aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/effects
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2018-12-22 19:31:12 -0800
committerChris Robinson <[email protected]>2018-12-22 19:31:12 -0800
commitbfa98be48a4e84902d4c4bb2836f58cbbf582583 (patch)
tree7887c897b832456615c8ba7cfced8b504a6f99f4 /Alc/effects
parent86caf2683e77098d4e9855ef2eaab88b9f90df60 (diff)
Cleanup definitions and declarations in reverb.cpp
Diffstat (limited to 'Alc/effects')
-rw-r--r--Alc/effects/reverb.cpp474
1 files changed, 221 insertions, 253 deletions
diff --git a/Alc/effects/reverb.cpp b/Alc/effects/reverb.cpp
index cc0f3fb0..b70e3d45 100644
--- a/Alc/effects/reverb.cpp
+++ b/Alc/effects/reverb.cpp
@@ -42,8 +42,11 @@
*/
ALfloat ReverbBoost = 1.0f;
+namespace {
+
/* This is the maximum number of samples processed for each inner loop
- * iteration. */
+ * iteration.
+ */
#define MAX_UPDATE_SAMPLES 256
/* The number of samples used for cross-faded delay lines. This can be used
@@ -68,7 +71,7 @@ ALfloat ReverbBoost = 1.0f;
* tetrahedron, but it's close enough. Should the model be extended to 8-lines
* in the future, true opposites can be used.
*/
-static constexpr alu::Matrix B2A{
+constexpr alu::Matrix B2A{
0.288675134595f, 0.288675134595f, 0.288675134595f, 0.288675134595f,
0.288675134595f, -0.288675134595f, -0.288675134595f, 0.288675134595f,
0.288675134595f, 0.288675134595f, -0.288675134595f, -0.288675134595f,
@@ -76,14 +79,14 @@ static constexpr alu::Matrix B2A{
};
/* Converts A-Format to B-Format. */
-static constexpr alu::Matrix A2B{
+constexpr alu::Matrix A2B{
0.866025403785f, 0.866025403785f, 0.866025403785f, 0.866025403785f,
0.866025403785f, -0.866025403785f, 0.866025403785f, -0.866025403785f,
0.866025403785f, -0.866025403785f, -0.866025403785f, 0.866025403785f,
0.866025403785f, 0.866025403785f, -0.866025403785f, -0.866025403785f
};
-static const ALfloat FadeStep = 1.0f / FADE_SAMPLES;
+constexpr ALfloat FadeStep{1.0f / FADE_SAMPLES};
/* The all-pass and delay lines have a variable length dependent on the
* effect's density parameter, which helps alter the perceived environment
@@ -95,12 +98,12 @@ static const ALfloat FadeStep = 1.0f / FADE_SAMPLES;
* conversion is needed, taking the cube root of the re-scaled density to
* calculate the line length multiplier:
*
- * length_mult = max(5.0, cbrtf(density*DENSITY_SCALE));
+ * length_mult = max(5.0, cbrt(density*DENSITY_SCALE));
*
* The density scale below will result in a max line multiplier of 50, for an
* effective size range of 5m to 50m.
*/
-static const ALfloat DENSITY_SCALE = 125000.0f;
+constexpr ALfloat DENSITY_SCALE{125000.0f};
/* All delay line lengths are specified in seconds.
*
@@ -146,8 +149,7 @@ static const ALfloat DENSITY_SCALE = 125000.0f;
*
* Assuming an average of 1m, we get the following taps:
*/
-static const ALfloat EARLY_TAP_LENGTHS[NUM_LINES] =
-{
+constexpr ALfloat EARLY_TAP_LENGTHS[NUM_LINES]{
0.0000000e+0f, 2.0213520e-4f, 4.2531060e-4f, 6.7171600e-4f
};
@@ -157,8 +159,7 @@ static const ALfloat EARLY_TAP_LENGTHS[NUM_LINES] =
*
* Where a is the approximate maximum all-pass cycle limit (20).
*/
-static const ALfloat EARLY_ALLPASS_LENGTHS[NUM_LINES] =
-{
+const ALfloat EARLY_ALLPASS_LENGTHS[NUM_LINES]{
9.7096800e-5f, 1.0720356e-4f, 1.1836234e-4f, 1.3068260e-4f
};
@@ -184,8 +185,7 @@ static const ALfloat EARLY_ALLPASS_LENGTHS[NUM_LINES] =
*
* Using an average dimension of 1m, we get:
*/
-static const ALfloat EARLY_LINE_LENGTHS[NUM_LINES] =
-{
+constexpr ALfloat EARLY_LINE_LENGTHS[NUM_LINES]{
5.9850400e-4f, 1.0913150e-3f, 1.5376658e-3f, 1.9419362e-3f
};
@@ -193,8 +193,7 @@ static const ALfloat EARLY_LINE_LENGTHS[NUM_LINES] =
*
* A_i = (5 / 3) L_i / r_1
*/
-static const ALfloat LATE_ALLPASS_LENGTHS[NUM_LINES] =
-{
+constexpr ALfloat LATE_ALLPASS_LENGTHS[NUM_LINES]{
1.6182800e-4f, 2.0389060e-4f, 2.8159360e-4f, 3.2365600e-4f
};
@@ -213,35 +212,34 @@ static const ALfloat LATE_ALLPASS_LENGTHS[NUM_LINES] =
*
* For our 1m average room, we get:
*/
-static const ALfloat LATE_LINE_LENGTHS[NUM_LINES] =
-{
+constexpr ALfloat LATE_LINE_LENGTHS[NUM_LINES]{
1.9419362e-3f, 2.4466860e-3f, 3.3791220e-3f, 3.8838720e-3f
};
-typedef struct DelayLineI {
+struct DelayLineI {
/* The delay lines use interleaved samples, with the lengths being powers
* of 2 to allow the use of bit-masking instead of a modulus for wrapping.
*/
ALsizei Mask{0};
ALfloat (*Line)[NUM_LINES]{nullptr};
-} DelayLineI;
+};
-typedef struct VecAllpass {
+struct VecAllpass {
DelayLineI Delay;
ALfloat Coeff{0.0f};
ALsizei Offset[NUM_LINES][2]{};
-} VecAllpass;
+};
-typedef struct T60Filter {
+struct T60Filter {
/* Two filters are used to adjust the signal. One to control the low
* frequencies, and one to control the high frequencies.
*/
ALfloat MidGain[2]{0.0f, 0.0f};
BiquadFilter HFFilter, LFFilter;
-} T60Filter;
+};
-typedef struct EarlyReflections {
+struct EarlyReflections {
/* A Gerzon vector all-pass filter is used to simulate initial diffusion.
* The spread from this filter also helps smooth out the reverb tail.
