diff options
author | Chris Robinson <[email protected]> | 2017-01-28 17:15:47 -0800 |
---|---|---|
committer | Chris Robinson <[email protected]> | 2017-01-28 17:15:47 -0800 |
commit | 3cc88b0aab9914ec6ebc4655d7d3e99fa9730431 (patch) | |
tree | 7860349b819c93800e03d407ae5529cbdad63c64 /Alc/effects | |
parent | 6b2297b5080ca5ba56759ca2f28206c9af277d42 (diff) |
Use an all-pass series on each late reverb line
This attempts to improve the smoothness of the late reverb decay by passing
each line through multiple all-pass filters. Some work is still needed to work
better in high-density and not-so-high-diffusion environments.
This also removes the decay from the early reflections, since it's no longer
continuous feedback.
Diffstat (limited to 'Alc/effects')
-rw-r--r-- | Alc/effects/reverb.c | 657 |
1 files changed, 396 insertions, 261 deletions
diff --git a/Alc/effects/reverb.c b/Alc/effects/reverb.c index 54587f7e..c0b5546f 100644 --- a/Alc/effects/reverb.c +++ b/Alc/effects/reverb.c @@ -33,6 +33,95 @@ #include "mixer_defs.h" +static const int PrimeTable[1024] = { + 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, + 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, + 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, + 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, + 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, + 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, + 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, + 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, + 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, + 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, + 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, + 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, + 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, + 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, + 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, + 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, + 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, + 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, + 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, + 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, + 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, + 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, + 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, + 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, + 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, + 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, + 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, + 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, + 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, + 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, + 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, + 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, + 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, + 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, + 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, + 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, + 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, + 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, + 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, + 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, + 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, + 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, + 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, + 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, + 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, + 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, + 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, + 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, + 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, + 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, + 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, + 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, + 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, + 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, + 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, + 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, + 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, + 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, + 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, + 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, + 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, + 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, + 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, + 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, + 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, + 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, + 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, + 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, + 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, + 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, + 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, + 