i = 0;i < todo;i++)
+ {
+ ALfloat f[NUM_LINES];
+
+ for(j = 0;j < NUM_LINES;j++)
+ {
+ ALfloat input = samples[j][i];
+ ALfloat out =
+ FadedDelayLineOut(&delay, vap_offset[j][0]++, vap_offset[j][1]++, j,
+ 1.0f-fade, fade
+ ) - feedCoeff*input;
+ f[j] = input + feedCoeff*out;
+
+ samples[j][i] = out;
+ }
+ fade += FadeStep;
+
+ VectorScatterDelayIn(&delay, offset, f, xCoeff, yCoeff);
+ ++offset;
+ }
+}
+
+/* This generates early reflections.
+ *
+ * This is done by obtaining the primary reflections (those arriving from the
+ * same direction as the source) from the main delay line. These are
+ * attenuated and all-pass filtered (based on the diffusion parameter).
+ *
+ * The early lines are then fed in reverse (according to the approximately
+ * opposite spatial location of the A-Format lines) to create the secondary
+ * reflections (those arriving from the opposite direction as the source).
+ *
+ * The early response is then completed by combining the primary reflections
+ * with the delayed and attenuated output from the early lines.
+ *
+ * Finally, the early response is reversed, scattered (based on diffusion),
+ * and fed into the late reverb section of the main delay line.
+ *
+ * Two static specializations are used for transitional (cross-faded) delay
+ * line processing and non-transitional processing.
+ */
+static void EarlyReflection_Unfaded(ReverbState *State, ALsizei offset, const ALsizei todo,
+ ALfloat (*RESTRICT out)[MAX_UPDATE_SAMPLES])
+{
+ ALfloat (*RESTRICT temps)[MAX_UPDATE_SAMPLES] = State->TempSamples;
+ const DelayLineI early_delay = State->Early.Delay;
+ const DelayLineI main_delay = State->Delay;
+ const ALfloat mixX = State->MixX;
+ const ALfloat mixY = State->MixY;
+ ALsizei late_feed_tap;
+ ALsizei i, j;
+
+ ASSUME(todo > 0);
+
+ /* First, load decorrelated samples from the main delay line as the primary
+ * reflections.
+ */
+ for(j = 0;j < NUM_LINES;j++)
+ {
+ ALsizei early_delay_tap = offset - State->EarlyDelayTap[j][0];
+ ALfloat coeff = State->EarlyDelayCoeff[j][0];
+ for(i = 0;i < todo;i++)
+ temps[j][i] = DelayLineOut(&main_delay, early_delay_tap++, j) * coeff;
+ }
+
+ /* Apply a vector all-pass, to help color the initial reflections based on
+ * the diffusion strength.
+ */
+ VectorAllpass_Unfaded(temps, offset, mixX, mixY, todo, &State->Early.VecAp);
+
+ /* Apply a delay and bounce to generate secondary reflections, combine with
+ * the primary reflections and write out the result for mixing.
+ */
+ for(j = 0;j < NUM_LINES;j++)
+ {
+ ALint early_feedb_tap = offset - State->Early.Offset[j][0];
+ ALfloat early_feedb_coeff = State->Early.Coeff[j][0];
+
+ for(i = 0;i < todo;i++)
+ out[j][i] = DelayLineOut(&early_delay, early_feedb_tap++, j)*early_feedb_coeff +
+ temps[j][i];
+ }
+ for(j = 0;j < NUM_LINES;j++)
+ DelayLineIn(&early_delay, offset, NUM_LINES-1-j, temps[j], todo);
+
+ /* Also write the result back to the main delay line for the late reverb
+ * stage to pick up at the appropriate time, appplying a scatter and
+ * bounce to improve the initial diffusion in the late reverb.