*/
@@ -257,9 +255,9 @@ typedef struct EarlyReflections {
/* The gain for each output channel based on 3D panning. */
ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
-} EarlyReflections;
+};
-typedef struct LateReverb {
+struct LateReverb {
/* A recursive delay line is used fill in the reverb tail. */
DelayLineI Delay;
ALsizei Offset[NUM_LINES][2]{};
@@ -278,7 +276,7 @@ typedef struct LateReverb {
/* The gain for each output channel based on 3D panning. */
ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
-} LateReverb;
+};
struct ReverbState final : public EffectState {
/* All delay lines are allocated as a single buffer to reduce memory
@@ -349,15 +347,13 @@ struct ReverbState final : public EffectState {
* Device Update *
**************************************/
-static inline ALfloat CalcDelayLengthMult(ALfloat density)
-{
- return maxf(5.0f, cbrtf(density*DENSITY_SCALE));
-}
+inline ALfloat CalcDelayLengthMult(ALfloat density)
+{ return maxf(5.0f, std::cbrt(density*DENSITY_SCALE)); }
/* Given the allocated sample buffer, this function updates each delay line
* offset.
*/
-static inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLineI *Delay)
+inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLineI *Delay)
{
union {
ALfloat *f;
@@ -368,8 +364,8 @@ static inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLineI *Delay)
}
/* Calculate the length of a delay line and store its mask and offset. */
-static ALuint CalcLineLength(const ALfloat length, const ptrdiff_t offset, const ALuint frequency,
- const ALuint extra, DelayLineI *Delay)
+ALuint CalcLineLength(const ALfloat length, const ptrdiff_t offset, const ALuint frequency,
+ const ALuint extra, DelayLineI *Delay)
{
ALuint samples;
@@ -391,7 +387,7 @@ static ALuint CalcLineLength(const ALfloat length, const ptrdiff_t offset, const
* for all lines given the sample rate (frequency). If an allocation failure
* occurs, it returns AL_FALSE.
*/
-static ALboolean AllocLines(const ALuint frequency, ReverbState *State)
+ALboolean AllocLines(const ALuint frequency, ReverbState *State)
{
/* All delay line lengths are calculated to accomodate the full range of
* lengths given their respective paramters.
@@ -519,23 +515,19 @@ ALboolean ReverbState::deviceUpdate(const ALCdevice *Device)
/* Calculate a decay coefficient given the length of each cycle and the time
* until the decay reaches -60 dB.
*/
-static inline ALfloat CalcDecayCoeff(const ALfloat length, const ALfloat decayTime)
-{
- return powf(REVERB_DECAY_GAIN, length/decayTime);
-}
+inline ALfloat CalcDecayCoeff(const ALfloat length, const ALfloat decayTime)
+{ return std::pow(REVERB_DECAY_GAIN, length/decayTime); }
/* Calculate a decay length from a coefficient and the time until the decay
* reaches -60 dB.
*/
-static inline ALfloat CalcDecayLength(const ALfloat coeff, const ALfloat decayTime)
-{
- return log10f(coeff) * decayTime / log10f(REVERB_DECAY_GAIN);
-}
+inline ALfloat CalcDecayLength(const ALfloat coeff, const ALfloat decayTime)
+{ return std::log10(coeff) * decayTime / std::log10(REVERB_DECAY_GAIN); }
/* Calculate an attenuation to be applied to the input of any echo models to
* compensate for modal density and decay time.
*/
-static inline ALfloat CalcDensityGain(const ALfloat a)
+inline ALfloat CalcDensityGain(const ALfloat a)
{
/* The energy of a signal can be obtained by finding the area under the
* squared signal. This takes the form of Sum(x_n^2), where x is the
@@ -550,38 +542,34 @@ static inline ALfloat CalcDensityGain(const ALfloat a)
* calculated by inverting the square root of this approximation,
* yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
*/
- return sqrtf(1.0f - a*a);
+ return std::sqrt(1.0f - a*a);
}
/* Calculate the scattering matrix coefficients given a diffusion factor. */
-static inline ALvoid CalcMatrixCoeffs(const ALfloat diffusion, ALfloat *x, ALfloat *y)
+inline ALvoid CalcMatrixCoeffs(const ALfloat diffusion, ALfloat *x, ALfloat *y)
{
- ALfloat n, t;
-
/* The matrix is of order 4, so n is sqrt(4 - 1). */
- n = sqrtf(3.0f);
- t = diffusion * atanf(n);
+ ALfloat n{std::sqrt(3.0f)};
+ ALfloat t{diffusion * std::atan(n)};
/* Calculate the first mixing matrix coefficient. */
- *x = cosf(t);
+ *x = std::cos(t);
/* Calculate the second mixing matrix coefficient. */
- *y = sinf(t) / n;
+ *y = std::sin(t) / n;
}
/* Calculate the limited HF ratio for use with the late reverb low-pass
* filters.
*/
-static ALfloat CalcLimitedHfRatio(const ALfloat hfRatio, const ALfloat airAbsorptionGainHF,
- const ALfloat decayTime, const ALfloat SpeedOfSound)
+ALfloat CalcLimitedHfRatio(const ALfloat hfRatio, const ALfloat airAbsorptionGainHF,
+ const ALfloat decayTime, const ALfloat SpeedOfSound)
{
- ALfloat limitRatio;
-
/* Find the attenuation due to air absorption in dB (converting delay
* time to meters using the speed of sound). Then reversing the decay
* equation, solve for HF ratio. The delay length is cancelled out of
* the equation, so it can be calculated once for all lines.
*/
- limitRatio = 1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) * SpeedOfSound);
+ ALfloat limitRatio{1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) * SpeedOfSound)};
/* Using the limit calculated above, apply the upper bound to the HF ratio.
*/
@@ -593,14 +581,14 @@ static ALfloat CalcLimitedHfRatio(const ALfloat hfRatio, const ALfloat airAbsorp
* of specified length, using a combination of two shelf filter sections given
* decay times for each band split at two reference frequencies.