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, + 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, + 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, + 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, + 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, + 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, + 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, + 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, + 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, + 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, + 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, + 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, + 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, + 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, + 8117, 8123, 8147, 8161 +}; + /* This is the maximum number of samples processed for each inner loop * iteration. */ #define MAX_UPDATE_SAMPLES 256 @@ -49,11 +138,10 @@ static void init_mixfunc(void) } -typedef struct DelayLine -{ +typedef struct DelayLine { // The delay lines use sample lengths that are powers of 2 to allow the // use of bit-masking instead of a modulus for wrapping. - ALuint Mask; + ALsizei Mask; ALfloat *Line; } DelayLine; @@ -93,14 +181,13 @@ typedef struct ALreverbState { /* The tap points for the initial delay. First set go to early * reflections, second to late reverb. */ - ALuint EarlyDelayTap[4]; - ALuint LateDelayTap[4]; + ALsizei EarlyDelayTap[4]; + ALsizei LateDelayTap[4]; struct { // Early reflections are done with 4 delay lines. - ALfloat Coeff[4]; DelayLine Delay[4]; - ALuint Offset[4]; + ALsizei Offset[4]; // The gain for each output channel based on 3D panning. ALfloat CurrentGain[4][MAX_OUTPUT_CHANNELS]; @@ -108,37 +195,39 @@ typedef struct ALreverbState { } Early; struct { - // Output gain for late reverb. - ALfloat Gain; - // Attenuation to compensate for the modal density and decay rate of // the late lines. - ALfloat DensityGain; + ALfloat DensityGain; - // The feed-back and feed-forward all-pass coefficient. - ALfloat ApFeedCoeff; - - // Mixing matrix coefficient. - ALfloat MixCoeff; - - // Late reverb has 4 parallel all-pass filters. - struct { - ALfloat Coeff; - DelayLine Delay; - ALuint Offset; - } Ap[4]; - - // In addition to 4 cyclical delay lines. + // In addition to 4 delay lines. ALfloat Coeff[4]; DelayLine Delay[4]; - ALuint Offset[4]; + ALsizei Offset[4]; - // The cyclical delay lines are 1-pole low-pass filtered. + // The delay lines are 1-pole low-pass filtered. struct { ALfloat Sample; ALfloat Coeff; } Lp[4]; + /* Late reverb has 3 all-pass filters in series on each of the 4 lines. + */ + struct { + ALsizei Offsets[3]; + + /* One delay line is used for all 3 all-pass filters. */ + DelayLine Delay; + } Ap[4]; + + // The feed-back and feed-forward all-pass coefficient. + ALfloat ApFeedCoeff; + + // Mixing matrix coefficient. + ALfloat MixCoeff; + + // Output gain for late reverb. + ALfloat Gain; + // The gain for each output channel based on 3D panning. ALfloat CurrentGain[4][MAX_OUTPUT_CHANNELS]; ALfloat PanGain[4][MAX_OUTPUT_CHANNELS]; @@ -157,10 +246,9 @@ typedef struct ALreverbState { ALfloat Coeff; ALfloat ApFeedCoeff; - ALfloat ApCoeff; - ALuint Offset; - ALuint ApOffset; + ALsizei Offset; + ALsizei ApOffset; // The echo line is 1-pole low-pass filtered. ALfloat LpCoeff; @@ -171,7 +259,7 @@ typedef struct ALreverbState { } Echo; // EAX only // The current read offset for all delay lines. - ALuint Offset; + ALsizei Offset; /* Temporary storage used when processing. */ alignas(16) ALfloat AFormatSamples[4][MAX_UPDATE_SAMPLES]; @@ -224,7 +312,6 @@ static void ALreverbState_Construct(ALreverbState *state) for(index = 0;index < 4;index++) { - state->Early.Coeff[index] = 0.0f; state->Early.Delay[index].Mask = 0; state->Early.Delay[index].Line = NULL; state->Early.Offset[index] = 0; @@ -236,10 +323,11 @@ static void ALreverbState_Construct(ALreverbState *state) state->Late.MixCoeff = 0.0f; for(index = 0;index < 4;index++) { - state->Late.Ap[index].Coeff = 0.0f; + ALuint k; + for(k = 0;k < 3;k++) + state->Late.Ap[index].Offsets[k] = 0; state->Late.Ap[index].Delay.Mask = 0; state->Late.Ap[index].Delay.Line = NULL; - state->Late.Ap[index].Offset = 0; state->Late.Coeff[index] = 0.0f; state->Late.Delay[index].Mask = 0; @@ -271,7 +359,6 @@ static void ALreverbState_Construct(ALreverbState *state) } state->Echo.Coeff = 0.0f; state->Echo.ApFeedCoeff = 0.0f; - state->Echo.ApCoeff = 0.0f; state->Echo.Offset = 0; state->Echo.ApOffset = 0; state->Echo.LpCoeff = 0.0f; @@ -335,21 +422,16 @@ static const ALfloat EARLY_LINE_LENGTH[4] = 0.0015f, 0.0045f, 0.0135f, 0.0405f }; -// The lengths of the late cyclical delay lines. +/* The lengths of the late delay lines. */ static const ALfloat LATE_LINE_LENGTH[4] = { 0.0211f, 0.0311f, 0.0461f, 0.0680f }; -// The lengths of the late all-pass delay lines. -static const ALfloat ALLPASS_LINE_LENGTH[4] = -{ - 0.0151f, 0.0167f, 0.0183f, 0.0200f, -}; - -// The late cyclical delay lines have a variable length dependent on the -// effect's density