+ */
+ late_feed_tap = offset - State->LateFeedTap;
+ VectorScatterRevDelayIn(&main_delay, late_feed_tap, mixX, mixY, out, todo);
+}
+static void EarlyReflection_Faded(ReverbState *State, ALsizei offset, const ALsizei todo,
+ const ALfloat fade, ALfloat (*RESTRICT out)[MAX_UPDATE_SAMPLES])
+{
+ ALfloat (*RESTRICT temps)[MAX_UPDATE_SAMPLES] = State->TempSamples;
+ const DelayLineI early_delay = State->Early.Delay;
+ const DelayLineI main_delay = State->Delay;
+ const ALfloat mixX = State->MixX;
+ const ALfloat mixY = State->MixY;
+ ALsizei late_feed_tap;
+ ALsizei i, j;
+
+ ASSUME(todo > 0);
+
+ for(j = 0;j < NUM_LINES;j++)
+ {
+ ALsizei early_delay_tap0 = offset - State->EarlyDelayTap[j][0];
+ ALsizei early_delay_tap1 = offset - State->EarlyDelayTap[j][1];
+ ALfloat oldCoeff = State->EarlyDelayCoeff[j][0];
+ ALfloat oldCoeffStep = -oldCoeff / FADE_SAMPLES;
+ ALfloat newCoeffStep = State->EarlyDelayCoeff[j][1] / FADE_SAMPLES;
+ ALfloat fadeCount = fade;
+
+ for(i = 0;i < todo;i++)
+ {
+ const ALfloat fade0 = oldCoeff + oldCoeffStep*fadeCount;
+ const ALfloat fade1 = newCoeffStep*fadeCount;
+ temps[j][i] = FadedDelayLineOut(&main_delay,
+ early_delay_tap0++, early_delay_tap1++, j, fade0, fade1
+ );
+ fadeCount += 1.0f;
+ }
+ }
+
+ VectorAllpass_Faded(temps, offset, mixX, mixY, fade, todo, &State->Early.VecAp);
+
+ for(j = 0;j < NUM_LINES;j++)
+ {
+ ALint feedb_tap0 = offset - State->Early.Offset[j][0];
+ ALint feedb_tap1 = offset - State->Early.Offset[j][1];
+ ALfloat feedb_oldCoeff = State->Early.Coeff[j][0];
+ ALfloat feedb_oldCoeffStep = -feedb_oldCoeff / FADE_SAMPLES;
+ ALfloat feedb_newCoeffStep = State->Early.Coeff[j][1] / FADE_SAMPLES;
+ ALfloat fadeCount = fade;
+
+ for(i = 0;i < todo;i++)
+ {
+ const ALfloat fade0 = feedb_oldCoeff + feedb_oldCoeffStep*fadeCount;
+ const ALfloat fade1 = feedb_newCoeffStep*fadeCount;
+ out[j][i] = FadedDelayLineOut(&early_delay,
+ feedb_tap0++, feedb_tap1++, j, fade0, fade1
+ ) + temps[j][i];
+ fadeCount += 1.0f;
+ }
+ }
+ for(j = 0;j < NUM_LINES;j++)
+ DelayLineIn(&early_delay, offset, NUM_LINES-1-j, temps[j], todo);
+
+ late_feed_tap = offset - State->LateFeedTap;
+ VectorScatterRevDelayIn(&main_delay, late_feed_tap, mixX, mixY, out, todo);
+}
+
+/* Applies the two T60 damping filter sections. */
+static inline void LateT60Filter(ALfloat *RESTRICT samples, const ALsizei todo, T60Filter *filter)
+{
+ ALfloat temp[MAX_UPDATE_SAMPLES];
+ BiquadFilter_process(&filter->HFFilter, temp, samples, todo);
+ BiquadFilter_process(&filter->LFFilter, samples, temp, todo);
+}
+
+/* This generates the reverb tail using a modified feed-back delay network
+ * (FDN).
+ *
+ * Results from the early reflections are mixed with the output from the late
+ * delay lines.
+ *
+ * The late response is then completed by T60 and all-pass filtering the mix.
+ *
+ * Finally, the lines are reversed (so they feed their opposite directions)
+ * and scattered with the FDN matrix before re-feeding the delay lines.
+ *
+ * Two variations are made, one for for transitional (cross-faded) delay line
+ * processing and one for non-transitional processing.
+ */
+static void LateReverb_Unfaded(ReverbState *State, ALsizei offset, const ALsizei todo,
+ ALfloat (*RESTRICT out)[MAX_UPDATE_SAMPLES])
+{
+ ALfloat (*RESTRICT temps)[MAX_UPDATE_SAMPLES] = State->TempSamples;
+ const DelayLineI late_delay = State->Late.Delay;
+ const DelayLineI main_delay = State->Delay;
+ const ALfloat mixX = State->MixX;
+ const ALfloat mixY = State->MixY;
+ ALsizei i, j;
+
+ ASSUME(todo > 0);
+
+ /* First, load decorrelated samples from the main and feedback delay lines.
+ * Filter the signal to apply its frequency-dependent decay.