*/
-static void CalcT60DampingCoeffs(const ALfloat length, const ALfloat lfDecayTime,
- const ALfloat mfDecayTime, const ALfloat hfDecayTime,
- const ALfloat lf0norm, const ALfloat hf0norm,
- T60Filter *filter)
+void CalcT60DampingCoeffs(const ALfloat length, const ALfloat lfDecayTime,
+ const ALfloat mfDecayTime, const ALfloat hfDecayTime,
+ const ALfloat lf0norm, const ALfloat hf0norm,
+ T60Filter *filter)
{
- ALfloat lfGain = CalcDecayCoeff(length, lfDecayTime);
- ALfloat mfGain = CalcDecayCoeff(length, mfDecayTime);
- ALfloat hfGain = CalcDecayCoeff(length, hfDecayTime);
+ ALfloat lfGain{CalcDecayCoeff(length, lfDecayTime)};
+ ALfloat mfGain{CalcDecayCoeff(length, mfDecayTime)};
+ ALfloat hfGain{CalcDecayCoeff(length, hfDecayTime)};
filter->MidGain[1] = mfGain;
filter->LFFilter.setParams(BiquadType::LowShelf, lfGain/mfGain, lf0norm,
@@ -610,12 +598,9 @@ static void CalcT60DampingCoeffs(const ALfloat length, const ALfloat lfDecayTime
}
/* Update the offsets for the main effect delay line. */
-static ALvoid UpdateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay, const ALfloat density, const ALfloat decayTime, const ALuint frequency, ReverbState *State)
+ALvoid UpdateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay, const ALfloat density, const ALfloat decayTime, const ALuint frequency, ReverbState *State)
{
- ALfloat multiplier, length;
- ALuint i;
-
- multiplier = CalcDelayLengthMult(density);
+ const ALfloat multiplier{CalcDelayLengthMult(density)};
/* Early reflection taps are decorrelated by means of an average room
* reflection approximation described above the definition of the taps.
@@ -627,9 +612,9 @@ static ALvoid UpdateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay,
* delay path and offsets that would continue the propagation naturally
* into the late lines.
*/
- for(i = 0;i < NUM_LINES;i++)
+ for(ALsizei i{0};i < NUM_LINES;i++)
{
- length = earlyDelay + EARLY_TAP_LENGTHS[i]*multiplier;
+ ALfloat length{earlyDelay + EARLY_TAP_LENGTHS[i]*multiplier};
State->mEarlyDelayTap[i][1] = float2int(length * frequency);
length = EARLY_TAP_LENGTHS[i]*multiplier;
@@ -641,20 +626,17 @@ static ALvoid UpdateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay,
}
/* Update the early reflection line lengths and gain coefficients. */
-static ALvoid UpdateEarlyLines(const ALfloat density, const ALfloat diffusion, const ALfloat decayTime, const ALuint frequency, EarlyReflections *Early)
+ALvoid UpdateEarlyLines(const ALfloat density, const ALfloat diffusion, const ALfloat decayTime, const ALuint frequency, EarlyReflections *Early)
{
- ALfloat multiplier, length;
- ALsizei i;
-
- multiplier = CalcDelayLengthMult(density);
+ const ALfloat multiplier{CalcDelayLengthMult(density)};
/* Calculate the all-pass feed-back/forward coefficient. */
Early->VecAp.Coeff = sqrtf(0.5f) * powf(diffusion, 2.0f);
- for(i = 0;i < NUM_LINES;i++)
+ for(ALsizei i{0};i < NUM_LINES;i++)
{
/* Calculate the length (in seconds) of each all-pass line. */
- length = EARLY_ALLPASS_LENGTHS[i] * multiplier;
+ ALfloat length{EARLY_ALLPASS_LENGTHS[i] * multiplier};
/* Calculate the delay offset for each all-pass line. */
Early->VecAp.Offset[i][1] = float2int(length * frequency);
@@ -671,14 +653,12 @@ static ALvoid UpdateEarlyLines(const ALfloat density, const ALfloat diffusion, c
}
/* Update the late reverb line lengths and T60 coefficients. */
-static ALvoid UpdateLateLines(const ALfloat density, const ALfloat diffusion, const ALfloat lfDecayTime, const ALfloat mfDecayTime, const ALfloat hfDecayTime, const ALfloat lf0norm, const ALfloat hf0norm, const ALuint frequency, LateReverb *Late)
+ALvoid UpdateLateLines(const ALfloat density, const ALfloat diffusion, const ALfloat lfDecayTime, const ALfloat mfDecayTime, const ALfloat hfDecayTime, const ALfloat lf0norm, const ALfloat hf0norm, const ALuint frequency, LateReverb *Late)
{
/* Scaling factor to convert the normalized reference frequencies from
* representing 0...freq to 0...max_reference.
*/
const ALfloat norm_weight_factor = (ALfloat)frequency / AL_EAXREVERB_MAX_HFREFERENCE;
- ALfloat multiplier, length, bandWeights[3];
- ALsizei i;
/* To compensate for changes in modal density and decay time of the late
* reverb signal, the input is attenuated based on the maximal energy of
@@ -688,18 +668,20 @@ static ALvoid UpdateLateLines(const ALfloat density, const ALfloat diffusion, co
* The average length of the delay lines is used to calculate the
* attenuation coefficient.
*/
- multiplier = CalcDelayLengthMult(density);
- length = (LATE_LINE_LENGTHS[0] + LATE_LINE_LENGTHS[1] +
- LATE_LINE_LENGTHS[2] + LATE_LINE_LENGTHS[3]) / 4.0f * multiplier;
+ const ALfloat multiplier{CalcDelayLengthMult(density)};
+ ALfloat length{
+ (LATE_LINE_LENGTHS[0] + LATE_LINE_LENGTHS[1] + LATE_LINE_LENGTHS[2] +
+ LATE_LINE_LENGTHS[3]) / 4.0f * multiplier};
length += (LATE_ALLPASS_LENGTHS[0] + LATE_ALLPASS_LENGTHS[1] +
LATE_ALLPASS_LENGTHS[2] + LATE_ALLPASS_LENGTHS[3]) / 4.0f * multiplier;
/* The density gain calculation uses an average decay time weighted by
* approximate bandwidth. This attempts to compensate for losses of energy
* that reduce decay time due to scattering into highly attenuated bands.
*/
- bandWeights[0] = lf0norm*norm_weight_factor;
- bandWeights[1] = hf0norm*norm_weight_factor - lf0norm*norm_weight_factor;
- bandWeights[2] = 1.0f - hf0norm*norm_weight_factor;
+ const ALfloat bandWeights[3]{
+ lf0norm*norm_weight_factor,
+ hf0norm*norm_weight_factor - lf0norm*norm_weight_factor,
+ 1.0f - hf0norm*norm_weight_factor};
Late->DensityGain[1] = CalcDensityGain(
CalcDecayCoeff(length,
bandWeights[0]*lfDecayTime + bandWeights[1]*mfDecayTime + bandWeights[2]*hfDecayTime
@@ -707,9 +689,9 @@ static ALvoid UpdateLateLines(const ALfloat density, const ALfloat diffusion, co
);
/* Calculate the all-pass feed-back/forward coefficient. */
- Late->VecAp.Coeff = sqrtf(0.5f) * powf(diffusion, 2.0f);
+ Late->VecAp.Coeff = std::sqrt(0.5f) * std::pow(diffusion, 2.0f);
- for(i = 0;i < NUM_LINES;i++)
+ for(ALsizei i{0};i < NUM_LINES;i++)
{
/* Calculate the length (in seconds) of each all-pass line. */
length = LATE_ALLPASS_LENGTHS[i] * multiplier;
@@ -743,7 +725,7 @@ static ALvoid UpdateLateLines(const ALfloat density, const ALfloat diffusion, co
* focal strength. This function results in a B-Format transformation matrix
* that spatially focuses the signal in the desired direction.