parameter (inverted for some reason) and this multiplier. -static const ALfloat LATE_LINE_MULTIPLIER = 4.0f; +/* The late delay lines have a variable length dependent on the effect's + * density parameter (inverted for some reason) and this multiplier. + */ +static const ALfloat LATE_LINE_MULTIPLIER = 3.0f; #if defined(_WIN32) && !defined (_M_X64) && !defined(_M_ARM) @@ -394,12 +476,85 @@ static ALuint CalcLineLength(ALfloat length, ptrdiff_t offset, ALuint frequency, return samples; } + +static int FindClosestPrime(int desired, ALboolean *used) +{ + ALsizei curidx = 0; + ALsizei count = COUNTOF(PrimeTable)-1; + /* First, a binary search to find the closest prime that's not less than + * the desired value (lower_bound). + */ + while(count > 0) + { + ALsizei step = count>>1; + ALsizei i = curidx+step; + if(!(PrimeTable[i] < desired)) + count = step; + else + { + curidx = i+1; + count -= step+1; + } + } + /* If the next lesser prime is closer to the desired value, use it. */ + if(curidx > 0 && abs(PrimeTable[curidx-1]-desired) < abs(PrimeTable[curidx]-desired)) + curidx--; + +#define GET_BIT(arr, b) (!!(arr[(b)>>4]&(1<<((b)&7)))) +#define SET_BIT(arr, b) ((void)(arr[(b)>>4] |= (1<<((b)&7)))) + if(GET_BIT(used, curidx)) + { + ALsizei off1=0, off2=0; + /* If this prime is already used, find the next unused larger and next + * unused smaller one. + */ + while(off1 < curidx && GET_BIT(used, curidx-off1)) + off1++; + while(off2 < 1024-curidx && GET_BIT(used, curidx+off2)) + off2++; + + /* Select the closest unused prime to the desired value. */ + if(GET_BIT(used, curidx-off1)) + curidx += off2; + else if(GET_BIT(used, curidx+off2)) + curidx -= off1; + else + curidx = (abs(PrimeTable[curidx-off1]-desired) < + abs(PrimeTable[curidx+off2]-desired)) ? (curidx-off1) : (curidx+off2); + } + /* Mark this prime as used. */ + SET_BIT(used, curidx); +#undef SET_BIT +#undef GET_BIT + + return PrimeTable[curidx]; +} + +/* The lengths of the late reverb all-pass filter series are roughly calculated + * as: 15ms / (3**idx), where idx is the filter index of the series. On top of + * that, the filter lengths (in samples) should be prime numbers so they don't + * share any common factors. + * + * To accomplish this, a lookup table is used to search among the first 1024 + * primes, along with a packed bit table to mark used primes, which should be + * enough to handle any reasonable sample rate. + * + * NOTE: The returned length is in *samples*, not seconds! + */ +static ALfloat CalcAllpassLength(ALuint idx, ALuint frequency, ALboolean *used) +{ + ALfloat samples = frequency*0.015f / powf(3.0f, (ALfloat)idx); + + return FindClosestPrime((int)floorf(samples + 0.5f), used); +} + /* Calculates the delay line metrics and allocates the shared sample buffer * for all lines given the sample rate (frequency). If an allocation failure * occurs, it returns AL_FALSE. */ static ALboolean AllocLines(ALuint frequency, ALreverbState *State) { + ALboolean used_primes[COUNTOF(PrimeTable)>>4] = { 0 }; ALuint totalSamples, index; ALfloat length; @@ -447,8 +602,19 @@ static ALboolean AllocLines(ALuint frequency, ALreverbState *State) // The late all-pass lines. for(index = 0;index < 4;index++) - totalSamples += CalcLineLength(ALLPASS_LINE_LENGTH[index], totalSamples, - frequency, 0, &State->Late.Ap[index].Delay); + { + ALuint k; + + length = 0.0f; + for(k = 0;k < 3;k++) + length += CalcAllpassLength(k, frequency, used_primes); + /* NOTE: Since 'length' is already the number of samples for the all- + * pass series, pass a sample rate of 1 so the sample length remains + * correct. + */ + totalSamples += CalcLineLength(length, totalSamples, 1, 1, + &State->Late.Ap[index].Delay); + } // The echo all-pass and delay lines. for(index = 0;index < 4;index++) @@ -496,6 +662,7 @@ static ALboolean AllocLines(ALuint frequency, ALreverbState *State) static ALboolean ALreverbState_deviceUpdate(ALreverbState *State, ALCdevice *Device) { + ALboolean used_primes[COUNTOF(PrimeTable)>>4] = { 0 }; ALuint frequency = Device->Frequency, index; // Allocate the delay lines. @@ -513,8 +680,21 @@ static ALboolean ALreverbState_deviceUpdate(ALreverbState *State, ALCdevice *Dev // so their offsets only need to be calculated once. for(index = 0;index < 4;index++) { + ALuint k; + State->Early.Offset[index] = fastf2u(EARLY_LINE_LENGTH[index] * frequency); - State->Late.Ap[index].Offset = fastf2u(ALLPASS_LINE_LENGTH[index] * frequency); + for(k = 0;k < 3;k++) + State->Late.Ap[index].Offsets[k] = (ALuint)CalcAllpassLength( + k, frequency, used_primes + ); + State->Late.Ap[index].Offsets[1] += State->Late.Ap[index].Offsets[0]; + State->Late.Ap[index].Offsets[2] += State->Late.Ap[index].Offsets[1]; + TRACE("Late all-pass %u: %u %u (%+d) %u (%+d)\n", index, + State->Late.Ap[index].Offsets[0], State->Late.Ap[index].Offsets[1], + (State->Late.Ap[index].Offsets[1] - State->Late.Ap[index].Offsets[0]), + State->Late.Ap[index].Offsets[2], + (State->Late.Ap[index].Offsets[2] - State->Late.Ap[index].Offsets[1]) + ); } // The echo all-pass filter line length is static, so its offset only @@ -670,7 +850,7 @@ static ALvoid UpdateDelayLine(ALfloat earlyDelay, ALfloat lateDelay, ALfloat den /* The early reflections and late reverb inputs are decorrelated to provide * time-varying reflections, smooth out the reverb tail, and reduce harsh * echoes. The first tap occurs immediately, while the remaining taps are - * delayed by multiples of a fraction of the smallest cyclical delay time. + * delayed by multiples of a fraction of the smallest delay time. * * offset[index] = (FRACTION (MULTIPLIER^(index-1))) smallest_delay * @@ -693,31 +873,17 @@ static ALvoid UpdateDelayLine(ALfloat earlyDelay, ALfloat lateDelay, ALfloat den } } -// Update the early reflections mix and line coefficients. -static ALvoid UpdateEarlyLines(ALfloat lateDelay, ALreverbState *State) -{ - ALuint index; - - // Calculate the gain (coefficient) for each early delay line using the - // late delay time. This expands the early reflections to the start of - // the late reverb. - for(index = 0;index < 4;index++) - State->Early.Coeff[index] = CalcDecayCoeff(EARLY_LINE_LENGTH[index], - lateDelay); -} - // Update the late reverb mix, line lengths, and line coefficients. static ALvoid UpdateLateLines(ALfloat xMix, ALfloat density, ALfloat decayTime, ALfloat diffusion, ALfloat echoDepth, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALreverbState *State) { ALfloat length; - ALuint index; + ALsizei i; /* Calculate the late reverb gain. Since the output is tapped prior to the - * application of the next delay line coefficients, this gain needs to be - * attenuated by the 'x' mixing matrix coefficient as well. Also attenuate - * the late reverb when echo depth is high and diffusion is low, so the - * echo is slightly stronger than the decorrelated echos in the reverb - * tail. + * application of the next delay line coefficients, the output needs to be + * attenuated by the 'x' mixing matrix coefficient. Also attenuate the + * late reverb when echo depth is high and diffusion is low, so the echo is + * slightly stronger than the decorrelated echos in the reverb tail. */ State->Late.Gain = xMix * (1.0f - (echoDepth*0.5f*(1.0f - diffusion))); @@ -732,41 +898,31 @@ static ALvoid UpdateLateLines(ALfloat xMix, ALfloat density, ALfloat decayTime, length = (LATE_LINE_LENGTH[0] + LATE_LINE_LENGTH[1] + LATE_LINE_LENGTH[2] + LATE_LINE_LENGTH[3]) / 4.0f; length *= 1.0f + (density * LATE_LINE_MULTIPLIER); - /* To account for each channel being a discrete input, also multiply by - * sqrt(num_channels). - */ - State->Late.DensityGain = 2.0f * CalcDensityGain( + State->Late.DensityGain = CalcDensityGain( CalcDecayCoeff(length, decayTime) ); // Calculate the all-pass feed-back and feed-forward coefficient. - State->Late.ApFeedCoeff = 0.5f * powf(diffusion, 2.0f); + State->Late.ApFeedCoeff = sqrtf(0.5f) * powf(diffusion, 2.0f); - for(index = 0;index < 4;index++) + for(i = 0;i < 4;i++) { - // Calculate the gain (coefficient) for each all-pass line. - State->Late.Ap[index].Coeff = CalcDecayCoeff( - ALLPASS_LINE_LENGTH[index], decayTime - ); + // Calculate the length (in seconds) of each delay line. + length = LATE_LINE_LENGTH[i] * (1.0f + (density*LATE_LINE_MULTIPLIER)); - // Calculate the length (in seconds) of each cyclical delay line. - length = LATE_LINE_LENGTH[index] * - (1.0f + (density * LATE_LINE_MULTIPLIER)); + // Calculate the delay offset for each delay line. + State->Late.Offset[i] = fastf2u(length * frequency); - // Calculate the delay offset for each cyclical delay line. - State->Late.Offset[index] = fastf2u(length * frequency); - - // Calculate the gain (coefficient) for each cyclical line. - State->Late.Coeff[index] = CalcDecayCoeff(length, decayTime); + // Calculate the gain (coefficient) for each line. + State->Late.Coeff[i] = CalcDecayCoeff(length, decayTime); // Calculate the damping coefficient for each low-pass filter. - State->Late.Lp[index].Coeff = CalcDampingCoeff( - hfRatio, length, decayTime, State->Late.Coeff[index], cw + State->Late.Lp[i].Coeff = CalcDampingCoeff( + hfRatio, length, decayTime, State->Late.Coeff[i], cw ); - // Attenuate the cyclical line coefficients by the mixing coefficient - // (x). - State->Late.Coeff[index] *= xMix; + // Attenuate the line coefficients by the mixing coefficient (x). + State->Late.Coeff[i] *= xMix; } } @@ -785,10 +941,7 @@ static ALvoid UpdateEchoLine(ALfloat echoTime, ALfloat decayTime, ALfloat diffus State->Echo.DensityGain = CalcDensityGain(State->Echo.Coeff); // Calculate the echo all-pass feed coefficient. - State->Echo.ApFeedCoeff = 0.5f * powf(diffusion, 2.0f); - - // Calculate the echo all-pass attenuation coefficient. - State->Echo.ApCoeff = CalcDecayCoeff(ECHO_ALLPASS_LENGTH, decayTime); + State->Echo.ApFeedCoeff = sqrtf(0.5f) * powf(diffusion, 2.0f); // Calculate the damping coefficient for each low-pass filter. State->Echo.LpCoeff = CalcDampingCoeff(hfRatio, echoTime, decayTime, @@ -883,17 +1036,13 @@ static ALvoid Update3DPanning(const ALCdevice *Device, const ALfloat *Reflection }}; /* Converts late reverb A-Format to B-Format (transposed). */ static const aluMatrixf LateA2B = {{ - { 0.8660254038f, -0.8660254038f, 