+ */
+ for(j = 0;j < NUM_LINES;j++)
+ {
+ ALsizei late_delay_tap = offset - State->LateDelayTap[j][0];
+ ALsizei late_feedb_tap = offset - State->Late.Offset[j][0];
+ ALfloat midGain = State->Late.T60[j].MidGain[0];
+ const ALfloat densityGain = State->Late.DensityGain[0] * midGain;
+ for(i = 0;i < todo;i++)
+ temps[j][i] = DelayLineOut(&main_delay, late_delay_tap++, j)*densityGain +
+ DelayLineOut(&late_delay, late_feedb_tap++, j)*midGain;
+ LateT60Filter(temps[j], todo, &State->Late.T60[j]);
+ }
+
+ /* Apply a vector all-pass to improve micro-surface diffusion, and write
+ * out the results for mixing.
+ */
+ VectorAllpass_Unfaded(temps, offset, mixX, mixY, todo, &State->Late.VecAp);
+
+ for(j = 0;j < NUM_LINES;j++)
+ memcpy(out[j], temps[j], todo*sizeof(ALfloat));
+
+ /* Finally, scatter and bounce the results to refeed the feedback buffer. */
+ VectorScatterRevDelayIn(&late_delay, offset, mixX, mixY, out, todo);
+}
+static void LateReverb_Faded(ReverbState *State, ALsizei offset, const ALsizei todo,
+ const ALfloat fade, ALfloat (*RESTRICT out)[MAX_UPDATE_SAMPLES])
+{
+ ALfloat (*RESTRICT temps)[MAX_UPDATE_SAMPLES] = State->TempSamples;
+ const DelayLineI late_delay = State->Late.Delay;
+ const DelayLineI main_delay = State->Delay;
+ const ALfloat mixX = State->MixX;
+ const ALfloat mixY = State->MixY;
+ ALsizei i, j;
+
+ ASSUME(todo > 0);
+
+ for(j = 0;j < NUM_LINES;j++)
+ {
+ const ALfloat oldMidGain = State->Late.T60[j].MidGain[0];
+ const ALfloat midGain = State->Late.T60[j].MidGain[1];
+ const ALfloat oldMidStep = -oldMidGain / FADE_SAMPLES;
+ const ALfloat midStep = midGain / FADE_SAMPLES;
+ const ALfloat oldDensityGain = State->Late.DensityGain[0] * oldMidGain;
+ const ALfloat densityGain = State->Late.DensityGain[1] * midGain;
+ const ALfloat oldDensityStep = -oldDensityGain / FADE_SAMPLES;
+ const ALfloat densityStep = densityGain / FADE_SAMPLES;
+ ALsizei late_delay_tap0 = offset - State->LateDelayTap[j][0];
+ ALsizei late_delay_tap1 = offset - State->LateDelayTap[j][1];
+ ALsizei late_feedb_tap0 = offset - State->Late.Offset[j][0];
+ ALsizei late_feedb_tap1 = offset - State->Late.Offset[j][1];
+ ALfloat fadeCount = fade;
+
+ for(i = 0;i < todo;i++)
+ {
+ const ALfloat fade0 = oldDensityGain + oldDensityStep*fadeCount;
+ const ALfloat fade1 = densityStep*fadeCount;
+ const ALfloat gfade0 = oldMidGain + oldMidStep*fadeCount;
+ const ALfloat gfade1 = midStep*fadeCount;
+ temps[j][i] =
+ FadedDelayLineOut(&main_delay, late_delay_tap0++, late_delay_tap1++, j,
+ fade0, fade1) +
+ FadedDelayLineOut(&late_delay, late_feedb_tap0++, late_feedb_tap1++, j,
+ gfade0, gfade1);
+ fadeCount += 1.0f;
+ }
+ LateT60Filter(temps[j], todo, &State->Late.T60[j]);
+ }
+
+ VectorAllpass_Faded(temps, offset, mixX, mixY, fade, todo, &State->Late.VecAp);
+
+ for(j = 0;j < NUM_LINES;j++)
+ memcpy(out[j], temps[j], todo*sizeof(ALfloat));
+
+ VectorScatterRevDelayIn(&late_delay, offset, mixX, mixY, temps, todo);
+}
+
+static ALvoid ReverbState_process(ReverbState *State, ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesIn)[BUFFERSIZE], ALfloat (*RESTRICT SamplesOut)[BUFFERSIZE], ALsizei NumChannels)
+{
+ ALfloat (*RESTRICT afmt)[MAX_UPDATE_SAMPLES] = State->TempSamples;
+ ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES] = State->MixSamples;
+ ALsizei fadeCount = State->FadeCount;
+ ALsizei offset = State->Offset;
+ ALsizei base, c;
+
+ /* Process reverb for these samples. */
+ for(base = 0;base < SamplesToDo;)
+ {
+ ALsizei todo = SamplesToDo - base;
+ /* If cross-fading, don't do more samples than there are to fade. */
+ if(FADE_SAMPLES-fadeCount > 0)
+ {
+ todo = mini(todo, FADE_SAMPLES-fadeCount);
+ todo = mini(todo, State->MaxUpdate[0]);
+ }
+ todo = mini(todo, State->MaxUpdate[1]);
+ /* If this is not the final update, ensure the update size is a
+ * multiple of 4 for the SIMD mixers.