*/
-static alu::Matrix GetTransformFromVector(const ALfloat *vec)
+alu::Matrix GetTransformFromVector(const ALfloat *vec)
{
/* Normalize the panning vector according to the N3D scale, which has an
* extra sqrt(3) term on the directional components. Converting from OpenAL
@@ -753,7 +735,7 @@ static alu::Matrix GetTransformFromVector(const ALfloat *vec)
* which cancels out with the B-Format Z negation.
*/
ALfloat norm[3];
- ALfloat mag{sqrtf(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2])};
+ ALfloat mag{std::sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2])};
if(mag > 1.0f)
{
norm[0] = vec[0] / mag * -SQRTF_3;
@@ -781,7 +763,7 @@ static alu::Matrix GetTransformFromVector(const ALfloat *vec)
}
/* Update the early and late 3D panning gains. */
-static ALvoid Update3DPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, const ALfloat earlyGain, const ALfloat lateGain, ReverbState *State)
+ALvoid Update3DPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, const ALfloat earlyGain, const ALfloat lateGain, ReverbState *State)
{
State->mOutBuffer = Device->FOAOut.Buffer;
State->mOutChannels = Device->FOAOut.NumChannels;
@@ -817,27 +799,23 @@ static ALvoid Update3DPanning(const ALCdevice *Device, const ALfloat *Reflection
void ReverbState::update(const ALCcontext *Context, const ALeffectslot *Slot, const ALeffectProps *props)
{
- const ALCdevice *Device = Context->Device;
+ const ALCdevice *Device{Context->Device};
const ALlistener &Listener = Context->Listener;
- ALuint frequency = Device->Frequency;
- ALfloat lf0norm, hf0norm, hfRatio;
- ALfloat lfDecayTime, hfDecayTime;
- ALfloat gain, gainlf, gainhf;
- ALsizei i;
+ const ALuint frequency{Device->Frequency};
/* Calculate the master filters */
- hf0norm = minf(props->Reverb.HFReference / frequency, 0.49f);
+ ALfloat hf0norm{minf(props->Reverb.HFReference / frequency, 0.49f)};
/* Restrict the filter gains from going below -60dB to keep the filter from
* killing most of the signal.
*/
- gainhf = maxf(props->Reverb.GainHF, 0.001f);
+ ALfloat gainhf{maxf(props->Reverb.GainHF, 0.001f)};
mFilter[0].Lp.setParams(BiquadType::HighShelf, gainhf, hf0norm,
calc_rcpQ_from_slope(gainhf, 1.0f));
- lf0norm = minf(props->Reverb.LFReference / frequency, 0.49f);
- gainlf = maxf(props->Reverb.GainLF, 0.001f);
+ ALfloat lf0norm{minf(props->Reverb.LFReference / frequency, 0.49f)};
+ ALfloat gainlf{maxf(props->Reverb.GainLF, 0.001f)};
mFilter[0].Hp.setParams(BiquadType::LowShelf, gainlf, lf0norm,
calc_rcpQ_from_slope(gainlf, 1.0f));
- for(i = 1;i < NUM_LINES;i++)
+ for(ALsizei i{1};i < NUM_LINES;i++)
{
mFilter[i].Lp.copyParamsFrom(mFilter[0].Lp);
mFilter[i].Hp.copyParamsFrom(mFilter[0].Hp);
@@ -858,17 +836,17 @@ void ReverbState::update(const ALCcontext *Context, const ALeffectslot *Slot, co
/* If the HF limit parameter is flagged, calculate an appropriate limit
* based on the air absorption parameter.
*/
- hfRatio = props->Reverb.DecayHFRatio;
+ ALfloat hfRatio{props->Reverb.DecayHFRatio};
if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f)
hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF,
props->Reverb.DecayTime, Listener.Params.ReverbSpeedOfSound
);
/* Calculate the LF/HF decay times. */
- lfDecayTime = clampf(props->Reverb.DecayTime * props->Reverb.DecayLFRatio,
- AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME);
- hfDecayTime = clampf(props->Reverb.DecayTime * hfRatio,
- AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME);
+ const ALfloat lfDecayTime{clampf(props->Reverb.DecayTime * props->Reverb.DecayLFRatio,
+ AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME)};
+ const ALfloat hfDecayTime{clampf(props->Reverb.DecayTime * hfRatio,
+ AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME)};
/* Update the late lines. */
UpdateLateLines(props->Reverb.Density, props->Reverb.Diffusion,
@@ -877,7 +855,7 @@ void ReverbState::update(const ALCcontext *Context, const ALeffectslot *Slot, co
);
/* Update early and late 3D panning. */
- gain = props->Reverb.Gain * Slot->Params.Gain * ReverbBoost;
+ const ALfloat gain{props->Reverb.Gain * Slot->Params.Gain * ReverbBoost};
Update3DPanning(Device, props->Reverb.ReflectionsPan, props->Reverb.LateReverbPan,
props->Reverb.ReflectionsGain*gain, props->Reverb.LateReverbGain*gain,
this);
@@ -918,28 +896,25 @@ void ReverbState::update(const ALCcontext *Context, const ALeffectslot *Slot, co
**************************************/
/* Basic delay line input/output routines. */
-static inline ALfloat DelayLineOut(const DelayLineI *Delay, const ALsizei offset, const ALsizei c)
-{
- return Delay->Line[offset&Delay->Mask][c];
-}
+inline ALfloat DelayLineOut(const DelayLineI *Delay, const ALsizei offset, const ALsizei c)
+{ return Delay->Line[offset&Delay->Mask][c]; }
/* Cross-faded delay line output routine. Instead of interpolating the
* offsets, this interpolates (cross-fades) the outputs at each offset.