0.8660254038f, 0.8660254038f }, - { 0.8660254038f, -0.8660254038f, -0.8660254038f, -0.8660254038f }, - { 0.8660254038f, 0.8660254038f, 0.8660254038f, -0.8660254038f }, - { 0.8660254038f, 0.8660254038f, -0.8660254038f, 0.8660254038f } -/* { 0.8660254038f, 1.2247448714f, 0.0f, 0.8660254038f }, + { 0.8660254038f, 1.2247448714f, 0.0f, 0.8660254038f }, { 0.8660254038f, 0.0f, -1.2247448714f, -0.8660254038f }, { 0.8660254038f, 0.0f, 1.2247448714f, -0.8660254038f }, - { 0.8660254038f, -1.2247448714f, 0.0f, 0.8660254038f }*/ + { 0.8660254038f, -1.2247448714f, 0.0f, 0.8660254038f } }}; aluMatrixf transform, rot; - ALuint i; + ALsizei i; STATIC_CAST(ALeffectState,State)->OutBuffer = Device->FOAOut.Buffer; STATIC_CAST(ALeffectState,State)->OutChannels = Device->FOAOut.NumChannels; @@ -931,7 +1080,7 @@ static ALvoid ALreverbState_update(ALreverbState *State, const ALCdevice *Device ALfloat lfscale, hfscale, hfRatio; ALfloat gain, gainlf, gainhf; ALfloat cw, x, y; - ALuint i; + ALsizei i; if(Slot->Params.EffectType == AL_EFFECT_EAXREVERB && !EmulateEAXReverb) State->IsEax = AL_TRUE; @@ -949,17 +1098,17 @@ static ALvoid ALreverbState_update(ALreverbState *State, const ALCdevice *Device gainlf, lfscale, calc_rcpQ_from_slope(gainlf, 0.75f)); for(i = 1;i < 4;i++) { - State->Filter[i].Lp.a1 = State->Filter[0].Lp.a1; - State->Filter[i].Lp.a2 = State->Filter[0].Lp.a2; State->Filter[i].Lp.b0 = State->Filter[0].Lp.b0; State->Filter[i].Lp.b1 = State->Filter[0].Lp.b1; State->Filter[i].Lp.b2 = State->Filter[0].Lp.b2; + State->Filter[i].Lp.a1 = State->Filter[0].Lp.a1; + State->Filter[i].Lp.a2 = State->Filter[0].Lp.a2; - State->Filter[i].Hp.a1 = State->Filter[0].Hp.a1; - State->Filter[i].Hp.a2 = State->Filter[0].Hp.a2; State->Filter[i].Hp.b0 = State->Filter[0].Hp.b0; State->Filter[i].Hp.b1 = State->Filter[0].Hp.b1; State->Filter[i].Hp.b2 = State->Filter[0].Hp.b2; + State->Filter[i].Hp.a1 = State->Filter[0].Hp.a1; + State->Filter[i].Hp.a2 = State->Filter[0].Hp.a2; } // Update the modulator line. @@ -970,9 +1119,6 @@ static ALvoid ALreverbState_update(ALreverbState *State, const ALCdevice *Device UpdateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay, props->Reverb.Density, frequency, State); - // Update the early lines. - UpdateEarlyLines(props->Reverb.LateReverbDelay, State); - // Get the mixing matrix coefficients (x and y). CalcMatrixCoeffs(props->Reverb.Diffusion, &x, &y); // Then divide x into y to simplify the matrix calculation. @@ -1010,26 +1156,26 @@ static ALvoid ALreverbState_update(ALreverbState *State, const ALCdevice *Device **************************************/ // Basic delay line input/output routines. -static inline ALfloat DelayLineOut(DelayLine *Delay, ALuint offset) +static inline ALfloat DelayLineOut(DelayLine *Delay, ALsizei offset) { return Delay->Line[offset&Delay->Mask]; } -static inline ALvoid DelayLineIn(DelayLine *Delay, ALuint offset, ALfloat in) +static inline ALvoid DelayLineIn(DelayLine *Delay, ALsizei offset, ALfloat in) { Delay->Line[offset&Delay->Mask] = in; } -static inline ALfloat DelayLineInOut(DelayLine *Delay, ALuint offset, ALuint outoffset, ALfloat in) +static inline ALfloat DelayLineInOut(DelayLine *Delay, ALsizei offset, ALsizei outoffset, ALfloat in) { Delay->Line[offset&Delay->Mask] = in; return Delay->Line[(offset-outoffset)&Delay->Mask]; } -static void CalcModulationDelays(ALreverbState *State, ALfloat *restrict delays, ALuint todo) +static void CalcModulationDelays(ALreverbState *State, ALfloat *restrict delays, ALsizei todo) { ALfloat sinus, range; - ALuint index, i; + ALsizei index, i; index = State->Mod.Index; range = State->Mod.Filter; @@ -1059,11 +1205,11 @@ static void CalcModulationDelays(ALreverbState *State, ALfloat *restrict delays, // Given some input samples, this function produces modulation for the late // reverb. -static void EAXModulation(DelayLine *ModDelay, ALuint offset, const ALfloat *restrict delays, ALfloat*restrict dst, const ALfloat*restrict src, ALuint todo) +static void EAXModulation(DelayLine *ModDelay, ALsizei offset, const ALfloat *restrict delays, ALfloat*restrict dst, const ALfloat*restrict src, ALsizei todo) { ALfloat frac, fdelay; ALfloat out0, out1; - ALuint delay, i; + ALsizei delay, i; for(i = 0;i < todo;i++) { @@ -1090,25 +1236,24 @@ static void EAXModulation(DelayLine *ModDelay, ALuint offset, const ALfloat *res /* Given some input samples from the main delay line, this function produces * four-channel outputs for the early reflections. */ -static ALvoid EarlyReflection(ALreverbState *State, ALuint todo, ALfloat (*restrict out)[MAX_UPDATE_SAMPLES]) +static ALvoid EarlyReflection(ALreverbState *State, ALsizei todo, ALfloat (*restrict out)[MAX_UPDATE_SAMPLES]) { + ALsizei offset = State->Offset; ALfloat d[4], v, f[4]; - ALuint i; + ALsizei i; for(i = 0;i < todo;i++) { - ALuint offset = State->Offset+i; - /* Obtain the first reflection samples from the main delay line. */ f[0] = DelayLineOut(&State->Delay, (offset-State->EarlyDelayTap[0])*4 + 0); f[1] = DelayLineOut(&State->Delay, (offset-State->EarlyDelayTap[1])*4 + 