diff options
author | Chris Robinson <[email protected]> | 2018-03-22 07:05:40 -0700 |
---|---|---|
committer | Chris Robinson <[email protected]> | 2018-03-22 07:05:40 -0700 |
commit | 7a23330ffe34c0d04f882fdb45f68733ba49659d (patch) | |
tree | 54da49d0382b96ad9693a5d4051210e4210120fb /Alc/filters | |
parent | 6ea3b5445fc574c8c18ae88d6f853dfb8c14ef1e (diff) |
Move the filter implementation to a separate directory
Diffstat (limited to 'Alc/filters')
-rw-r--r-- | Alc/filters/defs.h | 118 | ||||
-rw-r--r-- | Alc/filters/filter.c | 133 |
2 files changed, 251 insertions, 0 deletions
diff --git a/Alc/filters/defs.h b/Alc/filters/defs.h new file mode 100644 index 00000000..f4e1e62c --- /dev/null +++ b/Alc/filters/defs.h @@ -0,0 +1,118 @@ +#ifndef ALC_FILTER_H +#define ALC_FILTER_H + +#include "AL/al.h" +#include "math_defs.h" + +/* Filters implementation is based on the "Cookbook formulae for audio + * EQ biquad filter coefficients" by Robert Bristow-Johnson + * http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt + */ +/* Implementation note: For the shelf filters, the specified gain is for the + * reference frequency, which is the centerpoint of the transition band. This + * better matches EFX filter design. To set the gain for the shelf itself, use + * the square root of the desired linear gain (or halve the dB gain). + */ + +typedef enum ALfilterType { + /** EFX-style low-pass filter, specifying a gain and reference frequency. */ + ALfilterType_HighShelf, + /** EFX-style high-pass filter, specifying a gain and reference frequency. */ + ALfilterType_LowShelf, + /** Peaking filter, specifying a gain and reference frequency. */ + ALfilterType_Peaking, + + /** Low-pass cut-off filter, specifying a cut-off frequency. */ + ALfilterType_LowPass, + /** High-pass cut-off filter, specifying a cut-off frequency. */ + ALfilterType_HighPass, + /** Band-pass filter, specifying a center frequency. */ + ALfilterType_BandPass, +} ALfilterType; + +typedef struct ALfilterState { + ALfloat x[2]; /* History of two last input samples */ + ALfloat y[2]; /* History of two last output samples */ + ALfloat b0, b1, b2; /* Transfer function coefficients "b" */ + ALfloat a1, a2; /* Transfer function coefficients "a" (a0 is pre-applied) */ +} ALfilterState; +/* Currently only a C-based filter process method is implemented. */ +#define ALfilterState_process ALfilterState_processC + +/** + * Calculates the rcpQ (i.e. 1/Q) coefficient for shelving filters, using the + * reference gain and shelf slope parameter. + * \param gain 0 < gain + * \param slope 0 < slope <= 1 + */ +inline ALfloat calc_rcpQ_from_slope(ALfloat gain, ALfloat slope) +{ + return sqrtf((gain + 1.0f/gain)*(1.0f/slope - 1.0f) + 2.0f); +} +/** + * Calculates the rcpQ (i.e. 1/Q) coefficient for filters, using the normalized + * reference frequency and bandwidth. + * \param f0norm 0 < f0norm < 0.5. + * \param bandwidth 0 < bandwidth + */ +inline ALfloat calc_rcpQ_from_bandwidth(ALfloat