*/
-static inline ALfloat FadedDelayLineOut(const DelayLineI *Delay, const ALsizei off0,
- const ALsizei off1, const ALsizei c,
- const ALfloat sc0, const ALfloat sc1)
+inline ALfloat FadedDelayLineOut(const DelayLineI *Delay, const ALsizei off0, const ALsizei off1,
+ const ALsizei c, const ALfloat sc0, const ALfloat sc1)
{
return Delay->Line[off0&Delay->Mask][c]*sc0 +
Delay->Line[off1&Delay->Mask][c]*sc1;
}
-static inline void DelayLineIn(const DelayLineI *Delay, ALsizei offset, const ALsizei c,
- const ALfloat *RESTRICT in, ALsizei count)
+inline void DelayLineIn(const DelayLineI *Delay, ALsizei offset, const ALsizei c,
+ const ALfloat *RESTRICT in, ALsizei count)
{
- ALsizei i;
- for(i = 0;i < count;i++)
+ ASSUME(count > 0);
+ for(ALsizei i{0};i < count;i++)
Delay->Line[(offset++)&Delay->Mask][c] = *(in++);
}
@@ -981,8 +956,8 @@ static inline void DelayLineIn(const DelayLineI *Delay, ALsizei offset, const AL
* Where D is a diagonal matrix (of x), and S is a triangular matrix (of y)
* whose combination of signs are being iterated.
*/
-static inline void VectorPartialScatter(ALfloat *RESTRICT out, const ALfloat *RESTRICT in,
- const ALfloat xCoeff, const ALfloat yCoeff)
+inline void VectorPartialScatter(ALfloat *RESTRICT out, const ALfloat *RESTRICT in,
+ const ALfloat xCoeff, const ALfloat yCoeff)
{
out[0] = xCoeff*in[0] + yCoeff*( in[1] + -in[2] + in[3]);
out[1] = xCoeff*in[1] + yCoeff*(-in[0] + in[2] + in[3]);
@@ -993,18 +968,16 @@ static inline void VectorPartialScatter(ALfloat *RESTRICT out, const ALfloat *RE
VectorPartialScatter((delay)->Line[(o)&(delay)->Mask], in, xcoeff, ycoeff)
/* Utilizes the above, but reverses the input channels. */
-static inline void VectorScatterRevDelayIn(const DelayLineI *Delay, ALint offset,
- const ALfloat xCoeff, const ALfloat yCoeff,
- const ALfloat (*RESTRICT in)[MAX_UPDATE_SAMPLES],
- const ALsizei count)
+inline void VectorScatterRevDelayIn(const DelayLineI *Delay, ALint offset,
+ const ALfloat xCoeff, const ALfloat yCoeff,
+ const ALfloat (*RESTRICT in)[MAX_UPDATE_SAMPLES],
+ const ALsizei count)
{
- const DelayLineI delay = *Delay;
- ALsizei i, j;
-
- for(i = 0;i < count;++i)
+ const DelayLineI delay{*Delay};
+ for(ALsizei i{0};i < count;++i)
{
ALfloat f[NUM_LINES];
- for(j = 0;j < NUM_LINES;j++)
+ for(ALsizei j{0};j < NUM_LINES;j++)
f[NUM_LINES-1-j] = in[j][i];
VectorScatterDelayIn(&delay, offset++, f, xCoeff, yCoeff);
@@ -1021,24 +994,23 @@ static inline void VectorScatterRevDelayIn(const DelayLineI *Delay, ALint offset
* Two static specializations are used for transitional (cross-faded) delay
* line processing and non-transitional processing.
*/
-static void VectorAllpass_Unfaded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES], ALsizei offset,
- const ALfloat xCoeff, const ALfloat yCoeff, ALsizei todo,
- VecAllpass *Vap)
+void VectorAllpass_Unfaded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES], ALsizei offset,
+ const ALfloat xCoeff, const ALfloat yCoeff, ALsizei todo,
+ VecAllpass *Vap)
{
- const DelayLineI delay = Vap->Delay;
- const ALfloat feedCoeff = Vap->Coeff;
- ALsizei vap_offset[NUM_LINES];
- ALsizei i, j;
+ const DelayLineI delay{Vap->Delay};
+ const ALfloat feedCoeff{Vap->Coeff};
ASSUME(todo > 0);
- for(j = 0;j < NUM_LINES;j++)
- vap_offset[j] = offset-Vap->Offset[j][0];
- for(i = 0;i < todo;i++)
+ ALsizei vap_offset[NUM_LINES];
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ vap_offset[j] = offset - Vap->Offset[j][0];
+ for(ALsizei i{0};i < todo;i++)
{
ALfloat f[NUM_LINES];
- for(j = 0;j < NUM_LINES;j++)
+ for(ALsizei j{0};j < NUM_LINES;j++)
{
ALfloat input = samples[j][i];
ALfloat out = DelayLineOut(&delay, vap_offset[j]++, j) - feedCoeff*input;
@@ -1051,28 +1023,27 @@ static void VectorAllpass_Unfaded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES
++offset;
}
}
-static void VectorAllpass_Faded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES], ALsizei offset,
- const ALfloat xCoeff, const ALfloat yCoeff, ALfloat fade,
- ALsizei todo, VecAllpass *Vap)
+void VectorAllpass_Faded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES], ALsizei offset,
+ const ALfloat xCoeff, const ALfloat yCoeff, ALfloat fade,
+ ALsizei todo, VecAllpass *Vap)
{
- const DelayLineI delay = Vap->Delay;
- const ALfloat feedCoeff = Vap->Coeff;
- ALsizei vap_offset[NUM_LINES][2];
- ALsizei i, j;
+ const DelayLineI delay{Vap->Delay};
+ const ALfloat feedCoeff{Vap->Coeff};
ASSUME(todo > 0);
fade *= 1.0f/FADE_SAMPLES;
- for(j = 0;j < NUM_LINES;j++)
+ ALsizei vap_offset[NUM_LINES][2];
+ for(ALsizei j{0};j < NUM_LINES;j++)
{
- vap_offset[j][0] = offset-Vap->Offset[j][0];
- vap_offset[j][1] = offset-Vap->Offset[j][1];
+ vap_offset[j][0] = offset - Vap->Offset[j][0];
+ vap_offset[j][1] = offset - Vap->Offset[j][1];
}
- for(i = 0;i < todo;i++)
+ for(ALsizei i{0};i < todo;i++)
{
ALfloat f[NUM_LINES];
- for(j = 0;j < NUM_LINES;j++)
+ for(ALsizei j{0};j < NUM_LINES;j++)
{
ALfloat input = samples[j][i];
ALfloat out =
@@ -1109,27 +1080,25 @@ static void VectorAllpass_Faded(ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES],
* Two static specializations are used for transitional (cross-faded) delay
* line processing and non-transitional processing.