1); f[2] = DelayLineOut(&State->Delay, (offset-State->EarlyDelayTap[2])*4 + 2); f[3] = DelayLineOut(&State->Delay, (offset-State->EarlyDelayTap[3])*4 + 3); - /* The following uses a lossless scattering junction from waveguide - * theory. It actually amounts to a householder mixing matrix, which - * will produce a maximally diffuse response, and means this can - * probably be considered a simple feed-back delay network (FDN). + /* The following is a Householder matrix that was derived from a + * lossless scattering junction from waveguide theory. In this case, + * it's maximally diffuse scattering is used without feedback. + * * N * --- * \ @@ -1118,181 +1263,172 @@ static ALvoid EarlyReflection(ALreverbState *State, ALuint todo, ALfloat (*restr */ v = (f[0] + f[1] + f[2] + f[3]) * 0.5f; - /* Calculate the feed values for the early delay lines. */ + /* Calculate the values to pass through the delay lines. */ d[0] = v - f[0]; d[1] = v - f[1]; d[2] = v - f[2]; d[3] = v - f[3]; + /* Store the post-junction results in the main delay line, helping + * compensate for the late reverb starting with a low echo density. + */ + DelayLineIn(&State->Delay, (offset-State->EarlyDelayTap[0])*4 + 0, d[0]); + DelayLineIn(&State->Delay, (offset-State->EarlyDelayTap[1])*4 + 1, d[1]); + DelayLineIn(&State->Delay, (offset-State->EarlyDelayTap[2])*4 + 2, d[2]); + DelayLineIn(&State->Delay, (offset-State->EarlyDelayTap[3])*4 + 3, d[3]); + /* Feed the early delay lines, and load the delayed results. */ - d[0] = DelayLineInOut(&State->Early.Delay[0], offset, State->Early.Offset[0], d[0]); - d[1] = DelayLineInOut(&State->Early.Delay[1], offset, State->Early.Offset[1], d[1]); - d[2] = DelayLineInOut(&State->Early.Delay[2], offset, State->Early.Offset[2], d[2]); - d[3] = DelayLineInOut(&State->Early.Delay[3], offset, State->Early.Offset[3], d[3]); + f[0] += DelayLineInOut(&State->Early.Delay[0], offset, State->Early.Offset[0], d[0]); + f[1] += DelayLineInOut(&State->Early.Delay[1], offset, State->Early.Offset[1], d[1]); + f[2] += DelayLineInOut(&State->Early.Delay[2], offset, State->Early.Offset[2], d[2]); + f[3] += DelayLineInOut(&State->Early.Delay[3], offset, State->Early.Offset[3], d[3]); + offset++; /* Output the initial reflection taps and the results of the delayed - * and decayed junction for all four channels. + * junction for all four channels. */ - out[0][i] = f[0] + d[0]*State->Early.Coeff[0]; - out[1][i] = f[1] + d[1]*State->Early.Coeff[1]; - out[2][i] = f[2] + d[2]*State->Early.Coeff[2]; - out[3][i] = f[3] + d[3]*State->Early.Coeff[3]; + out[0][i] = f[0]; + out[1][i] = f[1]; + out[2][i] = f[2]; + out[3][i] = f[3]; } } // Basic attenuated all-pass input/output routine. -static inline ALfloat AllpassInOut(DelayLine *Delay, ALuint outOffset, ALuint inOffset, ALfloat in, ALfloat feedCoeff, ALfloat coeff) +static inline ALfloat AllpassInOut(DelayLine *Delay, ALsizei outOffset, ALsizei inOffset, ALfloat in, ALfloat feedCoeff) { ALfloat out, feed; out = DelayLineOut(Delay, outOffset); feed = feedCoeff * in; - DelayLineIn(Delay, inOffset, (feedCoeff * (out - feed)) + in); + DelayLineIn(Delay, inOffset, in + feedCoeff*(out - feed)); - // The time-based attenuation is only applied to the delay output to - // keep it from affecting the feed-back path (which is already controlled - // by the all-pass feed coefficient). - return (coeff * out) - feed; + return out - feed; } -// All-pass input/output routine for late reverb. -static inline ALfloat LateAllPassInOut(ALreverbState *State, ALuint offset, ALuint index, ALfloat in) +// All-pass series input/output routine for late reverb. +static inline ALfloat LateAllPassInOut(ALreverbState *State, ALsizei offset, ALsizei index, ALfloat sample) { - return AllpassInOut(&State->Late.Ap[index].Delay, - offset - State->Late.Ap[index].Offset, - offset, in, State->Late.ApFeedCoeff, - State->Late.Ap[index].Coeff); + ALsizei inOffset; + ALsizei i; + + inOffset = offset; + for(i = 0;i < 3;i++) + { + ALuint outOffset = offset - State->Late.Ap[index].Offsets[i]; + sample = AllpassInOut(&State->Late.Ap[index].Delay, + outOffset, inOffset, sample, State->Late.ApFeedCoeff + ); + inOffset = outOffset; + } + + return sample; } // Low-pass filter input/output routine for late reverb. -static inline ALfloat LateLowPassInOut(ALreverbState *State, ALuint index, ALfloat in) +static inline ALfloat LateLowPassInOut(ALreverbState *State, ALsizei index, ALfloat in) { in = lerp(in, State->Late.Lp[index].Sample, State->Late.Lp[index].Coeff); State->Late.Lp[index].Sample = in; return in; } -// Given four decorrelated input samples, this function produces four-channel -// output for the late reverb. -static ALvoid LateReverb(ALreverbState *State, ALuint todo, ALfloat (*restrict out)[MAX_UPDATE_SAMPLES]) +/* Given decorrelated input samples from the main delay line, this function + * produces four-channel output for the late reverb. + */ +static ALvoid LateReverb(ALreverbState *State, ALsizei todo, ALfloat (*restrict out)[MAX_UPDATE_SAMPLES]) { ALfloat d[4], f[4]; - ALuint offset; - ALuint base, i; + ALsizei offset; + ALsizei i, j; offset = State->Offset; - for(base = 0;base < todo;) + for(i = 0;i < todo;i++) { - ALfloat tmp[MAX_UPDATE_SAMPLES/4][4]; - ALuint tmp_todo = minu(todo, MAX_UPDATE_SAMPLES/4); - - for(i = 0;i < tmp_todo;i++) - { - /* Obtain four decorrelated input samples. */ - f[0] = DelayLineOut(&State->Delay, (offset-State->LateDelayTap[0])*4 + 0) * State->Late.DensityGain; - f[1] = DelayLineOut(&State->Delay, (offset-State->LateDelayTap[1])*4 + 1) * State->Late.DensityGain; - f[2] = DelayLineOut(&State->Delay, (offset-State->LateDelayTap[2])*4 + 2) * State->Late.DensityGain; - f[3] = DelayLineOut(&State->Delay, (offset-State->LateDelayTap[3])*4 + 3) * State->Late.DensityGain; - - /* Add the decayed results of the cyclical delay lines, then pass - * the results through the low-pass filters. - */ - f[0] += DelayLineOut(&State->Late.Delay[0], offset-State->Late.Offset[0]) * State->Late.Coeff[0]; - f[1] += DelayLineOut(&State->Late.Delay[1], offset-State->Late.Offset[1]) * State->Late.Coeff[1]; - f[2] += DelayLineOut(&State->Late.Delay[2], offset-State->Late.Offset[2]) * State->Late.Coeff[2]; - f[3] += DelayLineOut(&State->Late.Delay[3], offset-State->Late.Offset[3]) * State->Late.Coeff[3]; - - /* This is where the feed-back cycles from line 0 to 3 to 1 to 2 - * and back to 0. - */ - d[0] = LateLowPassInOut(State, 2, f[2]); - d[1] = LateLowPassInOut(State, 3, f[3]); - d[2] = LateLowPassInOut(State, 1, f[1]); - d[3] = LateLowPassInOut(State, 0, f[0]); - - /* To help increase diffusion, run each line through an all-pass - * filter. When there is no diffusion, the shortest all-pass filter - * will feed the shortest delay line. - */ - d[0] = LateAllPassInOut(State, offset, 0, d[0]); - d[1] = LateAllPassInOut(State, offset, 1, d[1]); - d[2] = LateAllPassInOut(State, offset, 2, d[2]); - d[3] = LateAllPassInOut(State, offset, 3, d[3]); - - /* Late reverb is done with a modified feed-back delay network (FDN) - * topology. Four input lines are each fed through their own all-pass - * filter and then into the mixing matrix. The four outputs of the - * mixing matrix are then cycled back to the inputs. Each output feeds - * a different input to form a circlular feed cycle. - * - * The mixing matrix used is a 4D skew-symmetric rotation matrix - * derived using a single unitary rotational parameter: - * - * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2 - * [ -a, d, c, -b ] - * [ -b, -c, d, a ] - * [ -c, b, -a, d ] - * - * The rotation is constructed from the effect's diffusion parameter, - * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y - * with differing signs, and d is the coefficient x. The matrix is - * thus: - * - * [ x, y, -y, y ] n = sqrt(matrix_order - 1) - * [ -y, x, y, y ] t = diffusion_parameter * atan(n) - * [ y, -y, x, y ] x = cos(t) - * [ -y, -y, -y, x ] y = sin(t) / n - * - * To reduce the number of multiplies, the x coefficient is applied - * with the cyclical delay line coefficients. Thus only the y - * coefficient is applied when mixing, and is modified to be: y / x. - */ - f[0] = d[0] + (State->Late.MixCoeff * ( d[1] + -d[2] + d[3])); - f[1] = d[1] + (State->Late.MixCoeff * (-d[0] + d[2] + d[3])); - f[2] = d[2] + (State->Late.MixCoeff * ( d[0] + -d[1] + d[3])); - f[3] = d[3] + (State->Late.MixCoeff * (-d[0] + -d[1] + -d[2] )); - - /* Re-feed the cyclical delay lines. */ - DelayLineIn(&State->Late.Delay[0], offset, f[0]); - DelayLineIn(&State->Late.Delay[1], offset, f[1]); - DelayLineIn(&State->Late.Delay[2], offset, f[2]); - DelayLineIn(&State->Late.Delay[3], offset, f[3]); - offset++; - - /* Output the results of the matrix for all four channels, - * attenuated by the late reverb gain (which is attenuated by the - * 'x' mix coefficient). - */ - tmp[i][0] = State->Late.Gain * f[0]; - tmp[i][1] = State->Late.Gain * f[1]; - tmp[i][2] = State->Late.Gain * f[2]; - tmp[i][3] = State->Late.Gain * f[3]; - } - - /* Deinterlace to output */ - for(i = 0;i < tmp_todo;i++) out[0][base+i] = tmp[i][0]; - for(i = 0;i < tmp_todo;i++) out[1][base+i] = tmp[i][1]; - for(i = 0;i < tmp_todo;i++) out[2][base+i] = tmp[i][2]; - for(i = 0;i < tmp_todo;i++) out[3][base+i] = tmp[i][3]; + /* Obtain four decorrelated input samples. */ + for(j = 0;j < 4;j++) + f[j] = DelayLineOut(&State->Delay, (offset-State->LateDelayTap[j])*4 + j) * + State->Late.DensityGain; + + /* Add the decayed results of the delay lines. */ + for(j = 0;j < 4;j++) + f[j] += DelayLineOut(&State->Late.Delay[j], offset-State->Late.Offset[j]) * + State->Late.Coeff[j]; + + /* Apply a low-pass filter to simulate surface absorption. */ + for(j = 0;j < 4;j++) + f[j] = LateLowPassInOut(State, 0, f[j]); + + /* To help increase diffusion, run each line through three all-pass + * filters. This is where the feedback cycles from line 0 to 3 to 1 to + * 2 and back to 0. + */ + d[0] = LateAllPassInOut(State, offset, 2, f[2]); + d[1] = LateAllPassInOut(State, offset, 3, f[3]); + d[2] = LateAllPassInOut(State, offset, 1, f[1]); + d[3] = LateAllPassInOut(State, offset, 0, f[0]); + + /* Late reverb is done with a modified feed-back delay network (FDN) + * topology. Four input lines are each fed through their