+ */
+ if(todo < SamplesToDo-base)
+ todo &= ~3;
+
+ /* Convert B-Format to A-Format for processing. */
+ memset(afmt, 0, sizeof(*afmt)*NUM_LINES);
+ for(c = 0;c < NUM_LINES;c++)
+ MixRowSamples(afmt[c], B2A.m[c],
+ SamplesIn, MAX_EFFECT_CHANNELS, base, todo
+ );
+
+ /* Process the samples for reverb. */
+ for(c = 0;c < NUM_LINES;c++)
+ {
+ /* Band-pass the incoming samples. */
+ BiquadFilter_process(&State->Filter[c].Lp, samples[0], afmt[c], todo);
+ BiquadFilter_process(&State->Filter[c].Hp, samples[1], samples[0], todo);
+
+ /* Feed the initial delay line. */
+ DelayLineIn(&State->Delay, offset, c, samples[1], todo);
+ }
+
+ if(UNLIKELY(fadeCount < FADE_SAMPLES))
+ {
+ ALfloat fade = (ALfloat)fadeCount;
+
+ /* Generate early reflections. */
+ EarlyReflection_Faded(State, offset, todo, fade, samples);
+ /* Mix the A-Format results to output, implicitly converting back
+ * to B-Format.
+ */
+ for(c = 0;c < NUM_LINES;c++)
+ MixSamples(samples[c], NumChannels, SamplesOut,
+ State->Early.CurrentGain[c], State->Early.PanGain[c],
+ SamplesToDo-base, base, todo
+ );
+
+ /* Generate and mix late reverb. */
+ LateReverb_Faded(State, offset, todo, fade, samples);
+ for(c = 0;c < NUM_LINES;c++)
+ MixSamples(samples[c], NumChannels, SamplesOut,
+ State->Late.CurrentGain[c], State->Late.PanGain[c],
+ SamplesToDo-base, base, todo
+ );
+
+ /* Step fading forward. */
+ fadeCount += todo;
+ if(LIKELY(fadeCount >= FADE_SAMPLES))
+ {
+ /* Update the cross-fading delay line taps. */
+ fadeCount = FADE_SAMPLES;
+ for(c = 0;c < NUM_LINES;c++)
+ {
+ State->EarlyDelayTap[c][0] = State->EarlyDelayTap[c][1];
+ State->EarlyDelayCoeff[c][0] = State->EarlyDelayCoeff[c][1];
+ State->Early.VecAp.Offset[c][0] = State->Early.VecAp.Offset[c][1];
+ State->Early.Offset[c][0] = State->Early.Offset[c][1];
+ State->Early.Coeff[c][0] = State->Early.Coeff[c][1];
+ State->LateDelayTap[c][0] = State->LateDelayTap[c][1];
+ State->Late.VecAp.Offset[c][0] = State->Late.VecAp.Offset[c][1];
+ State->Late.Offset[c][0] = State->Late.Offset[c][1];
+ State->Late.T60[c].MidGain[0] = State->Late.T60[c].MidGain[1];
+ }
+ State->Late.DensityGain[0] = State->Late.DensityGain[1];
+ State->MaxUpdate[0] = State->MaxUpdate[1];
+ }
+ }
+ else
+ {
+ /* Generate and mix early reflections. */
+ EarlyReflection_Unfaded(State, offset, todo, samples);
+ for(c = 0;c < NUM_LINES;c++)
+ MixSamples(samples[c], NumChannels, SamplesOut,
+ State->Early.CurrentGain[c], State->Early.PanGain[c],
+ SamplesToDo-base, base, todo
+ );
+
+ /* Generate and mix late reverb. */
+ LateReverb_Unfaded(State, offset, todo, samples);
+ for(c = 0;c < NUM_LINES;c++)
+ MixSamples(samples[c], NumChannels, SamplesOut,
+ State->Late.CurrentGain[c], State->Late.PanGain[c],
+ SamplesToDo-base, base, todo
+ );
+ }
+
+ /* Step all delays forward. */
+ offset += todo;
+
+ base += todo;
+ }
+ State->Offset = offset;
+ State->FadeCount = fadeCount;
+}
+
+
+struct ReverbStateFactory final : public EffectStateFactory {
+ ReverbStateFactory() noexcept;
+};
+
+static ALeffectState *ReverbStateFactory_create(ReverbStateFactory* UNUSED(factory))
+{
+ ReverbState *state;
+
+ NEW_OBJ0(state, ReverbState)();
+ if(!state) return NULL;
+
+ return STATIC_CAST(ALeffectState, state);
+}
+
+DEFINE_EFFECTSTATEFACTORY_VTABLE(ReverbStateFactory);
+
+ReverbStateFactory::ReverbStateFactory() noexcept
+ : EffectStateFactory{GET_VTABLE2(ReverbStateFactory, EffectStateFactory)}
+{
+}
+
+EffectStateFactory *ReverbStateFactory_getFactory(void)
+{
+ static ReverbStateFactory ReverbFactory{};
+ return STATIC_CAST(EffectStateFactory, &ReverbFactory);
+}
+
+
+void ALeaxreverb_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
+{
+ ALeffectProps *props = &effect->Props;
+ switch(param)