*/
-static void EarlyReflection_Unfaded(ReverbState *State, ALsizei offset, const ALsizei todo,
- ALfloat (*RESTRICT out)[MAX_UPDATE_SAMPLES])
+void EarlyReflection_Unfaded(ReverbState *State, ALsizei offset, const ALsizei todo,
+ ALfloat (*RESTRICT out)[MAX_UPDATE_SAMPLES])
{
- ALfloat (*RESTRICT temps)[MAX_UPDATE_SAMPLES] = State->mTempSamples;
- const DelayLineI early_delay = State->mEarly.Delay;
- const DelayLineI main_delay = State->mDelay;
- const ALfloat mixX = State->mMixX;
- const ALfloat mixY = State->mMixY;
- ALsizei late_feed_tap;
- ALsizei i, j;
+ ALfloat (*RESTRICT temps)[MAX_UPDATE_SAMPLES]{State->mTempSamples};
+ const DelayLineI early_delay{State->mEarly.Delay};
+ const DelayLineI main_delay{State->mDelay};
+ const ALfloat mixX{State->mMixX};
+ const ALfloat mixY{State->mMixY};
ASSUME(todo > 0);
/* First, load decorrelated samples from the main delay line as the primary
* reflections.
*/
- for(j = 0;j < NUM_LINES;j++)
+ for(ALsizei j{0};j < NUM_LINES;j++)
{
- ALsizei early_delay_tap = offset - State->mEarlyDelayTap[j][0];
- ALfloat coeff = State->mEarlyDelayCoeff[j][0];
- for(i = 0;i < todo;i++)
+ ALsizei early_delay_tap{offset - State->mEarlyDelayTap[j][0]};
+ const ALfloat coeff{State->mEarlyDelayCoeff[j][0]};
+ for(ALsizei i{0};i < todo;i++)
temps[j][i] = DelayLineOut(&main_delay, early_delay_tap++, j) * coeff;
}
@@ -1141,39 +1110,37 @@ static void EarlyReflection_Unfaded(ReverbState *State, ALsizei offset, const AL
/* Apply a delay and bounce to generate secondary reflections, combine with
* the primary reflections and write out the result for mixing.
*/
- for(j = 0;j < NUM_LINES;j++)
+ for(ALsizei j{0};j < NUM_LINES;j++)
{
- ALint early_feedb_tap = offset - State->mEarly.Offset[j][0];
- ALfloat early_feedb_coeff = State->mEarly.Coeff[j][0];
+ ALint early_feedb_tap{offset - State->mEarly.Offset[j][0]};
+ const ALfloat early_feedb_coeff{State->mEarly.Coeff[j][0]};
- for(i = 0;i < todo;i++)
+ for(ALsizei i{0};i < todo;i++)
out[j][i] = DelayLineOut(&early_delay, early_feedb_tap++, j)*early_feedb_coeff +
temps[j][i];
}
- for(j = 0;j < NUM_LINES;j++)
+ for(ALsizei j{0};j < NUM_LINES;j++)
DelayLineIn(&early_delay, offset, NUM_LINES-1-j, temps[j], todo);
/* Also write the result back to the main delay line for the late reverb
* stage to pick up at the appropriate time, appplying a scatter and
* bounce to improve the initial diffusion in the late reverb.
*/
- late_feed_tap = offset - State->mLateFeedTap;
+ const ALsizei late_feed_tap{offset - State->mLateFeedTap};
VectorScatterRevDelayIn(&main_delay, late_feed_tap, mixX, mixY, out, todo);
}
-static void EarlyReflection_Faded(ReverbState *State, ALsizei offset, const ALsizei todo,
- const ALfloat fade, ALfloat (*RESTRICT out)[MAX_UPDATE_SAMPLES])
+void EarlyReflection_Faded(ReverbState *State, ALsizei offset, const ALsizei todo,
+ const ALfloat fade, ALfloat (*RESTRICT out)[MAX_UPDATE_SAMPLES])
{
- ALfloat (*RESTRICT temps)[MAX_UPDATE_SAMPLES] = State->mTempSamples;
- const DelayLineI early_delay = State->mEarly.Delay;
- const DelayLineI main_delay = State->mDelay;
- const ALfloat mixX = State->mMixX;
- const ALfloat mixY = State->mMixY;
- ALsizei late_feed_tap;
- ALsizei i, j;
+ ALfloat (*RESTRICT temps)[MAX_UPDATE_SAMPLES]{State->mTempSamples};
+ const DelayLineI early_delay{State->mEarly.Delay};
+ const DelayLineI main_delay{State->mDelay};
+ const ALfloat mixX{State->mMixX};
+ const ALfloat mixY{State->mMixY};
ASSUME(todo > 0);
- for(j = 0;j < NUM_LINES;j++)
+ for(ALsizei j{0};j < NUM_LINES;j++)
{
ALsizei early_delay_tap0 = offset - State->mEarlyDelayTap[j][0];
ALsizei early_delay_tap1 = offset - State->mEarlyDelayTap[j][1];
@@ -1182,7 +1149,7 @@ static void EarlyReflection_Faded(ReverbState *State, ALsizei offset, const ALsi
ALfloat newCoeffStep = State->mEarlyDelayCoeff[j][1] / FADE_SAMPLES;
ALfloat fadeCount = fade;
- for(i = 0;i < todo;i++)
+ for(ALsizei i{0};i < todo;i++)
{
const ALfloat fade0 = oldCoeff + oldCoeffStep*fadeCount;
const ALfloat fade1 = newCoeffStep*fadeCount;
@@ -1195,29 +1162,29 @@ static void EarlyReflection_Faded(ReverbState *State, ALsizei offset, const ALsi
VectorAllpass_Faded(temps, offset, mixX, mixY, fade, todo, &State->mEarly.VecAp);
- for(j = 0;j < NUM_LINES;j++)
+ for(ALsizei j{0};j < NUM_LINES;j++)
{
- ALint feedb_tap0 = offset - State->mEarly.Offset[j][0];
- ALint feedb_tap1 = offset - State->mEarly.Offset[j][1];
- ALfloat feedb_oldCoeff = State->mEarly.Coeff[j][0];
- ALfloat feedb_oldCoeffStep = -feedb_oldCoeff / FADE_SAMPLES;
- ALfloat feedb_newCoeffStep = State->mEarly.Coeff[j][1] / FADE_SAMPLES;
- ALfloat fadeCount = fade;
-
- for(i = 0;i < todo;i++)
+ ALint feedb_tap0{offset - State->mEarly.Offset[j][0]};
+ ALint feedb_tap1{offset - State->mEarly.Offset[j][1]};
+ const ALfloat feedb_oldCoeff{State->mEarly.Coeff[j][0]};
+ const ALfloat feedb_oldCoeffStep{-feedb_oldCoeff / FADE_SAMPLES};
+ const ALfloat feedb_newCoeffStep{State->mEarly.Coeff[j][1] / FADE_SAMPLES};
+ ALfloat fadeCount{fade};
+
+ for(ALsizei i{0};i < todo;i++)
{
- const ALfloat fade0 = feedb_oldCoeff + feedb_oldCoeffStep*fadeCount;
- const ALfloat fade1 = feedb_newCoeffStep*fadeCount;
+ const ALfloat fade0{feedb_oldCoeff + feedb_oldCoeffStep*fadeCount};
+ const ALfloat fade1{feedb_newCoeffStep*fadeCount};
out[j][i] = FadedDelayLineOut(&early_delay,
feedb_tap0++, feedb_tap1++, j, fade0, fade1
) + temps[j][i];
fadeCount += 1.0f;
}
}
- for(j = 0;j < NUM_LINES;j++)
+ for(ALsizei j{0};j < NUM_LINES;j++)
DelayLineIn(&early_delay, offset, NUM_LINES-1-j, temps[j], todo);
- late_feed_tap = offset - State->mLateFeedTap;
+ const ALsizei late_feed_tap{offset - State->mLateFeedTap};
VectorScatterRevDelayIn(&main_delay, late_feed_tap, mixX, mixY, out, todo);
}
@@ -1243,28 +1210,27 @@ static inline void LateT60Filter(ALfloat *RESTRICT samples, const ALsizei todo,
* Two variations are made, one for for transitional (cross-faded) delay line
* processing and one for non-transitional processing.