own all-pass + * filters and then into the mixing matrix. The four outputs of the + * mixing matrix are then cycled back to the inputs. + * + * The mixing matrix used is a 4D skew-symmetric rotation matrix + * derived using a single unitary rotational parameter: + * + * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2 + * [ -a, d, c, -b ] + * [ -b, -c, d, a ] + * [ -c, b, -a, d ] + * + * The rotation is constructed from the effect's diffusion parameter, + * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y + * with differing signs, and d is the coefficient x. The matrix is + * thus: + * + * [ x, y, -y, y ] n = sqrt(matrix_order - 1) + * [ -y, x, y, y ] t = diffusion_parameter * atan(n) + * [ y, -y, x, y ] x = cos(t) + * [ -y, -y, -y, x ] y = sin(t) / n + * + * To reduce the number of multiplies, the x coefficient is applied + * with the delay line coefficients. Thus only the y coefficient + * is applied when mixing, and is modified to be: y / x. + */ + f[0] = d[0] + (State->Late.MixCoeff * ( d[1] + -d[2] + d[3])); + f[1] = d[1] + (State->Late.MixCoeff * (-d[0] + d[2] + d[3])); + f[2] = d[2] + (State->Late.MixCoeff * ( d[0] + -d[1] + d[3])); + f[3] = d[3] + (State->Late.MixCoeff * (-d[0] + -d[1] + -d[2] )); + + /* Re-feed the delay lines. */ + for(j = 0;j < 4;j++) + DelayLineIn(&State->Late.Delay[j], offset, f[j]); + offset++; - base += tmp_todo; + /* Output the results of the matrix for all four channels, attenuated + * by the late reverb gain (which is attenuated by the 'x' mix + * coefficient). + */ + for(j = 0;j < 4;j++) + out[j][i] = f[j] * State->Late.Gain; } } -// Given an input sample, this function mixes echo into the four-channel late -// reverb. -static ALvoid EAXEcho(ALreverbState *State, ALuint todo, ALfloat (*restrict late)[MAX_UPDATE_SAMPLES]) +/* This function reads from the main delay line's late reverb tap, and mixes a + * continuous echo feedback into the four-channel late reverb output. + */ +static ALvoid EAXEcho(ALreverbState *State, ALsizei todo, ALfloat (*restrict late)[MAX_UPDATE_SAMPLES]) { ALfloat feed; - ALuint offset; - ALuint c, i; + ALsizei offset; + ALsizei c, i; for(c = 0;c < 4;c++) { offset = State->Offset; for(i = 0;i < todo;i++) { - // Get the latest attenuated echo sample for output. + // Get the attenuated echo feedback sample for output. feed = DelayLineOut(&State->Echo.Delay[c].Feedback, offset-State->Echo.Offset) * State->Echo.Coeff; @@ -1308,8 +1444,7 @@ static ALvoid EAXEcho(ALreverbState *State, ALuint todo, ALfloat (*restrict late // Then the echo all-pass filter. feed = AllpassInOut(&State->Echo.Delay[c].Ap, offset-State->Echo.ApOffset, - offset, feed, State->Echo.ApFeedCoeff, - State->Echo.ApCoeff); + offset, feed, State->Echo.ApFeedCoeff); // Feed the delay with the mixed and filtered sample. DelayLineIn(&State->Echo.Delay[c].Feedback, offset, feed); @@ -1320,9 +1455,9 @@ static ALvoid EAXEcho(ALreverbState *State, ALuint todo, ALfloat (*restrict late // Perform the non-EAX reverb pass on a given input sample, resulting in // four-channel output. -static ALvoid VerbPass(ALreverbState *State, ALuint todo, ALfloat (*restrict input)[MAX_UPDATE_SAMPLES], ALfloat (*restrict early)[MAX_UPDATE_SAMPLES], ALfloat (*restrict late)[MAX_UPDATE_SAMPLES]) +static ALvoid VerbPass(ALreverbState *State, ALsizei todo, ALfloat (*restrict input)[MAX_UPDATE_SAMPLES], ALfloat (*restrict early)[MAX_UPDATE_SAMPLES], ALfloat (*restrict late)[MAX_UPDATE_SAMPLES]) { - ALuint i, c; + ALsizei i, c; for(c = 0;c < 4;c++) { @@ -1346,9 +1481,9 @@ static ALvoid VerbPass(ALreverbState *State, ALuint todo, ALfloat (*restrict inp // Perform the EAX reverb pass on a given input sample, resulting in four- // channel output. -static ALvoid EAXVerbPass(ALreverbState *State, ALuint todo, ALfloat (*restrict input)[MAX_UPDATE_SAMPLES], ALfloat (*restrict early)[MAX_UPDATE_SAMPLES], ALfloat (*restrict late)[MAX_UPDATE_SAMPLES]) +static ALvoid EAXVerbPass(ALreverbState *State, ALsizei todo, ALfloat (*restrict input)[MAX_UPDATE_SAMPLES], ALfloat (*restrict early)[MAX_UPDATE_SAMPLES], ALfloat (*restrict late)[MAX_UPDATE_SAMPLES]) { - ALuint i, c; + ALsizei i, c; /* Perform any modulation on the input (use the early and late buffers as * temp storage). @@ -1398,9 +1533,9 @@ static ALvoid ALreverbState_processStandard(ALreverbState *State, ALuint Samples /* Process reverb for these samples. */ for(base = 0;base < SamplesToDo;) { - ALuint todo = minu(SamplesToDo-base, MAX_UPDATE_SAMPLES); + ALsizei todo = minu(SamplesToDo-base, MAX_UPDATE_SAMPLES); - /* Convert B-Foramt to A-Format for processing. */ + /* Convert B-Format to A-Format for processing. */ memset(afmt, 0, sizeof(*afmt)*4); for(c = 0;c < 4;c++) MixRowSamples(afmt[c], B2A.m[c], @@ -1443,7 +1578,7 @@ static ALvoid ALreverbState_processEax(ALreverbState *State, ALuint SamplesToDo, /* Process reverb for these samples. */ for(base = 0;base < SamplesToDo;) { - ALuint todo = minu(SamplesToDo-base, MAX_UPDATE_SAMPLES); + ALsizei todo = minu(SamplesToDo-base, MAX_UPDATE_SAMPLES); memset(afmt, 0, 4*MAX_UPDATE_SAMPLES*sizeof(float)); for(c = 0;c < 4;c++) |