diff options
author | Chris Robinson <[email protected]> | 2018-03-22 05:06:15 -0700 |
---|---|---|
committer | Chris Robinson <[email protected]> | 2018-03-22 05:06:15 -0700 |
commit | 091e676db34ff51a709427d5b1203bfcd0788fb4 (patch) | |
tree | 6d67621e71b1290cdf3241a949f45f0e9915ab0e /Alc/mixer/mixer_neon.c | |
parent | 6ad171781a8e2270f598263149356385cc06d8f9 (diff) |
Move mixer sources into a sub-directory
Diffstat (limited to 'Alc/mixer/mixer_neon.c')
-rw-r--r-- | Alc/mixer/mixer_neon.c | 261 |
1 files changed, 261 insertions, 0 deletions
diff --git a/Alc/mixer/mixer_neon.c b/Alc/mixer/mixer_neon.c new file mode 100644 index 00000000..b93d11fd --- /dev/null +++ b/Alc/mixer/mixer_neon.c @@ -0,0 +1,261 @@ +#include "config.h" + +#include <arm_neon.h> + +#include "AL/al.h" +#include "AL/alc.h" +#include "alMain.h" +#include "alu.h" +#include "hrtf.h" +#include "defs.h" + + +const ALfloat *Resample_lerp_Neon(const InterpState* UNUSED(state), + const ALfloat *restrict src, ALsizei frac, ALint increment, + ALfloat *restrict dst, ALsizei numsamples) +{ + const int32x4_t increment4 = vdupq_n_s32(increment*4); + const float32x4_t fracOne4 = vdupq_n_f32(1.0f/FRACTIONONE); + const int32x4_t fracMask4 = vdupq_n_s32(FRACTIONMASK); + alignas(16) ALint pos_[4]; + alignas(16) ALsizei frac_[4]; + int32x4_t pos4; + int32x4_t frac4; + ALsizei i; + + InitiatePositionArrays(frac, increment, frac_, pos_, 4); + + frac4 = vld1q_s32(frac_); + pos4 = vld1q_s32(pos_); + + for(i = 0;numsamples-i > 3;i += 4) + { + const float32x4_t val1 = (float32x4_t){src[pos_[0]], src[pos_[1]], src[pos_[2]], src[pos_[3]]}; + const float32x4_t val2 = (float32x4_t){src[pos_[0]+1], src[pos_[1]+1], src[pos_[2]+1], src[pos_[3]+1]}; + + /* val1 + (val2-val1)*mu */ + const float32x4_t r0 = vsubq_f32(val2, val1); + const float32x4_t mu = vmulq_f32(vcvtq_f32_s32(frac4), fracOne4); + const float32x4_t out = vmlaq_f32(val1, mu, r0); + + vst1q_f32(&dst[i], out); + + frac4 = vaddq_s32(frac4, increment4); + pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, FRACTIONBITS)); + frac4 = vandq_s32(frac4, fracMask4); + + vst1q_s32(pos_, pos4); + } + + if(i < numsamples) + { + /* NOTE: These four elements represent the position *after* the last + * four samples, so the lowest element is the next position to + * resample. + */ + ALint pos = pos_[0]; + frac = vgetq_lane_s32(frac4, 0); + do { + dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE)); + + frac += increment; + pos += frac>>FRACTIONBITS; + frac &= FRACTIONMASK; + } while(++i < numsamples); + } + return dst; +} + +const ALfloat *Resample_bsinc_Neon(const InterpState *state, + const ALfloat *restrict src, ALsizei frac, ALint increment, + ALfloat *restrict dst, ALsizei dstlen) +{ + const ALfloat *const filter = state->bsinc.filter; + const float32x4_t sf4 = vdupq_n_f32(state->bsinc.sf); + const ALsizei m = state->bsinc.m; + const float32x4_t *fil, *scd, *phd, *spd; + ALsizei pi, i, j, offset; + float32x4_t r4; + ALfloat pf; + + src += state->bsinc.l; + for(i = 0;i < dstlen;i++) + { + // Calculate the phase index and factor. +#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) + pi = frac >> FRAC_PHASE_BITDIFF; + pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF)); +#undef FRAC_PHASE_BITDIFF + + offset = m*pi*4; + fil = ASSUME_ALIGNED(filter + offset, 16); offset += m; + scd = ASSUME_ALIGNED(filter + offset, 16); offset += m; + phd = ASSUME_ALIGNED(filter + offset, 16); offset += m; + spd = ASSUME_ALIGNED(filter + offset, 16); + + // Apply the scale and phase interpolated filter. + r4 = vdupq_n_f32(0.0f); + { + const float32x4_t pf4 = vdupq_n_f32(pf); + for(j = 0;j < m;j+=4,fil++,scd++,phd++,spd++) + { + /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ + const float32x4_t f4 = vmlaq_f32( + vmlaq_f32(*fil, sf4, *scd), + pf4, vmlaq_f32(*phd, sf4, *spd) + ); + /* r += f*src */ + r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j])); + } + } + r4 = vaddq_f32(r4, vcombine_f32(vrev64_f32(vget_high_f32(r4)), + vrev64_f32(vget_low_f32(r4)))); + dst[i] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); + + frac += increment; + src += frac>>FRACTIONBITS; + frac &= FRACTIONMASK; + } + return dst; +} + + +static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*restrict Values)[2], + const ALsizei IrSize, + const ALfloat (*restrict Coeffs)[2], + ALfloat left, ALfloat right) +{ + ALsizei c; + float32x4_t leftright4; + { + float32x2_t leftright2 = vdup_n_f32(0.0); + leftright2 = vset_lane_f32(left, leftright2, 0); + leftright2 = vset_lane_f32(right, leftright2, 1); + leftright4 = vcombine_f32(leftright2, leftright2); + } + Values = ASSUME_ALIGNED(Values, 16); + Coeffs = ASSUME_ALIGNED(Coeffs, 16); + for(c = 0;c < IrSize;c += 2) + { + const ALsizei o0 = (Offset+c)&HRIR_MASK; + const ALsizei o1 = (o0+1)&HRIR_MASK; + float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[o0][0]), + vld1_f32((float32_t*)&Values[o1][0])); + float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]); + + vals = vmlaq_f32(vals, coefs, leftright4); + + vst1_f32((float32_t*)&Values[o0][0], vget_low_f32(vals)); + vst1_f32((float32_t*)&Values[o1][0], vget_high_f32(vals)); + } +} + +#define MixHrtf MixHrtf_Neon +#define MixHrtfBlend MixHrtfBlend_Neon +#define MixDirectHrtf MixDirectHrtf_Neon +#include "mixer_inc.c" +#undef MixHrtf + + +void Mix_Neon(const ALfloat *data, ALsizei OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE], + ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos, + ALsizei BufferSize) +{ + ALfloat gain, delta, step; + float32x4_t gain4; + ALsizei c; + + data = ASSUME_ALIGNED(data, 16); + OutBuffer = ASSUME_ALIGNED(OutBuffer, 16); + + delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f; + + for(c = 0;c < OutChans;c++) + { + ALsizei pos = 0; + gain = CurrentGains[c]; + step = (TargetGains[c] - gain) * delta; + if(fabsf(step) > FLT_EPSILON) + { + ALsizei minsize = mini(BufferSize, Counter); + /* Mix with applying gain steps in aligned multiples of 4. */ + if(minsize-pos > 3) + { + float32x4_t step4; + gain4 = vsetq_lane_f32(gain, gain4, 0); + gain4 = vsetq_lane_f32(gain + step, gain4, 1); + gain4 = vsetq_lane_f32(gain + step + step, gain4, 2); + gain4 = vsetq_lane_f32(gain + step + step + step, gain4, 3); + step4 = vdupq_n_f32(step + step + step + step); + do { + const float32x4_t val4 = vld1q_f32(&data[pos]); + float32x4_t dry4 = vld1q_f32(&OutBuffer[c][OutPos+pos]); + dry4 = vmlaq_f32(dry4, val4, gain4); + gain4 = vaddq_f32(gain4, step4); + vst1q_f32(&OutBuffer[c][OutPos+pos], dry4); + pos += 4; + } while(minsize-pos > 3); + /* NOTE: gain4 now represents the next four gains after the + * last four mixed samples, so the lowest element represents + * the next gain to apply. + */ + gain = vgetq_lane_f32(gain4, 0); + } + /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ + for(;pos < minsize;pos++) + { + OutBuffer[c][OutPos+pos] += data[pos]*gain; + gain += step; + } + if(pos == Counter) + gain = TargetGains[c]; + CurrentGains[c] = gain; + + /* Mix until pos is aligned with 4 or the mix is done. */ + minsize = mini(BufferSize, (pos+3)&~3); + for(;pos < minsize;pos++) + OutBuffer[c][OutPos+pos] += data[pos]*gain; + } + + if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) + continue; + gain4 = vdupq_n_f32(gain); + for(;BufferSize-pos > 3;pos += 4) + { + const float32x4_t val4 = vld1q_f32(&data[pos]); + float32x4_t dry4 = vld1q_f32(&OutBuffer[c][OutPos+pos]); + dry4 = vmlaq_f32(dry4, val4, gain4); + vst1q_f32(&OutBuffer[c][OutPos+pos], dry4); + } + for(;pos < BufferSize;pos++) + OutBuffer[c][OutPos+pos] += data[pos]*gain; + } +} + +void MixRow_Neon(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize) +{ + float32x4_t gain4; + ALsizei c; + + data = ASSUME_ALIGNED(data, 16); + OutBuffer = ASSUME_ALIGNED(OutBuffer, 16); + + for(c = 0;c < InChans;c++) + { + ALsizei pos = 0; + ALfloat gain = Gains[c]; + if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) + continue; + + gain4 = vdupq_n_f32(gain); + for(;BufferSize-pos > 3;pos += 4) + { + const float32x4_t val4 = vld1q_f32(&data[c][InPos+pos]); + float32x4_t dry4 = vld1q_f32(&OutBuffer[pos]); + dry4 = vmlaq_f32(dry4, val4, gain4); + vst1q_f32(&OutBuffer[pos], dry4); + } + for(;pos < BufferSize;pos++) + OutBuffer[pos] += data[c][InPos+pos]*gain; + } +} |