+ {
+ case AL_EAXREVERB_DECAY_HFLIMIT:
+ if(!(val >= AL_EAXREVERB_MIN_DECAY_HFLIMIT && val <= AL_EAXREVERB_MAX_DECAY_HFLIMIT))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay hflimit out of range");
+ props->Reverb.DecayHFLimit = val;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb integer property 0x%04x",
+ param);
+ }
+}
+void ALeaxreverb_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
+{ ALeaxreverb_setParami(effect, context, param, vals[0]); }
+void ALeaxreverb_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
+{
+ ALeffectProps *props = &effect->Props;
+ switch(param)
+ {
+ case AL_EAXREVERB_DENSITY:
+ if(!(val >= AL_EAXREVERB_MIN_DENSITY && val <= AL_EAXREVERB_MAX_DENSITY))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb density out of range");
+ props->Reverb.Density = val;
+ break;
+
+ case AL_EAXREVERB_DIFFUSION:
+ if(!(val >= AL_EAXREVERB_MIN_DIFFUSION && val <= AL_EAXREVERB_MAX_DIFFUSION))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb diffusion out of range");
+ props->Reverb.Diffusion = val;
+ break;
+
+ case AL_EAXREVERB_GAIN:
+ if(!(val >= AL_EAXREVERB_MIN_GAIN && val <= AL_EAXREVERB_MAX_GAIN))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gain out of range");
+ props->Reverb.Gain = val;
+ break;
+
+ case AL_EAXREVERB_GAINHF:
+ if(!(val >= AL_EAXREVERB_MIN_GAINHF && val <= AL_EAXREVERB_MAX_GAINHF))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gainhf out of range");
+ props->Reverb.GainHF = val;
+ break;
+
+ case AL_EAXREVERB_GAINLF:
+ if(!(val >= AL_EAXREVERB_MIN_GAINLF && val <= AL_EAXREVERB_MAX_GAINLF))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gainlf out of range");
+ props->Reverb.GainLF = val;
+ break;
+
+ case AL_EAXREVERB_DECAY_TIME:
+ if(!(val >= AL_EAXREVERB_MIN_DECAY_TIME && val <= AL_EAXREVERB_MAX_DECAY_TIME))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay time out of range");
+ props->Reverb.DecayTime = val;
+ break;
+
+ case AL_EAXREVERB_DECAY_HFRATIO:
+ if(!(val >= AL_EAXREVERB_MIN_DECAY_HFRATIO && val <= AL_EAXREVERB_MAX_DECAY_HFRATIO))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay hfratio out of range");
+ props->Reverb.DecayHFRatio = val;
+ break;
+
+ case AL_EAXREVERB_DECAY_LFRATIO:
+ if(!(val >= AL_EAXREVERB_MIN_DECAY_LFRATIO && val <= AL_EAXREVERB_MAX_DECAY_LFRATIO))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay lfratio out of range");
+ props->Reverb.DecayLFRatio = val;
+ break;
+
+ case AL_EAXREVERB_REFLECTIONS_GAIN:
+ if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_GAIN && val <= AL_EAXREVERB_MAX_REFLECTIONS_GAIN))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections gain out of range");
+ props->Reverb.ReflectionsGain = val;
+ break;
+
+ case AL_EAXREVERB_REFLECTIONS_DELAY:
+ if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_DELAY && val <= AL_EAXREVERB_MAX_REFLECTIONS_DELAY))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections delay out of range");
+ props->Reverb.ReflectionsDelay = val;
+ break;
+
+ case AL_EAXREVERB_LATE_REVERB_GAIN:
+ if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_GAIN && val <= AL_EAXREVERB_MAX_LATE_REVERB_GAIN))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb gain out of range");
+ props->Reverb.LateReverbGain = val;
+ break;
+
+ case AL_EAXREVERB_LATE_REVERB_DELAY:
+ if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_DELAY && val <= AL_EAXREVERB_MAX_LATE_REVERB_DELAY))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb delay out of range");
+ props->Reverb.LateReverbDelay = val;
+ break;
+
+ case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
+ if(!(val >= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb air absorption gainhf out of range");
