aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/hrtf.c
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2014-11-22 04:20:17 -0800
committerChris Robinson <[email protected]>2014-11-22 04:20:17 -0800
commita27e5e16523e1f6f166410e9992fc40886064eca (patch)
treea53e47af1b8afb1afa6c497247c9c462889d9067 /Alc/hrtf.c
parent38383671d7d2a4f143f0ac84b48e8a02b91a1ba2 (diff)
Use a different method for HRTF mixing
This new method mixes sources normally into a 14-channel buffer with the channels placed all around the listener. HRTF is then applied to the channels given their positions and written to a 2-channel buffer, which gets written out to the device. This method has the benefit that HRTF processing becomes more scalable. The costly HRTF filters are applied to the 14-channel buffer after the mix is done, turning it into a post-process with a fixed overhead. Mixing sources is done with normal non-HRTF methods, so increasing the number of playing sources only incurs normal mixing costs. Another benefit is that it improves B-Format playback since the soundfield gets mixed into speakers covering all three dimensions, which then get filtered based on their locations. The main downside to this is that the spatial resolution of the HRTF dataset does not play a big role anymore. However, the hope is that with ambisonics- based panning, the perceptual position of panned sounds will still be good. It is also an option to increase the number of virtual channels for systems that can handle it, or maybe even decrease it for weaker systems.
Diffstat (limited to 'Alc/hrtf.c')
-rw-r--r--Alc/hrtf.c222
1 files changed, 12 insertions, 210 deletions
diff --git a/Alc/hrtf.c b/Alc/hrtf.c
index 9f1386aa..2e4156a0 100644
--- a/Alc/hrtf.c
+++ b/Alc/hrtf.c
@@ -58,10 +58,6 @@ struct Hrtf {
static const ALchar magicMarker00[8] = "MinPHR00";
static const ALchar magicMarker01[8] = "MinPHR01";
-/* First value for pass-through coefficients (remaining are 0), used for omni-
- * directional sounds. */
-static const ALfloat PassthruCoeff = 32767.0f * 0.707106781187f/*sqrt(0.5)*/;
-
static struct Hrtf *LoadedHrtfs = NULL;
/* Calculate the elevation indices given the polar elevation in radians.
@@ -88,45 +84,12 @@ static void CalcAzIndices(ALuint azcount, ALfloat az, ALuint *azidx, ALfloat *az
*azmu = az - floorf(az);
}
-/* Calculates the normalized HRTF transition factor (delta) from the changes
- * in gain and listener to source angle between updates. The result is a
- * normalized delta factor that can be used to calculate moving HRIR stepping
- * values.
- */
-ALfloat CalcHrtfDelta(ALfloat oldGain, ALfloat newGain, const ALfloat olddir[3], const ALfloat newdir[3])
-{
- ALfloat gainChange, angleChange, change;
-
- // Calculate the normalized dB gain change.
- newGain = maxf(newGain, 0.0001f);
- oldGain = maxf(oldGain, 0.0001f);
- gainChange = fabsf(log10f(newGain / oldGain) / log10f(0.0001f));
-
- // Calculate the angle change only when there is enough gain to notice it.
- angleChange = 0.0f;
- if(gainChange > 0.0001f || newGain > 0.0001f)
- {
- // No angle change when the directions are equal or degenerate (when
- // both have zero length).
- if(newdir[0] != olddir[0] || newdir[1] != olddir[1] || newdir[2] != olddir[2])
- {
- ALfloat dotp = olddir[0]*newdir[0] + olddir[1]*newdir[1] + olddir[2]*newdir[2];
- angleChange = acosf(clampf(dotp, -1.0f, 1.0f)) / F_PI;
- }
- }
-
- // Use the largest of the two changes for the delta factor, and apply a
- // significance shaping function to it.
- change = maxf(angleChange * 25.0f, gainChange) * 2.0f;
- return minf(change, 1.0f);
-}
-
/* Calculates static HRIR coefficients and delays for the given polar
* elevation and azimuth in radians. Linear interpolation is used to
* increase the apparent resolution of the HRIR data set. The coefficients
* are also normalized and attenuated by the specified gain.