f0norm, ALfloat bandwidth) +{ + ALfloat w0 = F_TAU * f0norm; + return 2.0f*sinhf(logf(2.0f)/2.0f*bandwidth*w0/sinf(w0)); +} + +inline void ALfilterState_clear(ALfilterState *filter) +{ + filter->x[0] = 0.0f; + filter->x[1] = 0.0f; + filter->y[0] = 0.0f; + filter->y[1] = 0.0f; +} + +/** + * Sets up the filter state for the specified filter type and its parameters. + * + * \param filter The filter object to prepare. + * \param type The type of filter for the object to apply. + * \param gain The gain for the reference frequency response. Only used by the + * Shelf and Peaking filter types. + * \param f0norm The normalized reference frequency (ref_freq / sample_rate). + * This is the center point for the Shelf, Peaking, and BandPass + * filter types, or the cutoff frequency for the LowPass and + * HighPass filter types. + * \param rcpQ The reciprocal of the Q coefficient for the filter's transition + * band. Can be generated from calc_rcpQ_from_slope or + * calc_rcpQ_from_bandwidth depending on the available data. + */ +void ALfilterState_setParams(ALfilterState *filter, ALfilterType type, ALfloat gain, ALfloat f0norm, ALfloat rcpQ); + +inline void ALfilterState_copyParams(ALfilterState *restrict dst, const ALfilterState *restrict src) +{ + dst->b0 = src->b0; + dst->b1 = src->b1; + dst->b2 = src->b2; + dst->a1 = src->a1; + dst->a2 = src->a2; +} + +void ALfilterState_processC(ALfilterState *filter, ALfloat *restrict dst, const ALfloat *restrict src, ALsizei numsamples); + +inline void ALfilterState_processPassthru(ALfilterState *filter, const ALfloat *restrict src, ALsizei numsamples) +{ + if(numsamples >= 2) + { + filter->x[1] = src[numsamples-2]; + filter->x[0] = src[numsamples-1]; + filter->y[1] = src[numsamples-2]; + filter->y[0] = src[numsamples-1]; + } + else if(numsamples == 1) + { + filter->x[1] = filter->x[0]; + filter->x[0] = src[0]; + filter->y[1] = filter->y[0]; + filter->y[0] = src[0]; + } +} + +#endif /* ALC_FILTER_H */ diff --git a/Alc/filters/filter.c b/Alc/filters/filter.c new file mode 100644 index 00000000..1cf18f08 --- /dev/null +++ b/Alc/filters/filter.c @@ -0,0 +1,133 @@ + +#include "config.h" + +#include "AL/alc.h" +#include "AL/al.h" + +#include "alMain.h" +#include "defs.h" + +extern inline void ALfilterState_clear(ALfilterState *filter); +extern inline void ALfilterState_copyParams(ALfilterState *restrict dst, const ALfilterState *restrict src); +extern inline void ALfilterState_processPassthru(ALfilterState *filter, const ALfloat *restrict src, ALsizei numsamples); +extern inline ALfloat calc_rcpQ_from_slope(ALfloat gain, ALfloat slope); +extern inline ALfloat calc_rcpQ_from_bandwidth(ALfloat f0norm, ALfloat bandwidth); + + +void ALfilterState_setParams(ALfilterState *filter, ALfilterType type, ALfloat gain, ALfloat f0norm, ALfloat rcpQ) +{ + ALfloat alpha, sqrtgain_alpha_2; + ALfloat w0, sin_w0, cos_w0; + ALfloat a[3] = { 1.0f, 0.0f, 0.0f }; + ALfloat b[3] = { 1.0f, 0.0f, 0.0f }; + + // Limit gain to -100dB + assert(gain > 0.00001f); + + w0 = F_TAU * f0norm; + sin_w0 = sinf(w0); + cos_w0 = cosf(w0); + alpha = sin_w0/2.0f * rcpQ; + + /* Calculate filter coefficients depending on filter type */ + switch(type) + { + case ALfilterType_HighShelf: + sqrtgain_alpha_2 = 2.0f * sqrtf(gain) * alpha; + b[0] = gain*((gain+1.0f) + (gain-1.0f)*cos_w0 + sqrtgain_alpha_2); + b[1] = -2.0f*gain*((gain-1.0f) + (gain+1.0f)*cos_w0 ); + b[2] = gain*((gain+1.0f) + (gain-1.0f)*cos_w0 - sqrtgain_alpha_2); + a[0] = (gain+1.0f) - (gain-1.0f)*cos_w0 + sqrtgain_alpha_2; + a[1] = 2.0f* ((gain-1.0f) - (gain+1.0f)*cos_w0 ); + a[2] = (gain+1.0f) - (gain-1.0f)*cos_w0 - sqrtgain_alpha_2; + break; + case ALfilterType_LowShelf: + sqrtgain_alpha_2 = 2.0f * sqrtf(gain) * alpha; + b[0] = gain*((gain+1.0f) - (gain-1.0f)*cos_w0 + sqrtgain_alpha_2); + b[1] = 2.0f*gain*((gain-1.0f) - (gain+1.0f)*cos_w0 ); + b[2] = gain*((gain+1.0f) - (gain-1.0f)*cos_w0 - sqrtgain_alpha_2); + a[0] = (gain+1.0f) + (gain-1.0f)*cos_w0 + sqrtgain_alpha_2; + a[1] = -2.0f* ((gain-1.0f) + (gain+1.0f)*cos_w0 ); + a[2] = (gain+1.0f) + (gain-1.0f)*cos_w0 - sqrtgain_alpha_2; + break; + case ALfilterType_Peaking: + gain = sqrtf(gain); + b[0] = 1.0f + alpha * gain; + b[1] = -2.0f * cos_w0; + b[2] = 1.0f - alpha * gain; + a[0] = 1.0f + alpha / gain; + a[1] = -2.0f * cos_w0; + a[2] = 1.0f - alpha / gain; + break; + + case ALfilterType_LowPass: + b[0] = (1.0f - cos_w0) / 2.0f; + b[1] = 1.0f - cos_w0; + b[2] = (1.0f - cos_w0) / 2.0f; + a[0] = 1.0f + alpha; + a[1] = -2.0f * cos_w0; + a[2] = 1.0f - alpha; + break; + case ALfilterType_HighPass: + b[0] = (1.0f + cos_w0) / 2.0f; + b[1] = -(1.0f + cos_w0); + b[2] = (1.0f + cos_w0) / 2.0f; + a[0] = 1.0f + alpha; + a[1] = -2.0f * cos_w0; + a[2] = 1.0f - alpha; + break; + case ALfilterType_BandPass: + b[0] = alpha; + b[1] = 0; + b[2] = -alpha; + a[0] = 1.0f + alpha; + a[1] = -2.0f * cos_w0; + a[2] = 1.0f - alpha; + break; + } + + filter->a1 = a[1] / a[0]; + filter->a2 = a[2] / a[0]; + filter->b0 = b[0] / a[0]; + filter->b1 = b[1] / a[0]; + filter->b2 = b[2] / a[0]; +} + + +void ALfilterState_processC(ALfilterState *filter, ALfloat *restrict dst, const ALfloat *restrict src, ALsizei numsamples) +{ + ALsizei i; + if(LIKELY(numsamples > 1)) + { + ALfloat x0 = filter->x[0]; + ALfloat x1 = filter->x[1]; + ALfloat y0 = filter->y[0]; + ALfloat y1 = filter->y[1]; + + for(i = 0;i < numsamples;i++) + { + dst[i] = filter->b0* src[i] + + filter->b1*x0 + filter->b2*x1 - + filter->a1*y0 - filter->a2*y1; + y1 = y0; y0 = dst[i]; + x1 = x0; x0 = src[i]; + } + + filter->x[0] = x0; + filter->x[1] = x1; + filter->y[0] = y0; + filter->y[1] = y1; + } + else if(numsamples == 1) + { + dst[0] = filter->b0 * src[0] + + filter->b1 * filter->x[0] + + filter->b2 * filter->x[1] - + filter->a1 * filter->y[0] - + filter->a2 * filter->y[1]; + filter->x[1] = filter->x[0]; + filter->x[0] = src[0]; + filter->y[1] = filter->y[0]; + filter->y[0] = dst[0]; + } +} |