*/
-static void LateReverb_Unfaded(ReverbState *State, ALsizei offset, const ALsizei todo,
- ALfloat (*RESTRICT out)[MAX_UPDATE_SAMPLES])
+void LateReverb_Unfaded(ReverbState *State, ALsizei offset, const ALsizei todo,
+ ALfloat (*RESTRICT out)[MAX_UPDATE_SAMPLES])
{
- ALfloat (*RESTRICT temps)[MAX_UPDATE_SAMPLES] = State->mTempSamples;
- const DelayLineI late_delay = State->mLate.Delay;
- const DelayLineI main_delay = State->mDelay;
- const ALfloat mixX = State->mMixX;
- const ALfloat mixY = State->mMixY;
- ALsizei i, j;
+ ALfloat (*RESTRICT temps)[MAX_UPDATE_SAMPLES]{State->mTempSamples};
+ const DelayLineI late_delay{State->mLate.Delay};
+ const DelayLineI main_delay{State->mDelay};
+ const ALfloat mixX{State->mMixX};
+ const ALfloat mixY{State->mMixY};
ASSUME(todo > 0);
/* First, load decorrelated samples from the main and feedback delay lines.
* Filter the signal to apply its frequency-dependent decay.
*/
- for(j = 0;j < NUM_LINES;j++)
+ for(ALsizei j{0};j < NUM_LINES;j++)
{
- ALsizei late_delay_tap = offset - State->mLateDelayTap[j][0];
- ALsizei late_feedb_tap = offset - State->mLate.Offset[j][0];
- ALfloat midGain = State->mLate.T60[j].MidGain[0];
- const ALfloat densityGain = State->mLate.DensityGain[0] * midGain;
- for(i = 0;i < todo;i++)
+ ALsizei late_delay_tap{offset - State->mLateDelayTap[j][0]};
+ ALsizei late_feedb_tap{offset - State->mLate.Offset[j][0]};
+ const ALfloat midGain{State->mLate.T60[j].MidGain[0]};
+ const ALfloat densityGain{State->mLate.DensityGain[0] * midGain};
+ for(ALsizei i{0};i < todo;i++)
temps[j][i] = DelayLineOut(&main_delay, late_delay_tap++, j)*densityGain +
DelayLineOut(&late_delay, late_feedb_tap++, j)*midGain;
LateT60Filter(temps[j], todo, &State->mLate.T60[j]);
@@ -1275,41 +1241,40 @@ static void LateReverb_Unfaded(ReverbState *State, ALsizei offset, const ALsizei
*/
VectorAllpass_Unfaded(temps, offset, mixX, mixY, todo, &State->mLate.VecAp);
- for(j = 0;j < NUM_LINES;j++)
- memcpy(out[j], temps[j], todo*sizeof(ALfloat));
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ std::copy_n(temps[j], todo, out[j]);
/* Finally, scatter and bounce the results to refeed the feedback buffer. */
VectorScatterRevDelayIn(&late_delay, offset, mixX, mixY, out, todo);
}
-static void LateReverb_Faded(ReverbState *State, ALsizei offset, const ALsizei todo,
- const ALfloat fade, ALfloat (*RESTRICT out)[MAX_UPDATE_SAMPLES])
+void LateReverb_Faded(ReverbState *State, ALsizei offset, const ALsizei todo, const ALfloat fade,
+ ALfloat (*RESTRICT out)[MAX_UPDATE_SAMPLES])
{
- ALfloat (*RESTRICT temps)[MAX_UPDATE_SAMPLES] = State->mTempSamples;
- const DelayLineI late_delay = State->mLate.Delay;
- const DelayLineI main_delay = State->mDelay;
- const ALfloat mixX = State->mMixX;
- const ALfloat mixY = State->mMixY;
- ALsizei i, j;
+ ALfloat (*RESTRICT temps)[MAX_UPDATE_SAMPLES]{State->mTempSamples};
+ const DelayLineI late_delay{State->mLate.Delay};
+ const DelayLineI main_delay{State->mDelay};
+ const ALfloat mixX{State->mMixX};
+ const ALfloat mixY{State->mMixY};
ASSUME(todo > 0);
- for(j = 0;j < NUM_LINES;j++)
+ for(ALsizei j{0};j < NUM_LINES;j++)
{
- const ALfloat oldMidGain = State->mLate.T60[j].MidGain[0];
- const ALfloat midGain = State->mLate.T60[j].MidGain[1];
- const ALfloat oldMidStep = -oldMidGain / FADE_SAMPLES;
- const ALfloat midStep = midGain / FADE_SAMPLES;
- const ALfloat oldDensityGain = State->mLate.DensityGain[0] * oldMidGain;
- const ALfloat densityGain = State->mLate.DensityGain[1] * midGain;
- const ALfloat oldDensityStep = -oldDensityGain / FADE_SAMPLES;
- const ALfloat densityStep = densityGain / FADE_SAMPLES;
- ALsizei late_delay_tap0 = offset - State->mLateDelayTap[j][0];
- ALsizei late_delay_tap1 = offset - State->mLateDelayTap[j][1];
- ALsizei late_feedb_tap0 = offset - State->mLate.Offset[j][0];
- ALsizei late_feedb_tap1 = offset - State->mLate.Offset[j][1];
- ALfloat fadeCount = fade;
-
- for(i = 0;i < todo;i++)
+ const ALfloat oldMidGain{State->mLate.T60[j].MidGain[0]};
+ const ALfloat midGain{State->mLate.T60[j].MidGain[1]};
+ const ALfloat oldMidStep{-oldMidGain / FADE_SAMPLES};
+ const ALfloat midStep{midGain / FADE_SAMPLES};
+ const ALfloat oldDensityGain{State->mLate.DensityGain[0] * oldMidGain};
+ const ALfloat densityGain{State->mLate.DensityGain[1] * midGain};
+ const ALfloat oldDensityStep{-oldDensityGain / FADE_SAMPLES};
+ const ALfloat densityStep{densityGain / FADE_SAMPLES};
+ ALsizei late_delay_tap0{offset - State->mLateDelayTap[j][0]};
+ ALsizei late_delay_tap1{offset - State->mLateDelayTap[j][1]};
+ ALsizei late_feedb_tap0{offset - State->mLate.Offset[j][0]};