*/
-void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat dirfact, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays)
+void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat (*coeffs)[2], ALuint *delays)
{
ALuint evidx[2], lidx[4], ridx[4];
ALfloat mu[3], blend[4];
@@ -158,12 +121,12 @@ void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azi
blend[3] = ( mu[1]) * ( mu[2]);
/* Calculate the HRIR delays using linear interpolation. */
- delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
- Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) *
- dirfact + 0.5f) << HRTFDELAY_BITS;
- delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
- Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) *
- dirfact + 0.5f) << HRTFDELAY_BITS;
+ delays[0] = fastf2u(Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
+ Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3] +
+ 0.5f);
+ delays[1] = fastf2u(Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
+ Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3] +
+ 0.5f);
/* Calculate the sample offsets for the HRIR indices. */
lidx[0] *= Hrtf->irSize;
@@ -175,183 +138,22 @@ void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azi
ridx[2] *= Hrtf->irSize;
ridx[3] *= Hrtf->irSize;
- /* Calculate the normalized and attenuated HRIR coefficients using linear
- * interpolation when there is enough gain to warrant it. Zero the
- * coefficients if gain is too low.
- */
- if(gain > 0.0001f)
+ for(i = 0;i < Hrtf->irSize;i++)
{
ALfloat c;
-
- gain *= 1.0f/32767.0f;
-
- i = 0;
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
- coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain;
+ coeffs[i][0] = c * (1.0f/32767.0f);
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
- coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain;
-
- for(i = 1;i < Hrtf->irSize;i++)
- {
- c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
- Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
- coeffs[i][0] = lerp(0.0f, c, dirfact) * gain;
- c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
- Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
- coeffs[i][1] = lerp(0.0f, c, dirfact) * gain;
- }
+ coeffs[i][1] = c * (1.0f/32767.0f);
}
- else
- {
- for(i = 0;i < Hrtf->irSize;i++)
- {
- coeffs[i][0] = 0.0f;
- coeffs[i][1] = 0.0f;
- }
- }
-}
-
-/* Calculates the moving HRIR target coefficients, target delays, and
- * stepping values for the given polar elevation and azimuth in radians.
- * Linear interpolation is used to increase the apparent resolution of the
- * HRIR data set. The coefficients are also normalized and attenuated by the
- * specified gain. Stepping resolution and count is determined using the
- * given delta factor between 0.0 and 1.0.
- */
-ALuint GetMovingHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat dirfact, ALfloat gain, ALfloat delta, ALint counter, ALfloat (*coeffs)[2], ALuint *delays, ALfloat (*coeffStep)[2], ALint *delayStep)
-{
- ALuint evidx[2], lidx[4], ridx[4];
- ALfloat mu[3], blend[4];
- ALfloat left, right;
- ALfloat step;
- ALuint i;
-
- /* Claculate elevation indices and interpolation factor. */
- CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]);
-
- for(i = 0;i < 2;i++)
- {
- ALuint azcount = Hrtf->azCount[evidx[i]];
- ALuint evoffset = Hrtf->evOffset[evidx[i]];
- ALuint azidx[2];
-
- /* Calculate azimuth indices and interpolation factor for this elevation. */
- CalcAzIndices(azcount, azimuth, azidx, &mu[i]);
-
- /* Calculate a set of linear HRIR indices for left and right channels. */
- lidx[i*2 + 0] = evoffset + azidx[0];
- lidx[i*2 + 1] = evoffset + azidx[1];
- ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount);
- ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount);
- }
-
- // Calculate the stepping parameters.
- delta = maxf(floorf(delta*(Hrtf->sampleRate*0.015f) + 0.5f), 1.0f);
- step = 1.0f / delta;
-
- /* Calculate 4 blending weights for 2D bilinear interpolation. */
- blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]);
- blend[1] = ( mu[0]) * (1.0f-mu[2]);
- blend[2] = (1.0f-mu[1]) * ( mu[2]);
- blend[3] = ( mu[1]) * ( mu[2]);
-
- /* Calculate the HRIR delays using linear interpolation. Then calculate
- * the delay stepping values using the target and previous running
- * delays.