+ props->Reverb.AirAbsorptionGainHF = val;
+ break;
+
+ case AL_EAXREVERB_ECHO_TIME:
+ if(!(val >= AL_EAXREVERB_MIN_ECHO_TIME && val <= AL_EAXREVERB_MAX_ECHO_TIME))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb echo time out of range");
+ props->Reverb.EchoTime = val;
+ break;
+
+ case AL_EAXREVERB_ECHO_DEPTH:
+ if(!(val >= AL_EAXREVERB_MIN_ECHO_DEPTH && val <= AL_EAXREVERB_MAX_ECHO_DEPTH))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb echo depth out of range");
+ props->Reverb.EchoDepth = val;
+ break;
+
+ case AL_EAXREVERB_MODULATION_TIME:
+ if(!(val >= AL_EAXREVERB_MIN_MODULATION_TIME && val <= AL_EAXREVERB_MAX_MODULATION_TIME))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb modulation time out of range");
+ props->Reverb.ModulationTime = val;
+ break;
+
+ case AL_EAXREVERB_MODULATION_DEPTH:
+ if(!(val >= AL_EAXREVERB_MIN_MODULATION_DEPTH && val <= AL_EAXREVERB_MAX_MODULATION_DEPTH))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb modulation depth out of range");
+ props->Reverb.ModulationDepth = val;
+ break;
+
+ case AL_EAXREVERB_HFREFERENCE:
+ if(!(val >= AL_EAXREVERB_MIN_HFREFERENCE && val <= AL_EAXREVERB_MAX_HFREFERENCE))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb hfreference out of range");
+ props->Reverb.HFReference = val;
+ break;
+
+ case AL_EAXREVERB_LFREFERENCE:
+ if(!(val >= AL_EAXREVERB_MIN_LFREFERENCE && val <= AL_EAXREVERB_MAX_LFREFERENCE))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb lfreference out of range");
+ props->Reverb.LFReference = val;
+ break;
+
+ case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
+ if(!(val >= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb room rolloff factor out of range");
+ props->Reverb.RoomRolloffFactor = val;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb float property 0x%04x",
+ param);
+ }
+}
+void ALeaxreverb_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
+{
+ ALeffectProps *props = &effect->Props;
+ switch(param)
+ {
+ case AL_EAXREVERB_REFLECTIONS_PAN:
+ if(!(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2])))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections pan out of range");
+ props->Reverb.ReflectionsPan[0] = vals[0];
+ props->Reverb.ReflectionsPan[1] = vals[1];
+ props->Reverb.ReflectionsPan[2] = vals[2];
+ break;
+ case AL_EAXREVERB_LATE_REVERB_PAN:
+ if(!(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2])))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb pan out of range");
+ props->Reverb.LateReverbPan[0] = vals[0];
+ props->Reverb.LateReverbPan[1] = vals[1];
+ props->Reverb.LateReverbPan[2] = vals[2];
+ break;
+
+ default:
+ ALeaxreverb_setParamf(effect, context, param, vals[0]);
+ break;
+ }
+}
+
+void ALeaxreverb_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
+{
+ const ALeffectProps *props = &effect->Props;
+ switch(param)
+ {
+ case AL_EAXREVERB_DECAY_HFLIMIT:
+ *val = props->Reverb.DecayHFLimit;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb integer property 0x%04x",
+ param);
+ }
+}
+void ALeaxreverb_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
+{ ALeaxreverb_getParami(effect, context, param, vals); }
+void ALeaxreverb_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
+{
+ const ALeffectProps *props = &effect->Props;
+ switch(param)
+ {
+ case AL_EAXREVERB_DENSITY:
+ *val = props->Reverb.Density;
+ break;
+
+ case AL_EAXREVERB_DIFFUSION:
+ *val = props->Reverb.Diffusion;
+ break;
+
+ case AL_EAXREVERB_GAIN:
+ *val = props->Reverb.Gain;
+ break;
+
+ case AL_EAXREVERB_GAINHF:
+ *val = props->Reverb.GainHF;
+ break;
+
+ case AL_EAXREVERB_GAINLF:
+ *val = props->Reverb.GainLF;
+ break;
+
+ case AL_EAXREVERB_DECAY_TIME:
+ *val = props->Reverb.DecayTime;