+ ALsizei late_feedb_tap1{offset - State->mLate.Offset[j][1]};
+ ALfloat fadeCount{fade};
+
+ for(ALsizei i{0};i < todo;i++)
{
const ALfloat fade0 = oldDensityGain + oldDensityStep*fadeCount;
const ALfloat fade1 = densityStep*fadeCount;
@@ -1327,24 +1292,25 @@ static void LateReverb_Faded(ReverbState *State, ALsizei offset, const ALsizei t
VectorAllpass_Faded(temps, offset, mixX, mixY, fade, todo, &State->mLate.VecAp);
- for(j = 0;j < NUM_LINES;j++)
- memcpy(out[j], temps[j], todo*sizeof(ALfloat));
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ std::copy_n(temps[j], todo, out[j]);
VectorScatterRevDelayIn(&late_delay, offset, mixX, mixY, temps, todo);
}
void ReverbState::process(ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesIn)[BUFFERSIZE], ALfloat (*RESTRICT SamplesOut)[BUFFERSIZE], ALsizei NumChannels)
{
- ALfloat (*RESTRICT afmt)[MAX_UPDATE_SAMPLES] = mTempSamples;
- ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES] = mMixBuffer;
- ALsizei fadeCount = mFadeCount;
- ALsizei offset = mOffset;
- ALsizei base, c;
+ ALfloat (*RESTRICT afmt)[MAX_UPDATE_SAMPLES]{mTempSamples};
+ ALfloat (*RESTRICT samples)[MAX_UPDATE_SAMPLES]{mMixBuffer};
+ ALsizei fadeCount{mFadeCount};
+ ALsizei offset{mOffset};
+
+ ASSUME(SamplesToDo > 0);
/* Process reverb for these samples. */
- for(base = 0;base < SamplesToDo;)
+ for(ALsizei base{0};base < SamplesToDo;)
{
- ALsizei todo = SamplesToDo - base;
+ ALsizei todo{SamplesToDo - base};
/* If cross-fading, don't do more samples than there are to fade. */
if(FADE_SAMPLES-fadeCount > 0)
{
@@ -1359,7 +1325,7 @@ void ReverbState::process(ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesI
todo &= ~3;
/* Convert B-Format to A-Format for processing. */
- for(c = 0;c < NUM_LINES;c++)
+ for(ALsizei c{0};c < NUM_LINES;c++)
{
std::fill(std::begin(afmt[c]), std::end(afmt[c]), 0.0f);
MixRowSamples(afmt[c], B2A[c].data(),
@@ -1368,7 +1334,7 @@ void ReverbState::process(ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesI
}
/* Process the samples for reverb. */
- for(c = 0;c < NUM_LINES;c++)
+ for(ALsizei c{0};c < NUM_LINES;c++)
{
/* Band-pass the incoming samples. */
mFilter[c].Lp.process(samples[0], afmt[c], todo);
@@ -1380,14 +1346,14 @@ void ReverbState::process(ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesI
if(UNLIKELY(fadeCount < FADE_SAMPLES))
{
- ALfloat fade = (ALfloat)fadeCount;
+ auto fade = static_cast<ALfloat>(fadeCount);
/* Generate early reflections. */
EarlyReflection_Faded(this, offset, todo, fade, samples);
/* Mix the A-Format results to output, implicitly converting back
* to B-Format.
*/
- for(c = 0;c < NUM_LINES;c++)
+ for(ALsizei c{0};c < NUM_LINES;c++)
MixSamples(samples[c], NumChannels, SamplesOut,
mEarly.CurrentGain[c], mEarly.PanGain[c],
SamplesToDo-base, base, todo
@@ -1395,7 +1361,7 @@ void ReverbState::process(ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesI
/* Generate and mix late reverb. */
LateReverb_Faded(this, offset, todo, fade, samples);
- for(c = 0;c < NUM_LINES;c++)
+ for(ALsizei c{0};c < NUM_LINES;c++)
MixSamples(samples[c], NumChannels, SamplesOut,
mLate.CurrentGain[c], mLate.PanGain[c],
SamplesToDo-base, base, todo
@@ -1407,7 +1373,7 @@ void ReverbState::process(ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesI
{
/* Update the cross-fading delay line taps. */
fadeCount = FADE_SAMPLES;
- for(c = 0;c < NUM_LINES;c++)
+ for(ALsizei c{0};c < NUM_LINES;c++)
{
mEarlyDelayTap[c][0] = mEarlyDelayTap[c][1];
mEarlyDelayCoeff[c][0] = mEarlyDelayCoeff[c][1];
@@ -1427,7 +1393,7 @@ void ReverbState::process(ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesI
{
/* Generate and mix early reflections. */
EarlyReflection_Unfaded(this, offset, todo, samples);
- for(c = 0;c < NUM_LINES;c++)
+ for(ALsizei c{0};c < NUM_LINES;c++)
MixSamples(samples[c], NumChannels, SamplesOut,
mEarly.CurrentGain[c], mEarly.PanGain[c],
SamplesToDo-base, base, todo
@@ -1435,7 +1401,7 @@ void ReverbState::process(ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesI
/* Generate and mix late reverb. */
LateReverb_Unfaded(this, offset, todo, samples);
- for(c = 0;c < NUM_LINES;c++)
+ for(ALsizei c{0};c < NUM_LINES;c++)
MixSamples(samples[c], NumChannels, SamplesOut,
mLate.CurrentGain[c], mLate.PanGain[c],
SamplesToDo-base, base, todo
@@ -1459,6 +1425,8 @@ struct ReverbStateFactory final : public EffectStateFactory {
EffectState *ReverbStateFactory::create()
{ return new ReverbState{}; }
+} // namespace
+
EffectStateFactory *ReverbStateFactory_getFactory(void)
{
static ReverbStateFactory ReverbFactory{};