- */
- left = (ALfloat)(delays[0] - (delayStep[0] * counter));
- right = (ALfloat)(delays[1] - (delayStep[1] * counter));
-
- delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
- Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) *
- dirfact + 0.5f) << HRTFDELAY_BITS;
- delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
- Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) *
- dirfact + 0.5f) << HRTFDELAY_BITS;
-
- delayStep[0] = fastf2i(step * (delays[0] - left));
- delayStep[1] = fastf2i(step * (delays[1] - right));
-
- /* Calculate the sample offsets for the HRIR indices. */
- lidx[0] *= Hrtf->irSize;
- lidx[1] *= Hrtf->irSize;
- lidx[2] *= Hrtf->irSize;
- lidx[3] *= Hrtf->irSize;
- ridx[0] *= Hrtf->irSize;
- ridx[1] *= Hrtf->irSize;
- ridx[2] *= Hrtf->irSize;
- ridx[3] *= Hrtf->irSize;
-
- /* Calculate the normalized and attenuated target HRIR coefficients using
- * linear interpolation when there is enough gain to warrant it. Zero
- * the target coefficients if gain is too low. Then calculate the
- * coefficient stepping values using the target and previous running
- * coefficients.
- */
- if(gain > 0.0001f)
- {
- ALfloat c;
-
- gain *= 1.0f/32767.0f;
-
- i = 0;
- left = coeffs[i][0] - (coeffStep[i][0] * counter);
- right = coeffs[i][1] - (coeffStep[i][1] * counter);
-
- c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
- Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
- coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain;
- c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
- Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
- coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain;
-
- coeffStep[i][0] = step * (coeffs[i][0] - left);
- coeffStep[i][1] = step * (coeffs[i][1] - right);
-
- for(i = 1;i < Hrtf->irSize;i++)
- {
- left = coeffs[i][0] - (coeffStep[i][0] * counter);
- right = coeffs[i][1] - (coeffStep[i][1] * counter);
-
- c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
- Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
- coeffs[i][0] = lerp(0.0f, c, dirfact) * gain;
- c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
- Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
- coeffs[i][1] = lerp(0.0f, c, dirfact) * gain;
-
- coeffStep[i][0] = step * (coeffs[i][0] - left);
- coeffStep[i][1] = step * (coeffs[i][1] - right);
- }
- }
- else
- {
- for(i = 0;i < Hrtf->irSize;i++)
- {
- left = coeffs[i][0] - (coeffStep[i][0] * counter);
- right = coeffs[i][1] - (coeffStep[i][1] * counter);
-
- coeffs[i][0] = 0.0f;
- coeffs[i][1] = 0.0f;
-
- coeffStep[i][0] = step * -left;
- coeffStep[i][1] = step * -right;
- }
- }
-
- /* The stepping count is the number of samples necessary for the HRIR to
- * complete its transition. The mixer will only apply stepping for this
- * many samples.
- */
- return fastf2u(delta);
}
static struct Hrtf *LoadHrtf00(FILE *f, ALuint deviceRate)
{
- const ALubyte maxDelay = SRC_HISTORY_LENGTH-1;
+ const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1;
struct Hrtf *Hrtf = NULL;
ALboolean failed = AL_FALSE;
ALuint rate = 0, irCount = 0;
@@ -518,7 +320,7 @@ static struct Hrtf *LoadHrtf00(FILE *f, ALuint deviceRate)
static struct Hrtf *LoadHrtf01(FILE *f, ALuint deviceRate)
{
- const ALubyte maxDelay = SRC_HISTORY_LENGTH-1;
+ const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1;
struct Hrtf *Hrtf = NULL;
ALboolean failed = AL_FALSE;
ALuint rate = 0, irCount = 0;