+ break;
+
+ case AL_EAXREVERB_DECAY_HFRATIO:
+ *val = props->Reverb.DecayHFRatio;
+ break;
+
+ case AL_EAXREVERB_DECAY_LFRATIO:
+ *val = props->Reverb.DecayLFRatio;
+ break;
+
+ case AL_EAXREVERB_REFLECTIONS_GAIN:
+ *val = props->Reverb.ReflectionsGain;
+ break;
+
+ case AL_EAXREVERB_REFLECTIONS_DELAY:
+ *val = props->Reverb.ReflectionsDelay;
+ break;
+
+ case AL_EAXREVERB_LATE_REVERB_GAIN:
+ *val = props->Reverb.LateReverbGain;
+ break;
+
+ case AL_EAXREVERB_LATE_REVERB_DELAY:
+ *val = props->Reverb.LateReverbDelay;
+ break;
+
+ case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
+ *val = props->Reverb.AirAbsorptionGainHF;
+ break;
+
+ case AL_EAXREVERB_ECHO_TIME:
+ *val = props->Reverb.EchoTime;
+ break;
+
+ case AL_EAXREVERB_ECHO_DEPTH:
+ *val = props->Reverb.EchoDepth;
+ break;
+
+ case AL_EAXREVERB_MODULATION_TIME:
+ *val = props->Reverb.ModulationTime;
+ break;
+
+ case AL_EAXREVERB_MODULATION_DEPTH:
+ *val = props->Reverb.ModulationDepth;
+ break;
+
+ case AL_EAXREVERB_HFREFERENCE:
+ *val = props->Reverb.HFReference;
+ break;
+
+ case AL_EAXREVERB_LFREFERENCE:
+ *val = props->Reverb.LFReference;
+ break;
+
+ case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
+ *val = props->Reverb.RoomRolloffFactor;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb float property 0x%04x",
+ param);
+ }
+}
+void ALeaxreverb_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
+{
+ const ALeffectProps *props = &effect->Props;
+ switch(param)
+ {
+ case AL_EAXREVERB_REFLECTIONS_PAN:
+ vals[0] = props->Reverb.ReflectionsPan[0];
+ vals[1] = props->Reverb.ReflectionsPan[1];
+ vals[2] = props->Reverb.ReflectionsPan[2];
+ break;
+ case AL_EAXREVERB_LATE_REVERB_PAN:
+ vals[0] = props->Reverb.LateReverbPan[0];
+ vals[1] = props->Reverb.LateReverbPan[1];
+ vals[2] = props->Reverb.LateReverbPan[2];
+ break;
+
+ default:
+ ALeaxreverb_getParamf(effect, context, param, vals);
+ break;
+ }
+}
+
+DEFINE_ALEFFECT_VTABLE(ALeaxreverb);
+
+void ALreverb_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
+{
+ ALeffectProps *props = &effect->Props;
+ switch(param)
+ {
+ case AL_REVERB_DECAY_HFLIMIT:
+ if(!(val >= AL_REVERB_MIN_DECAY_HFLIMIT && val <= AL_REVERB_MAX_DECAY_HFLIMIT))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay hflimit out of range");
+ props->Reverb.DecayHFLimit = val;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid reverb integer property 0x%04x", param);
+ }
+}
+void ALreverb_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
+{ ALreverb_setParami(effect, context, param, vals[0]); }
+void ALreverb_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
+{
+ ALeffectProps *props = &effect->Props;
+ switch(param)
+ {
+ case AL_REVERB_DENSITY:
+ if(!(val >= AL_REVERB_MIN_DENSITY && val <= AL_REVERB_MAX_DENSITY))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb density out of range");
+ props->Reverb.Density = val;
+ break;
+
+ case AL_REVERB_DIFFUSION:
+ if(!(val >= AL_REVERB_MIN_DIFFUSION && val <= AL_REVERB_MAX_DIFFUSION))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb diffusion out of range");
+ props->Reverb.Diffusion = val;
+ break;
+
+ case AL_REVERB_GAIN:
+ if(!(val >= AL_REVERB_MIN_GAIN && val <= AL_REVERB_MAX_GAIN))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb gain out of range");
+ props->Reverb.Gain = val;
+ break;
+
+ case AL_REVERB_GAINHF:
+ if(!(val >= AL_REVERB_MIN_GAINHF && val <= AL_REVERB_MAX_GAINHF))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb gainhf out of range");
+ props->Reverb.GainHF = val;
+ break;
+
+ case AL_REVERB_DECAY_TIME:
+ if(!(val >= AL_REVERB_MIN_DECAY_TIME && val <= AL_REVERB_MAX_DECAY_TIME))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay time out of range");
+ props->Reverb.DecayTime = val;
+ break;
+
+ case AL_REVERB_DECAY_HFRATIO:
+ if(!(val >= AL_REVERB_MIN_DECAY_HFRATIO && val <= AL_REVERB_MAX_DECAY_HFRATIO))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay hfratio out of range");
+ props->Reverb.DecayHFRatio = val;
+ break;
+
+ case AL_REVERB_REFLECTIONS_GAIN:
+ if(!(val >= AL_REVERB_MIN_REFLECTIONS_GAIN && val <= AL_REVERB_MAX_REFLECTIONS_GAIN))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb reflections gain out of range");
+ props->Reverb.ReflectionsGain = val;
+ break;
+
+ case AL_REVERB_REFLECTIONS_DELAY:
+ if(!(val >= AL_REVERB_MIN_REFLECTIONS_DELAY && val <= AL_REVERB_MAX_REFLECTIONS_DELAY))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb reflections delay out of range");
+ props->Reverb.ReflectionsDelay = val;
+ break;
+
+ case AL_REVERB_LATE_REVERB_GAIN:
+ if(!(val >= AL_REVERB_MIN_LATE_REVERB_GAIN && val <= AL_REVERB_MAX_LATE_REVERB_GAIN))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb late reverb gain out of range");
+ props->Reverb.LateReverbGain = val;
+ break;
+
+ case AL_REVERB_LATE_REVERB_DELAY:
+ if(!(val >= AL_REVERB_MIN_LATE_REVERB_DELAY && val <= AL_REVERB_MAX_LATE_REVERB_DELAY))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb late reverb delay out of range");
+ props->Reverb.LateReverbDelay = val;
+ break;
+
+ case AL_REVERB_AIR_ABSORPTION_GAINHF:
+ if(!(val >= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb air absorption gainhf out of range");
+ props->Reverb.AirAbsorptionGainHF = val;
+ break;
+
+ case AL_REVERB_ROOM_ROLLOFF_FACTOR:
+ if(!(val >= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb room rolloff factor out of range");
+ props->Reverb.RoomRolloffFactor = val;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid reverb float property 0x%04x", param);
+ }
+}
+void ALreverb_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
+{ ALreverb_setParamf(effect, context, param, vals[0]); }
+
+void ALreverb_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
+{
+ const ALeffectProps *props = &effect->Props;
+ switch(param)
+ {
+ case AL_REVERB_DECAY_HFLIMIT:
+ *val = props->Reverb.DecayHFLimit;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid reverb integer property 0x%04x", param);
+ }
+}
+void ALreverb_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
+{ ALreverb_getParami(effect, context, param, vals); }
+void ALreverb_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
+{
+ const ALeffectProps *props = &effect->Props;
+ switch(param)
+ {
+ case AL_REVERB_DENSITY:
+ *val = props->Reverb.Density;
+ break;
+
+ case AL_REVERB_DIFFUSION:
+ *val = props->Reverb.Diffusion;
+ break;
+
+ case AL_REVERB_GAIN:
+ *val = props->Reverb.Gain;
+ break;
+
+ case AL_REVERB_GAINHF:
+ *val = props->Reverb.GainHF;
+ break;
+
+ case AL_REVERB_DECAY_TIME:
+ *val = props->Reverb.DecayTime;
+ break;
+
+ case AL_REVERB_DECAY_HFRATIO:
+ *val = props->Reverb.DecayHFRatio;
+ break;
+
+ case AL_REVERB_REFLECTIONS_GAIN:
+ *val = props->Reverb.ReflectionsGain;
+ break;
+
+ case AL_REVERB_REFLECTIONS_DELAY:
+ *val = props->Reverb.ReflectionsDelay;
+ break;
+
+ case AL_REVERB_LATE_REVERB_GAIN:
+ *val = props->Reverb.LateReverbGain;
+ break;
+
+ case AL_REVERB_LATE_REVERB_DELAY:
+ *val = props->Reverb.LateReverbDelay;
+ break;
+
+ case AL_REVERB_AIR_ABSORPTION_GAINHF:
+ *val = props->Reverb.AirAbsorptionGainHF;
+ break;
+
+ case AL_REVERB_ROOM_ROLLOFF_FACTOR:
+ *val = props->Reverb.RoomRolloffFactor;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid reverb float property 0x%04x", param);
+ }
+}
+void ALreverb_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
+{ ALreverb_getParamf(effect, context, param, vals); }
+
+DEFINE_ALEFFECT_VTABLE(ALreverb);